Update encoding support for SplitKey objects

This change updates encoding support for SplitKey objects, bringing
it up-to-date with the modern conventions used in the rest of the
library. A new unit test suite has been added to cover the new
functionality.

Partially implements #545
This commit is contained in:
Peter Hamilton 2019-09-10 18:29:13 -04:00 committed by Peter Hamilton
parent ef57ece994
commit 64d78dc8e3
2 changed files with 1249 additions and 68 deletions

View File

@ -13,22 +13,26 @@
# License for the specific language governing permissions and limitations
# under the License.
import six
from kmip.core.attributes import CertificateType
from kmip.core import enums
from kmip.core.enums import Tags
from kmip.core import exceptions
from kmip.core.misc import CertificateValue
from kmip.core import objects
from kmip.core.objects import Attribute
from kmip.core.objects import KeyBlock
from kmip.core import primitives
from kmip.core.primitives import Struct
from kmip.core.primitives import Integer
from kmip.core.primitives import Enumeration
from kmip.core.primitives import BigInteger
from kmip.core.primitives import ByteString
from kmip.core import utils
from kmip.core.utils import BytearrayStream
@ -219,38 +223,25 @@ class PrivateKey(KeyBlockKey):
pass
# 2.2.5
class SplitKey(Struct):
class SplitKey(primitives.Struct):
"""
A split key cryptographic object.
class SplitKeyParts(Integer):
This object represents a symmetric or private key that has been split into
multiple parts. The fields of this object specify how the key was split
and how it can be reassembled.
def __init__(self, value=None):
super(SplitKey.SplitKeyParts, self).__init__(
value, Tags.SPLIT_KEY_PARTS)
class KeyPartIdentifier(Integer):
def __init__(self, value=None):
super(SplitKey.KeyPartIdentifier, self).__init__(
value, Tags.KEY_PART_IDENTIFIER)
class SplitKeyThreshold(Integer):
def __init__(self, value=None):
super(SplitKey.SplitKeyThreshold, self).__init__(
value, Tags.SPLIT_KEY_THRESHOLD)
class SplitKeyMethod(Enumeration):
def __init__(self, value=None):
super(SplitKey.SplitKeyMethod, self).__init__(
enums.SplitKeyMethod, value, Tags.SPLIT_KEY_METHOD)
class PrimeFieldSize(BigInteger):
def __init__(self, value=None):
super(SplitKey.PrimeFieldSize, self).__init__(
value, Tags.PRIME_FIELD_SIZE)
Attributes:
split_key_parts: The total number of parts of the split key.
key_part_identifier: The ID specifying the part of the key in the key
block.
split_key_threshold: The minimum number of parts needed to reconstruct
the key.
split_key_method: The method by which the key was split.
prime_field_size: The prime field size used for the Polynomial Sharing
Prime Field split key method.
key_block: The split key part held by this object.
"""
def __init__(self,
split_key_parts=None,
@ -259,62 +250,374 @@ class SplitKey(Struct):
split_key_method=None,
prime_field_size=None,
key_block=None):
super(SplitKey, self).__init__(Tags.SPLIT_KEY)
"""
Construct a SplitKey object.
Args:
split_key_parts (int): An integer specifying the total number of
parts of the split key. Optional, defaults to None. Required
for read/write.
key_part_identifier (int): An integer specifying which key part is
contained in the key block. Optional, defaults to None.
Required for read/write.
split_key_threshold (int): An integer specifying the minimum number
of key parts required to reconstruct the split key. Optional,
defaults to None. Required for read/write.
split_key_method (enum): A SplitKeyMethod enumeration specifying
the method by which the key was split. Optional, defaults to
None. Required for read/write.
prime_field_size (int): A big integer specifying the prime field
size used for the Polynomial Sharing Prime Field split key
method. Optional, defaults to None. Required for read/write
only if the split key method is Polynomial Sharing Prime Field.
key_block (struct): A KeyBlock structure containing the split key
part identified by the key part identifier. Optional, defaults
to None. Required for read/write.
"""
super(SplitKey, self).__init__(enums.Tags.SPLIT_KEY)
self._split_key_parts = None
self._key_part_identifier = None
self._split_key_threshold = None
self._split_key_method = None
self._prime_field_size = None
self._key_block = None
self.split_key_parts = split_key_parts
self.key_part_identifier = key_part_identifier
self.split_key_threshold = split_key_threshold
self.split_key_method = split_key_method
self.prime_field_size = prime_field_size
self.key_block = key_block
self.validate()
def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0):
super(SplitKey, self).read(istream, kmip_version=kmip_version)
tstream = BytearrayStream(istream.read(self.length))
@property
def split_key_parts(self):
if self._split_key_parts is not None:
return self._split_key_parts.value
return None
self.split_key_parts = SplitKey.SplitKeyParts()
self.split_key_parts.read(tstream, kmip_version=kmip_version)
@split_key_parts.setter
def split_key_parts(self, value):
if value is None:
self._split_key_parts = None
elif isinstance(value, six.integer_types):
self._split_key_parts = primitives.Integer(
value=value,
tag=enums.Tags.SPLIT_KEY_PARTS
)
else:
raise TypeError("The split key parts must be an integer.")
self.key_part_identifier = SplitKey.KeyPartIdentifier()
self.key_part_identifier.read(tstream, kmip_version=kmip_version)
@property
def key_part_identifier(self):
if self._key_part_identifier is not None:
return self._key_part_identifier.value
return None
self.split_key_threshold = SplitKey.SplitKeyThreshold()
self.split_key_threshold.read(tstream, kmip_version=kmip_version)
@key_part_identifier.setter
def key_part_identifier(self, value):
if value is None:
self._key_part_identifier = None
elif isinstance(value, six.integer_types):
self._key_part_identifier = primitives.Integer(
value=value,
tag=enums.Tags.KEY_PART_IDENTIFIER
)
else:
raise TypeError("The key part identifier must be an integer.")
if self.is_tag_next(Tags.PRIME_FIELD_SIZE, tstream):
self.prime_field_size = SplitKey.PrimeFieldSize()
self.prime_field_size.read(tstream, kmip_version=kmip_version)
@property
def split_key_threshold(self):
if self._split_key_threshold is not None:
return self._split_key_threshold.value
return None
self.key_block = KeyBlock()
self.key_block.read(tstream, kmip_version=kmip_version)
@split_key_threshold.setter
def split_key_threshold(self, value):
if value is None:
self._split_key_threshold = None
elif isinstance(value, six.integer_types):
self._split_key_threshold = primitives.Integer(
value=value,
tag=enums.Tags.SPLIT_KEY_THRESHOLD
)
else:
raise TypeError("The split key threshold must be an integer.")
self.is_oversized(tstream)
self.validate()
@property
def split_key_method(self):
if self._split_key_method is not None:
return self._split_key_method.value
return None
def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0):
tstream = BytearrayStream()
@split_key_method.setter
def split_key_method(self, value):
if value is None:
self._split_key_method = None
elif isinstance(value, enums.SplitKeyMethod):
self._split_key_method = primitives.Enumeration(
enums.SplitKeyMethod,
value=value,
tag=enums.Tags.SPLIT_KEY_METHOD
)
else:
raise TypeError(
"The split key method must be a SplitKeyMethod enumeration."
)
self.split_key_parts.write(tstream, kmip_version=kmip_version)
self.key_part_identifier.write(tstream, kmip_version=kmip_version)
self.split_key_threshold.write(tstream, kmip_version=kmip_version)
self.split_key_method.write(tstream, kmip_version=kmip_version)
@property
def prime_field_size(self):
if self._prime_field_size is not None:
return self._prime_field_size.value
return None
if self.prime_field_size is not None:
self.prime_field_size.write(tstream, kmip_version=kmip_version)
@prime_field_size.setter
def prime_field_size(self, value):
if value is None:
self._prime_field_size = None
elif isinstance(value, six.integer_types):
self._prime_field_size = primitives.BigInteger(
value=value,
tag=enums.Tags.PRIME_FIELD_SIZE
)
else:
raise TypeError("The prime field size must be an integer.")
self.key_block.write(tstream, kmip_version=kmip_version)
@property
def key_block(self):
if self._key_block is not None:
return self._key_block
return None
# Write the length and value of the template attribute
self.length = tstream.length()
super(SplitKey, self).write(ostream, kmip_version=kmip_version)
ostream.write(tstream.buffer)
@key_block.setter
def key_block(self, value):
if value is None:
self._key_block = None
elif isinstance(value, objects.KeyBlock):
self._key_block = value
else:
raise TypeError("The key block must be a KeyBlock structure.")
def validate(self):
self.__validate()
def read(self, input_buffer, kmip_version=enums.KMIPVersion.KMIP_1_0):
"""
Read the data encoding the SplitKey object and decode it.
def __validate(self):
# TODO (peter-hamilton) Finish implementation.
pass
Args:
input_buffer (stream): A data stream containing the encoded object
data, supporting a read method; usually a BytearrayStream
object.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be decoded. Optional,
defaults to KMIP 1.0.
"""
super(SplitKey, self).read(input_buffer, kmip_version=kmip_version)
local_buffer = utils.BytearrayStream(input_buffer.read(self.length))
if self.is_tag_next(enums.Tags.SPLIT_KEY_PARTS, local_buffer):
self._split_key_parts = primitives.Integer(
tag=enums.Tags.SPLIT_KEY_PARTS
)
self._split_key_parts.read(local_buffer, kmip_version=kmip_version)
else:
raise exceptions.InvalidKmipEncoding(
"The SplitKey encoding is missing the SplitKeyParts field."
)
if self.is_tag_next(enums.Tags.KEY_PART_IDENTIFIER, local_buffer):
self._key_part_identifier = primitives.Integer(
tag=enums.Tags.KEY_PART_IDENTIFIER
)
self._key_part_identifier.read(
local_buffer,
kmip_version=kmip_version
)
else:
raise exceptions.InvalidKmipEncoding(
"The SplitKey encoding is missing the KeyPartIdentifier field."
)
if self.is_tag_next(enums.Tags.SPLIT_KEY_THRESHOLD, local_buffer):
self._split_key_threshold = primitives.Integer(
tag=enums.Tags.SPLIT_KEY_THRESHOLD
)
self._split_key_threshold.read(
local_buffer,
kmip_version=kmip_version
)
else:
raise exceptions.InvalidKmipEncoding(
"The SplitKey encoding is missing the SplitKeyThreshold field."
)
if self.is_tag_next(enums.Tags.SPLIT_KEY_METHOD, local_buffer):
self._split_key_method = primitives.Enumeration(
enums.SplitKeyMethod,
tag=enums.Tags.SPLIT_KEY_METHOD
)
self._split_key_method.read(
local_buffer,
kmip_version=kmip_version
)
else:
raise exceptions.InvalidKmipEncoding(
"The SplitKey encoding is missing the SplitKeyMethod field."
)
if self.is_tag_next(enums.Tags.PRIME_FIELD_SIZE, local_buffer):
self._prime_field_size = primitives.BigInteger(
tag=enums.Tags.PRIME_FIELD_SIZE
)
self._prime_field_size.read(
local_buffer,
kmip_version=kmip_version
)
else:
corner_case = enums.SplitKeyMethod.POLYNOMIAL_SHARING_PRIME_FIELD
if self.split_key_method == corner_case:
raise exceptions.InvalidKmipEncoding(
"The SplitKey encoding is missing the PrimeFieldSize "
"field. This field is required when the SplitKeyMethod is "
"PolynomialSharingPrimeField."
)
if self.is_tag_next(enums.Tags.KEY_BLOCK, local_buffer):
self._key_block = objects.KeyBlock()
self._key_block.read(local_buffer, kmip_version=kmip_version)
else:
raise exceptions.InvalidKmipEncoding(
"The SplitKey encoding is missing the KeyBlock field."
)
self.is_oversized(local_buffer)
def write(self, output_buffer, kmip_version=enums.KMIPVersion.KMIP_1_0):
"""
Write the data encoding the SplitKey object to a buffer.
Args:
output_buffer (stream): A data stream in which to encode object
data, supporting a write method; usually a BytearrayStream
object.
kmip_version (KMIPVersion): An enumeration defining the KMIP
version with which the object will be encoded. Optional,
defaults to KMIP 1.0.
"""
local_buffer = utils.BytearrayStream()
if self._split_key_parts:
self._split_key_parts.write(
local_buffer,
kmip_version=kmip_version
)
else:
raise exceptions.InvalidField(
"The SplitKey object is missing the SplitKeyParts field."
)
if self._key_part_identifier:
self._key_part_identifier.write(
local_buffer,
kmip_version=kmip_version
)
else:
raise exceptions.InvalidField(
"The SplitKey object is missing the KeyPartIdentifier field."
)
if self._split_key_threshold:
self._split_key_threshold.write(
local_buffer,
kmip_version=kmip_version
)
else:
raise exceptions.InvalidField(
"The SplitKey object is missing the SplitKeyThreshold field."
)
if self._split_key_method:
self._split_key_method.write(
local_buffer,
kmip_version=kmip_version
)
else:
raise exceptions.InvalidField(
"The SplitKey object is missing the SplitKeyMethod field."
)
if self._prime_field_size:
self._prime_field_size.write(
local_buffer,
kmip_version=kmip_version
)
else:
corner_case = enums.SplitKeyMethod.POLYNOMIAL_SHARING_PRIME_FIELD
if self.split_key_method == corner_case:
raise exceptions.InvalidField(
"The SplitKey object is missing the PrimeFieldSize field. "
"This field is required when the SplitKeyMethod is "
"PolynomialSharingPrimeField."
)
if self._key_block:
self._key_block.write(local_buffer, kmip_version=kmip_version)
else:
raise exceptions.InvalidField(
"The SplitKey object is missing the KeyBlock field."
)
self.length = local_buffer.length()
super(SplitKey, self).write(output_buffer, kmip_version=kmip_version)
output_buffer.write(local_buffer.buffer)
def __repr__(self):
args = [
"split_key_parts={}".format(repr(self.split_key_parts)),
"key_part_identifier={}".format(repr(self.key_part_identifier)),
"split_key_threshold={}".format(repr(self.split_key_threshold)),
"split_key_method={}".format(self.split_key_method),
"prime_field_size={}".format(repr(self.prime_field_size)),
"key_block={}".format(repr(self.key_block))
]
return "SplitKey({})".format(", ".join(args))
def __str__(self):
# TODO (peter-hamilton) Replace str() call below with a dict() call.
value = ", ".join(
[
'"split_key_parts": {}'.format(self.split_key_parts),
'"key_part_identifier": {}'.format(self.key_part_identifier),
'"split_key_threshold": {}'.format(self.split_key_threshold),
'"split_key_method": {}'.format(self.split_key_method),
'"prime_field_size": {}'.format(self.prime_field_size),
'"key_block": {}'.format(str(self.key_block))
]
)
return "{" + value + "}"
def __eq__(self, other):
if isinstance(other, SplitKey):
if self.split_key_parts != other.split_key_parts:
return False
elif self.key_part_identifier != other.key_part_identifier:
return False
elif self.split_key_threshold != other.split_key_threshold:
return False
elif self.split_key_method != other.split_key_method:
return False
elif self.prime_field_size != other.prime_field_size:
return False
# elif self.key_block != other.key_block:
# return False
return True
else:
return NotImplemented
def __ne__(self, other):
if isinstance(other, SplitKey):
return not self.__eq__(other)
else:
return NotImplemented
# 2.2.6

View File

@ -0,0 +1,878 @@
# Copyright (c) 2019 The Johns Hopkins University/Applied Physics Laboratory
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import testtools
from kmip.core import enums
from kmip.core import exceptions
from kmip.core import misc
from kmip.core import objects
from kmip.core import primitives
from kmip.core import secrets
from kmip.core import utils
class TestSplitKey(testtools.TestCase):
"""
Test suite for the SplitKey secret object.
"""
def setUp(self):
super(TestSplitKey, self).setUp()
# This encoding was adapted from test case TC-SJ-2-20 from the KMIP
# 2.0 test suite. The Prime Field Size was manually added.
#
# This encoding matches the following set of values:
# SplitKey
# Split Key Parts - 4
# Key Part Identifier - 1
# Split Key Threshold - 2
# Split Key Method - Polynomial Sharing GF 2^8
# Prime Field Size - 104729
# Key Block
# Key Format Type - Raw
# Key Value
# Key Material - 0x66C46A7754F94DE420C7B1A7FFF5EC56
# Cryptographic Algorithm - AES
# Cryptographic Length - 128
self.full_encoding = utils.BytearrayStream(
b'\x42\x00\x89\x01\x00\x00\x00\xA8'
b'\x42\x00\x8B\x02\x00\x00\x00\x04\x00\x00\x00\x04\x00\x00\x00\x00'
b'\x42\x00\x44\x02\x00\x00\x00\x04\x00\x00\x00\x01\x00\x00\x00\x00'
b'\x42\x00\x8C\x02\x00\x00\x00\x04\x00\x00\x00\x02\x00\x00\x00\x00'
b'\x42\x00\x8A\x05\x00\x00\x00\x04\x00\x00\x00\x04\x00\x00\x00\x00'
b'\x42\x00\x62\x04\x00\x00\x00\x08\x00\x00\x00\x00\x00\x01\x99\x19'
b'\x42\x00\x40\x01\x00\x00\x00\x50'
b'\x42\x00\x42\x05\x00\x00\x00\x04\x00\x00\x00\x01\x00\x00\x00\x00'
b'\x42\x00\x45\x01\x00\x00\x00\x18'
b'\x42\x00\x43\x08\x00\x00\x00\x10'
b'\x66\xC4\x6A\x77\x54\xF9\x4D\xE4\x20\xC7\xB1\xA7\xFF\xF5\xEC\x56'
b'\x42\x00\x28\x05\x00\x00\x00\x04\x00\x00\x00\x03\x00\x00\x00\x00'
b'\x42\x00\x2A\x02\x00\x00\x00\x04\x00\x00\x00\x80\x00\x00\x00\x00'
)
# This encoding was adapted from test case TC-SJ-2-20 from the KMIP
# 2.0 test suite.
#
# This encoding matches the following set of values:
# SplitKey
# Key Part Identifier - 1
self.no_split_key_parts_encoding = utils.BytearrayStream(
b'\x42\x00\x89\x01\x00\x00\x00\x10'
b'\x42\x00\x44\x02\x00\x00\x00\x04\x00\x00\x00\x01\x00\x00\x00\x00'
)
# This encoding was adapted from test case TC-SJ-2-20 from the KMIP
# 2.0 test suite.
#
# This encoding matches the following set of values:
# SplitKey
# Split Key Parts - 4
self.no_key_part_identifier_encoding = utils.BytearrayStream(
b'\x42\x00\x89\x01\x00\x00\x00\x10'
b'\x42\x00\x8B\x02\x00\x00\x00\x04\x00\x00\x00\x04\x00\x00\x00\x00'
)
# This encoding was adapted from test case TC-SJ-2-20 from the KMIP
# 2.0 test suite.
#
# This encoding matches the following set of values:
# SplitKey
# Split Key Parts - 4
# Key Part Identifier - 1
self.no_split_key_threshold_encoding = utils.BytearrayStream(
b'\x42\x00\x89\x01\x00\x00\x00\x20'
b'\x42\x00\x8B\x02\x00\x00\x00\x04\x00\x00\x00\x04\x00\x00\x00\x00'
b'\x42\x00\x44\x02\x00\x00\x00\x04\x00\x00\x00\x01\x00\x00\x00\x00'
)
# This encoding was adapted from test case TC-SJ-2-20 from the KMIP
# 2.0 test suite.
#
# This encoding matches the following set of values:
# SplitKey
# Split Key Parts - 4
# Key Part Identifier - 1
# Split Key Threshold - 2
self.no_split_key_method_encoding = utils.BytearrayStream(
b'\x42\x00\x89\x01\x00\x00\x00\x30'
b'\x42\x00\x8B\x02\x00\x00\x00\x04\x00\x00\x00\x04\x00\x00\x00\x00'
b'\x42\x00\x44\x02\x00\x00\x00\x04\x00\x00\x00\x01\x00\x00\x00\x00'
b'\x42\x00\x8C\x02\x00\x00\x00\x04\x00\x00\x00\x02\x00\x00\x00\x00'
)
# This encoding was adapted from test case TC-SJ-2-20 from the KMIP
# 2.0 test suite.
#
# This encoding matches the following set of values:
# SplitKey
# Split Key Parts - 4
# Key Part Identifier - 1
# Split Key Threshold - 2
# Split Key Method - Polynomial Sharing Prime Field
self.no_prime_field_size_encoding = utils.BytearrayStream(
b'\x42\x00\x89\x01\x00\x00\x00\x40'
b'\x42\x00\x8B\x02\x00\x00\x00\x04\x00\x00\x00\x04\x00\x00\x00\x00'
b'\x42\x00\x44\x02\x00\x00\x00\x04\x00\x00\x00\x01\x00\x00\x00\x00'
b'\x42\x00\x8C\x02\x00\x00\x00\x04\x00\x00\x00\x02\x00\x00\x00\x00'
b'\x42\x00\x8A\x05\x00\x00\x00\x04\x00\x00\x00\x03\x00\x00\x00\x00'
)
# This encoding was adapted from test case TC-SJ-2-20 from the KMIP
# 2.0 test suite.
#
# This encoding matches the following set of values:
# SplitKey
# Split Key Parts - 4
# Key Part Identifier - 1
# Split Key Threshold - 2
# Split Key Method - Polynomial Sharing GF 2^8
self.no_key_block_encoding = utils.BytearrayStream(
b'\x42\x00\x89\x01\x00\x00\x00\x40'
b'\x42\x00\x8B\x02\x00\x00\x00\x04\x00\x00\x00\x04\x00\x00\x00\x00'
b'\x42\x00\x44\x02\x00\x00\x00\x04\x00\x00\x00\x01\x00\x00\x00\x00'
b'\x42\x00\x8C\x02\x00\x00\x00\x04\x00\x00\x00\x02\x00\x00\x00\x00'
b'\x42\x00\x8A\x05\x00\x00\x00\x04\x00\x00\x00\x04\x00\x00\x00\x00'
)
def tearDown(self):
super(TestSplitKey, self).tearDown()
def test_invalid_split_key_parts(self):
"""
Test that a TypeError is raised when an invalid value is used to set
the split key parts of a SplitKey object.
"""
kwargs = {"split_key_parts": "invalid"}
self.assertRaisesRegex(
TypeError,
"The split key parts must be an integer.",
secrets.SplitKey,
**kwargs
)
args = (
secrets.SplitKey(),
"split_key_parts",
"invalid"
)
self.assertRaisesRegex(
TypeError,
"The split key parts must be an integer.",
setattr,
*args
)
def test_invalid_key_part_identifier(self):
"""
Test that a TypeError is raised when an invalid value is used to set
the key part identifier of a SplitKey object.
"""
kwargs = {"key_part_identifier": "invalid"}
self.assertRaisesRegex(
TypeError,
"The key part identifier must be an integer.",
secrets.SplitKey,
**kwargs
)
args = (
secrets.SplitKey(),
"key_part_identifier",
"invalid"
)
self.assertRaisesRegex(
TypeError,
"The key part identifier must be an integer.",
setattr,
*args
)
def test_invalid_split_key_threshold(self):
"""
Test that a TypeError is raised when an invalid value is used to set
the split key threshold of a SplitKey object.
"""
kwargs = {"split_key_threshold": "invalid"}
self.assertRaisesRegex(
TypeError,
"The split key threshold must be an integer.",
secrets.SplitKey,
**kwargs
)
args = (
secrets.SplitKey(),
"split_key_threshold",
"invalid"
)
self.assertRaisesRegex(
TypeError,
"The split key threshold must be an integer.",
setattr,
*args
)
def test_invalid_split_key_method(self):
"""
Test that a TypeError is raised when an invalid value is used to set
the split key method of a SplitKey object.
"""
kwargs = {"split_key_method": "invalid"}
self.assertRaisesRegex(
TypeError,
"The split key method must be a SplitKeyMethod enumeration.",
secrets.SplitKey,
**kwargs
)
args = (
secrets.SplitKey(),
"split_key_method",
"invalid"
)
self.assertRaisesRegex(
TypeError,
"The split key method must be a SplitKeyMethod enumeration.",
setattr,
*args
)
def test_invalid_prime_field_size(self):
"""
Test that a TypeError is raised when an invalid value is used to set
the prime field size of a SplitKey object.
"""
kwargs = {"prime_field_size": "invalid"}
self.assertRaisesRegex(
TypeError,
"The prime field size must be an integer.",
secrets.SplitKey,
**kwargs
)
args = (
secrets.SplitKey(),
"prime_field_size",
"invalid"
)
self.assertRaisesRegex(
TypeError,
"The prime field size must be an integer.",
setattr,
*args
)
def test_invalid_key_block(self):
"""
Test that a TypeError is raised when an invalid value is used to set
the key block of a SplitKey object.
"""
kwargs = {"key_block": "invalid"}
self.assertRaisesRegex(
TypeError,
"The key block must be a KeyBlock structure.",
secrets.SplitKey,
**kwargs
)
args = (
secrets.SplitKey(),
"key_block",
"invalid"
)
self.assertRaisesRegex(
TypeError,
"The key block must be a KeyBlock structure.",
setattr,
*args
)
def test_read(self):
"""
Test that a SplitKey object can be read from a buffer.
"""
split_key = secrets.SplitKey()
self.assertIsNone(split_key.split_key_parts)
self.assertIsNone(split_key.key_part_identifier)
self.assertIsNone(split_key.split_key_threshold)
self.assertIsNone(split_key.split_key_method)
self.assertIsNone(split_key.prime_field_size)
self.assertIsNone(split_key.key_block)
split_key.read(self.full_encoding)
self.assertEqual(4, split_key.split_key_parts)
self.assertEqual(1, split_key.key_part_identifier)
self.assertEqual(2, split_key.split_key_threshold)
self.assertEqual(
enums.SplitKeyMethod.POLYNOMIAL_SHARING_GF_2_8,
split_key.split_key_method
)
self.assertEqual(104729, split_key.prime_field_size)
self.assertIsInstance(split_key.key_block, objects.KeyBlock)
self.assertEqual(
enums.KeyFormatType.RAW,
split_key.key_block.key_format_type.value
)
self.assertIsInstance(split_key.key_block.key_value, objects.KeyValue)
self.assertIsInstance(
split_key.key_block.key_value.key_material,
primitives.ByteString
)
self.assertEqual(
(
b'\x66\xC4\x6A\x77\x54\xF9\x4D\xE4'
b'\x20\xC7\xB1\xA7\xFF\xF5\xEC\x56'
),
split_key.key_block.key_value.key_material.value
)
self.assertEqual(
enums.CryptographicAlgorithm.AES,
split_key.key_block.cryptographic_algorithm.value
)
self.assertEqual(128, split_key.key_block.cryptographic_length.value)
def test_read_missing_split_key_parts(self):
"""
Test that an InvalidKmipEncoding error is raised during the decoding
of a SplitKey object when the split key parts are missing from the
encoding.
"""
split_key = secrets.SplitKey()
self.assertIsNone(split_key.split_key_parts)
args = (self.no_split_key_parts_encoding, )
self.assertRaisesRegex(
exceptions.InvalidKmipEncoding,
"The SplitKey encoding is missing the SplitKeyParts field.",
split_key.read,
*args
)
def test_read_missing_key_part_identifier(self):
"""
Test that an InvalidKmipEncoding error is raised during the decoding
of a SplitKey object when the key part identifier is missing from the
encoding.
"""
split_key = secrets.SplitKey()
self.assertIsNone(split_key.key_part_identifier)
args = (self.no_key_part_identifier_encoding, )
self.assertRaisesRegex(
exceptions.InvalidKmipEncoding,
"The SplitKey encoding is missing the KeyPartIdentifier field.",
split_key.read,
*args
)
def test_read_missing_split_key_threshold(self):
"""
Test that an InvalidKmipEncoding error is raised during the decoding
of a SplitKey object when the split key threshold is missing from the
encoding.
"""
split_key = secrets.SplitKey()
self.assertIsNone(split_key.split_key_threshold)
args = (self.no_split_key_threshold_encoding, )
self.assertRaisesRegex(
exceptions.InvalidKmipEncoding,
"The SplitKey encoding is missing the SplitKeyThreshold field.",
split_key.read,
*args
)
def test_read_missing_split_key_method(self):
"""
Test that an InvalidKmipEncoding error is raised during the decoding
of a SplitKey object when the split key method is missing from the
encoding.
"""
split_key = secrets.SplitKey()
self.assertIsNone(split_key.split_key_method)
args = (self.no_split_key_method_encoding, )
self.assertRaisesRegex(
exceptions.InvalidKmipEncoding,
"The SplitKey encoding is missing the SplitKeyMethod field.",
split_key.read,
*args
)
def test_read_missing_prime_field_size(self):
"""
Test that an InvalidKmipEncoding error is raised during the decoding
of a SplitKey object when the prime field size is missing from the
encoding.
"""
split_key = secrets.SplitKey()
self.assertIsNone(split_key.prime_field_size)
args = (self.no_prime_field_size_encoding, )
self.assertRaisesRegex(
exceptions.InvalidKmipEncoding,
"The SplitKey encoding is missing the PrimeFieldSize "
"field. This field is required when the SplitKeyMethod is "
"PolynomialSharingPrimeField.",
split_key.read,
*args
)
def test_read_missing_key_block(self):
"""
Test that an InvalidKmipEncoding error is raised during the decoding
of a SplitKey object when the key block is missing from the encoding.
"""
split_key = secrets.SplitKey()
self.assertIsNone(split_key.key_block)
args = (self.no_key_block_encoding, )
self.assertRaisesRegex(
exceptions.InvalidKmipEncoding,
"The SplitKey encoding is missing the KeyBlock field.",
split_key.read,
*args
)
def test_write(self):
"""
Test that a SplitKey object can be written to a buffer.
"""
# TODO (peter-hamilton) Update this test when the KeyBlock supports
# generic key format type and key value/material values.
key_block = objects.KeyBlock(
key_format_type=misc.KeyFormatType(enums.KeyFormatType.RAW),
key_value=objects.KeyValue(
key_material=objects.KeyMaterial(
value=(
b'\x66\xC4\x6A\x77\x54\xF9\x4D\xE4'
b'\x20\xC7\xB1\xA7\xFF\xF5\xEC\x56'
)
)
),
cryptographic_algorithm=primitives.Enumeration(
enums.CryptographicAlgorithm,
value=enums.CryptographicAlgorithm.AES,
tag=enums.Tags.CRYPTOGRAPHIC_ALGORITHM
),
cryptographic_length=primitives.Integer(
value=128,
tag=enums.Tags.CRYPTOGRAPHIC_LENGTH
)
)
split_key = secrets.SplitKey(
split_key_parts=4,
key_part_identifier=1,
split_key_threshold=2,
split_key_method=enums.SplitKeyMethod.POLYNOMIAL_SHARING_GF_2_8,
prime_field_size=104729,
key_block=key_block
)
stream = utils.BytearrayStream()
split_key.write(stream)
self.assertEqual(len(self.full_encoding), len(stream))
self.assertEqual(str(self.full_encoding), str(stream))
def test_write_missing_split_key_parts(self):
"""
Test that an InvalidField error is raised during the encoding of a
SplitKey object when the object is missing the split key parts field.
"""
split_key = secrets.SplitKey(key_part_identifier=1)
stream = utils.BytearrayStream()
args = (stream, )
self.assertRaisesRegex(
exceptions.InvalidField,
"The SplitKey object is missing the SplitKeyParts field.",
split_key.write,
*args
)
def test_write_missing_key_part_identifier(self):
"""
Test that an InvalidField error is raised during the encoding of a
SplitKey object when the object is missing the key part identifier
field.
"""
split_key = secrets.SplitKey(split_key_parts=4)
stream = utils.BytearrayStream()
args = (stream, )
self.assertRaisesRegex(
exceptions.InvalidField,
"The SplitKey object is missing the KeyPartIdentifier field.",
split_key.write,
*args
)
def test_write_missing_split_key_threshold(self):
"""
Test that an InvalidField error is raised during the encoding of a
SplitKey object when the object is missing the split key threshold
field.
"""
split_key = secrets.SplitKey(
split_key_parts=4,
key_part_identifier=1
)
stream = utils.BytearrayStream()
args = (stream, )
self.assertRaisesRegex(
exceptions.InvalidField,
"The SplitKey object is missing the SplitKeyThreshold field.",
split_key.write,
*args
)
def test_write_missing_split_key_method(self):
"""
Test that an InvalidField error is raised during the encoding of a
SplitKey object when the object is missing the split key method field.
"""
split_key = secrets.SplitKey(
split_key_parts=4,
key_part_identifier=1,
split_key_threshold=2
)
stream = utils.BytearrayStream()
args = (stream, )
self.assertRaisesRegex(
exceptions.InvalidField,
"The SplitKey object is missing the SplitKeyMethod field.",
split_key.write,
*args
)
def test_write_missing_prime_field_size(self):
"""
Test that an InvalidField error is raised during the encoding of a
SplitKey object when the object is missing the prime field size field.
"""
split_key_method = enums.SplitKeyMethod.POLYNOMIAL_SHARING_PRIME_FIELD
split_key = secrets.SplitKey(
split_key_parts=4,
key_part_identifier=1,
split_key_threshold=2,
split_key_method=split_key_method
)
stream = utils.BytearrayStream()
args = (stream, )
self.assertRaisesRegex(
exceptions.InvalidField,
"The SplitKey object is missing the PrimeFieldSize field. "
"This field is required when the SplitKeyMethod is "
"PolynomialSharingPrimeField.",
split_key.write,
*args
)
def test_write_missing_key_block(self):
"""
Test that an InvalidField error is raised during the encoding of a
SplitKey object when the object is missing the key block field.
"""
split_key = secrets.SplitKey(
split_key_parts=4,
key_part_identifier=1,
split_key_threshold=2,
split_key_method=enums.SplitKeyMethod.POLYNOMIAL_SHARING_GF_2_8
)
stream = utils.BytearrayStream()
args = (stream, )
self.assertRaisesRegex(
exceptions.InvalidField,
"The SplitKey object is missing the KeyBlock field.",
split_key.write,
*args
)
def test_repr(self):
"""
Test that repr can be applied to a SplitKey object.
"""
key_block = objects.KeyBlock(
key_format_type=misc.KeyFormatType(enums.KeyFormatType.RAW),
key_value=objects.KeyValue(
key_material=objects.KeyMaterial(
value=(
b'\x66\xC4\x6A\x77\x54\xF9\x4D\xE4'
b'\x20\xC7\xB1\xA7\xFF\xF5\xEC\x56'
)
)
),
cryptographic_algorithm=primitives.Enumeration(
enums.CryptographicAlgorithm,
value=enums.CryptographicAlgorithm.AES,
tag=enums.Tags.CRYPTOGRAPHIC_ALGORITHM
),
cryptographic_length=primitives.Integer(
value=128,
tag=enums.Tags.CRYPTOGRAPHIC_LENGTH
)
)
split_key = secrets.SplitKey(
split_key_parts=4,
key_part_identifier=1,
split_key_threshold=2,
split_key_method=enums.SplitKeyMethod.POLYNOMIAL_SHARING_GF_2_8,
prime_field_size=104729,
key_block=key_block
)
args = [
"split_key_parts=4",
"key_part_identifier=1",
"split_key_threshold=2",
"split_key_method=SplitKeyMethod.POLYNOMIAL_SHARING_GF_2_8",
"prime_field_size=104729",
"key_block=Struct()"
]
self.assertEqual(
"SplitKey({})".format(", ".join(args)),
repr(split_key)
)
def test_str(self):
"""
Test that str can be applied to a SplitKey object.
"""
key_block = objects.KeyBlock(
key_format_type=misc.KeyFormatType(enums.KeyFormatType.RAW),
key_value=objects.KeyValue(
key_material=objects.KeyMaterial(
value=(
b'\x66\xC4\x6A\x77\x54\xF9\x4D\xE4'
b'\x20\xC7\xB1\xA7\xFF\xF5\xEC\x56'
)
)
),
cryptographic_algorithm=primitives.Enumeration(
enums.CryptographicAlgorithm,
value=enums.CryptographicAlgorithm.AES,
tag=enums.Tags.CRYPTOGRAPHIC_ALGORITHM
),
cryptographic_length=primitives.Integer(
value=128,
tag=enums.Tags.CRYPTOGRAPHIC_LENGTH
)
)
split_key = secrets.SplitKey(
split_key_parts=4,
key_part_identifier=1,
split_key_threshold=2,
split_key_method=enums.SplitKeyMethod.POLYNOMIAL_SHARING_GF_2_8,
prime_field_size=104729,
key_block=key_block
)
args = [
("split_key_parts", 4),
("key_part_identifier", 1),
("split_key_threshold", 2),
(
"split_key_method",
enums.SplitKeyMethod.POLYNOMIAL_SHARING_GF_2_8
),
("prime_field_size", 104729),
("key_block", str(key_block))
]
value = "{}".format(
", ".join(['"{}": {}'.format(arg[0], arg[1]) for arg in args])
)
self.assertEqual(
"{" + value + "}",
str(split_key)
)
def test_comparison(self):
"""
Test that the equality/inequality operators return True/False when
comparing two SplitKey objects with the same data.
"""
a = secrets.SplitKey()
b = secrets.SplitKey()
self.assertTrue(a == b)
self.assertTrue(b == a)
self.assertFalse(a != b)
self.assertFalse(b != a)
a = secrets.SplitKey(
split_key_parts=4,
key_part_identifier=1,
split_key_threshold=2,
split_key_method=enums.SplitKeyMethod.POLYNOMIAL_SHARING_GF_2_8,
prime_field_size=104729,
key_block=objects.KeyBlock(
key_format_type=misc.KeyFormatType(enums.KeyFormatType.RAW),
key_value=objects.KeyValue(
key_material=objects.KeyMaterial(
value=(
b'\x66\xC4\x6A\x77\x54\xF9\x4D\xE4'
b'\x20\xC7\xB1\xA7\xFF\xF5\xEC\x56'
)
)
),
cryptographic_algorithm=primitives.Enumeration(
enums.CryptographicAlgorithm,
value=enums.CryptographicAlgorithm.AES,
tag=enums.Tags.CRYPTOGRAPHIC_ALGORITHM
),
cryptographic_length=primitives.Integer(
value=128,
tag=enums.Tags.CRYPTOGRAPHIC_LENGTH
)
)
)
b = secrets.SplitKey(
split_key_parts=4,
key_part_identifier=1,
split_key_threshold=2,
split_key_method=enums.SplitKeyMethod.POLYNOMIAL_SHARING_GF_2_8,
prime_field_size=104729,
key_block=objects.KeyBlock(
key_format_type=misc.KeyFormatType(enums.KeyFormatType.RAW),
key_value=objects.KeyValue(
key_material=objects.KeyMaterial(
value=(
b'\x66\xC4\x6A\x77\x54\xF9\x4D\xE4'
b'\x20\xC7\xB1\xA7\xFF\xF5\xEC\x56'
)
)
),
cryptographic_algorithm=primitives.Enumeration(
enums.CryptographicAlgorithm,
value=enums.CryptographicAlgorithm.AES,
tag=enums.Tags.CRYPTOGRAPHIC_ALGORITHM
),
cryptographic_length=primitives.Integer(
value=128,
tag=enums.Tags.CRYPTOGRAPHIC_LENGTH
)
)
)
self.assertTrue(a == b)
self.assertTrue(b == a)
self.assertFalse(a != b)
self.assertFalse(b != a)
def test_comparison_on_different_split_key_parts(self):
"""
Test that the equality/inequality operators return False/True when
comparing two SplitKey objects with different split key parts.
"""
a = secrets.SplitKey(split_key_parts=4)
b = secrets.SplitKey(split_key_parts=6)
self.assertFalse(a == b)
self.assertFalse(b == a)
self.assertTrue(a != b)
self.assertTrue(b != a)
def test_comparison_on_different_key_part_identifiers(self):
"""
Test that the equality/inequality operators return False/True when
comparing two SplitKey objects with different key part identifiers.
"""
a = secrets.SplitKey(key_part_identifier=1)
b = secrets.SplitKey(key_part_identifier=2)
self.assertFalse(a == b)
self.assertFalse(b == a)
self.assertTrue(a != b)
self.assertTrue(b != a)
def test_comparison_on_different_split_key_thresholds(self):
"""
Test that the equality/inequality operators return False/True when
comparing two SplitKey objects with different split key thresholds.
"""
a = secrets.SplitKey(split_key_threshold=3)
b = secrets.SplitKey(split_key_threshold=4)
self.assertFalse(a == b)
self.assertFalse(b == a)
self.assertTrue(a != b)
self.assertTrue(b != a)
def test_comparison_on_different_split_key_methods(self):
"""
Test that the equality/inequality operators return False/True when
comparing two SplitKey objects with different split key methods.
"""
a = secrets.SplitKey(split_key_method=enums.SplitKeyMethod.XOR)
b = secrets.SplitKey(
split_key_method=enums.SplitKeyMethod.POLYNOMIAL_SHARING_GF_2_8
)
self.assertFalse(a == b)
self.assertFalse(b == a)
self.assertTrue(a != b)
self.assertTrue(b != a)
def test_comparison_on_different_prime_field_sizes(self):
"""
Test that the equality/inequality operators return False/True when
comparing two SplitKey objects with different prime field sizes.
"""
a = secrets.SplitKey(prime_field_size=104723)
b = secrets.SplitKey(prime_field_size=104729)
self.assertFalse(a == b)
self.assertFalse(b == a)
self.assertTrue(a != b)
self.assertTrue(b != a)
# TODO (peter-hamilton) Fill in this test once the KeyBlock supports the
# comparison operators.
def test_comparison_on_different_key_blocks(self):
"""
Test that the equality/inequality operators return False/True when
comparing two SplitKey objects with different key blocks.
"""
self.skipTest(
"The KeyBlock structure does not support the comparison operators."
)
def test_comparison_on_type_mismatch(self):
"""
Test that the equality/inequality operators return False/True when
comparing two SplitKey objects with different types.
"""
a = secrets.SplitKey()
b = "invalid"
self.assertFalse(a == b)
self.assertFalse(b == a)
self.assertTrue(a != b)
self.assertTrue(b != a)