# Copyright (c) 2014 The Johns Hopkins University/Applied Physics Laboratory # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import six from kmip.core.attributes import CertificateType from kmip.core import enums from kmip.core.enums import Tags from kmip.core import exceptions from kmip.core.misc import CertificateValue from kmip.core import objects from kmip.core.objects import Attribute from kmip.core.objects import KeyBlock from kmip.core import primitives from kmip.core.primitives import Struct from kmip.core.primitives import Enumeration from kmip.core.primitives import ByteString from kmip.core import utils from kmip.core.utils import BytearrayStream # 2.2 # 2.2.1 class Certificate(Struct): """ A structure representing a DER-encoded X.509 public key certificate. See Section 2.2.1 of the KMIP 1.1 specification for more information. Attributes: certificate_type: The type of the certificate. certificate_value: The bytes of the certificate. """ def __init__(self, certificate_type=None, certificate_value=None): """ Construct a Certificate object. Args: certificate_type (CertificateType): The type of the certificate. Optional, defaults to None. certificate_value (bytes): The bytes of the certificate. Optional, defaults to None. """ super(Certificate, self).__init__(Tags.CERTIFICATE) if certificate_type is None: self.certificate_type = CertificateType() else: self.certificate_type = CertificateType(certificate_type) if certificate_value is None: self.certificate_value = CertificateValue() else: self.certificate_value = CertificateValue(certificate_value) def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): """ Read the data encoding the Certificate object and decode it into its constituent parts. Args: istream (Stream): A data stream containing encoded object data, supporting a read method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be decoded. Optional, defaults to KMIP 1.0. """ super(Certificate, self).read(istream, kmip_version=kmip_version) tstream = BytearrayStream(istream.read(self.length)) self.certificate_type = CertificateType() self.certificate_value = CertificateValue() self.certificate_type.read(tstream, kmip_version=kmip_version) self.certificate_value.read(tstream, kmip_version=kmip_version) self.is_oversized(tstream) def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0): """ Write the data encoding the Certificate object to a stream. Args: ostream (Stream): A data stream in which to encode object data, supporting a write method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be encoded. Optional, defaults to KMIP 1.0. """ tstream = BytearrayStream() self.certificate_type.write(tstream, kmip_version=kmip_version) self.certificate_value.write(tstream, kmip_version=kmip_version) self.length = tstream.length() super(Certificate, self).write(ostream, kmip_version=kmip_version) ostream.write(tstream.buffer) def __eq__(self, other): if isinstance(other, Certificate): if self.certificate_type != other.certificate_type: return False elif self.certificate_value != other.certificate_value: return False else: return True else: return NotImplemented def __ne__(self, other): if isinstance(other, Certificate): return not (self == other) else: return NotImplemented def __repr__(self): return "{0}(certificate_type={1}, certificate_value=b'{2}')".format( type(self).__name__, str(self.certificate_type), str(self.certificate_value)) def __str__(self): return "{0}".format(str(self.certificate_value)) # 2.2.2 class KeyBlockKey(Struct): def __init__(self, key_block=None, tag=Tags.DEFAULT): super(KeyBlockKey, self).__init__(tag) self.key_block = key_block self.validate() def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): super(KeyBlockKey, self).read(istream, kmip_version=kmip_version) tstream = BytearrayStream(istream.read(self.length)) self.key_block = KeyBlock() self.key_block.read(tstream, kmip_version=kmip_version) self.is_oversized(tstream) self.validate() def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0): tstream = BytearrayStream() self.key_block.write(tstream, kmip_version=kmip_version) # Write the length and value of the template attribute self.length = tstream.length() super(KeyBlockKey, self).write(ostream, kmip_version=kmip_version) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass class SymmetricKey(KeyBlockKey): def __init__(self, key_block=None): super(SymmetricKey, self).__init__(key_block, Tags.SYMMETRIC_KEY) self.validate() def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass # 2.2.3 class PublicKey(KeyBlockKey): def __init__(self, key_block=None): super(PublicKey, self).__init__(key_block, Tags.PUBLIC_KEY) self.validate() def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass # 2.2.4 class PrivateKey(KeyBlockKey): def __init__(self, key_block=None): super(PrivateKey, self).__init__(key_block, Tags.PRIVATE_KEY) self.validate() def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass class SplitKey(primitives.Struct): """ A split key cryptographic object. This object represents a symmetric or private key that has been split into multiple parts. The fields of this object specify how the key was split and how it can be reassembled. Attributes: split_key_parts: The total number of parts of the split key. key_part_identifier: The ID specifying the part of the key in the key block. split_key_threshold: The minimum number of parts needed to reconstruct the key. split_key_method: The method by which the key was split. prime_field_size: The prime field size used for the Polynomial Sharing Prime Field split key method. key_block: The split key part held by this object. """ def __init__(self, split_key_parts=None, key_part_identifier=None, split_key_threshold=None, split_key_method=None, prime_field_size=None, key_block=None): """ Construct a SplitKey object. Args: split_key_parts (int): An integer specifying the total number of parts of the split key. Optional, defaults to None. Required for read/write. key_part_identifier (int): An integer specifying which key part is contained in the key block. Optional, defaults to None. Required for read/write. split_key_threshold (int): An integer specifying the minimum number of key parts required to reconstruct the split key. Optional, defaults to None. Required for read/write. split_key_method (enum): A SplitKeyMethod enumeration specifying the method by which the key was split. Optional, defaults to None. Required for read/write. prime_field_size (int): A big integer specifying the prime field size used for the Polynomial Sharing Prime Field split key method. Optional, defaults to None. Required for read/write only if the split key method is Polynomial Sharing Prime Field. key_block (struct): A KeyBlock structure containing the split key part identified by the key part identifier. Optional, defaults to None. Required for read/write. """ super(SplitKey, self).__init__(enums.Tags.SPLIT_KEY) self._split_key_parts = None self._key_part_identifier = None self._split_key_threshold = None self._split_key_method = None self._prime_field_size = None self._key_block = None self.split_key_parts = split_key_parts self.key_part_identifier = key_part_identifier self.split_key_threshold = split_key_threshold self.split_key_method = split_key_method self.prime_field_size = prime_field_size self.key_block = key_block @property def split_key_parts(self): if self._split_key_parts is not None: return self._split_key_parts.value return None @split_key_parts.setter def split_key_parts(self, value): if value is None: self._split_key_parts = None elif isinstance(value, six.integer_types): self._split_key_parts = primitives.Integer( value=value, tag=enums.Tags.SPLIT_KEY_PARTS ) else: raise TypeError("The split key parts must be an integer.") @property def key_part_identifier(self): if self._key_part_identifier is not None: return self._key_part_identifier.value return None @key_part_identifier.setter def key_part_identifier(self, value): if value is None: self._key_part_identifier = None elif isinstance(value, six.integer_types): self._key_part_identifier = primitives.Integer( value=value, tag=enums.Tags.KEY_PART_IDENTIFIER ) else: raise TypeError("The key part identifier must be an integer.") @property def split_key_threshold(self): if self._split_key_threshold is not None: return self._split_key_threshold.value return None @split_key_threshold.setter def split_key_threshold(self, value): if value is None: self._split_key_threshold = None elif isinstance(value, six.integer_types): self._split_key_threshold = primitives.Integer( value=value, tag=enums.Tags.SPLIT_KEY_THRESHOLD ) else: raise TypeError("The split key threshold must be an integer.") @property def split_key_method(self): if self._split_key_method is not None: return self._split_key_method.value return None @split_key_method.setter def split_key_method(self, value): if value is None: self._split_key_method = None elif isinstance(value, enums.SplitKeyMethod): self._split_key_method = primitives.Enumeration( enums.SplitKeyMethod, value=value, tag=enums.Tags.SPLIT_KEY_METHOD ) else: raise TypeError( "The split key method must be a SplitKeyMethod enumeration." ) @property def prime_field_size(self): if self._prime_field_size is not None: return self._prime_field_size.value return None @prime_field_size.setter def prime_field_size(self, value): if value is None: self._prime_field_size = None elif isinstance(value, six.integer_types): self._prime_field_size = primitives.BigInteger( value=value, tag=enums.Tags.PRIME_FIELD_SIZE ) else: raise TypeError("The prime field size must be an integer.") @property def key_block(self): if self._key_block is not None: return self._key_block return None @key_block.setter def key_block(self, value): if value is None: self._key_block = None elif isinstance(value, objects.KeyBlock): self._key_block = value else: raise TypeError("The key block must be a KeyBlock structure.") def read(self, input_buffer, kmip_version=enums.KMIPVersion.KMIP_1_0): """ Read the data encoding the SplitKey object and decode it. Args: input_buffer (stream): A data stream containing the encoded object data, supporting a read method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be decoded. Optional, defaults to KMIP 1.0. """ super(SplitKey, self).read(input_buffer, kmip_version=kmip_version) local_buffer = utils.BytearrayStream(input_buffer.read(self.length)) if self.is_tag_next(enums.Tags.SPLIT_KEY_PARTS, local_buffer): self._split_key_parts = primitives.Integer( tag=enums.Tags.SPLIT_KEY_PARTS ) self._split_key_parts.read(local_buffer, kmip_version=kmip_version) else: raise exceptions.InvalidKmipEncoding( "The SplitKey encoding is missing the SplitKeyParts field." ) if self.is_tag_next(enums.Tags.KEY_PART_IDENTIFIER, local_buffer): self._key_part_identifier = primitives.Integer( tag=enums.Tags.KEY_PART_IDENTIFIER ) self._key_part_identifier.read( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidKmipEncoding( "The SplitKey encoding is missing the KeyPartIdentifier field." ) if self.is_tag_next(enums.Tags.SPLIT_KEY_THRESHOLD, local_buffer): self._split_key_threshold = primitives.Integer( tag=enums.Tags.SPLIT_KEY_THRESHOLD ) self._split_key_threshold.read( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidKmipEncoding( "The SplitKey encoding is missing the SplitKeyThreshold field." ) if self.is_tag_next(enums.Tags.SPLIT_KEY_METHOD, local_buffer): self._split_key_method = primitives.Enumeration( enums.SplitKeyMethod, tag=enums.Tags.SPLIT_KEY_METHOD ) self._split_key_method.read( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidKmipEncoding( "The SplitKey encoding is missing the SplitKeyMethod field." ) if self.is_tag_next(enums.Tags.PRIME_FIELD_SIZE, local_buffer): self._prime_field_size = primitives.BigInteger( tag=enums.Tags.PRIME_FIELD_SIZE ) self._prime_field_size.read( local_buffer, kmip_version=kmip_version ) else: corner_case = enums.SplitKeyMethod.POLYNOMIAL_SHARING_PRIME_FIELD if self.split_key_method == corner_case: raise exceptions.InvalidKmipEncoding( "The SplitKey encoding is missing the PrimeFieldSize " "field. This field is required when the SplitKeyMethod is " "PolynomialSharingPrimeField." ) if self.is_tag_next(enums.Tags.KEY_BLOCK, local_buffer): self._key_block = objects.KeyBlock() self._key_block.read(local_buffer, kmip_version=kmip_version) else: raise exceptions.InvalidKmipEncoding( "The SplitKey encoding is missing the KeyBlock field." ) self.is_oversized(local_buffer) def write(self, output_buffer, kmip_version=enums.KMIPVersion.KMIP_1_0): """ Write the data encoding the SplitKey object to a buffer. Args: output_buffer (stream): A data stream in which to encode object data, supporting a write method; usually a BytearrayStream object. kmip_version (KMIPVersion): An enumeration defining the KMIP version with which the object will be encoded. Optional, defaults to KMIP 1.0. """ local_buffer = utils.BytearrayStream() if self._split_key_parts: self._split_key_parts.write( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidField( "The SplitKey object is missing the SplitKeyParts field." ) if self._key_part_identifier: self._key_part_identifier.write( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidField( "The SplitKey object is missing the KeyPartIdentifier field." ) if self._split_key_threshold: self._split_key_threshold.write( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidField( "The SplitKey object is missing the SplitKeyThreshold field." ) if self._split_key_method: self._split_key_method.write( local_buffer, kmip_version=kmip_version ) else: raise exceptions.InvalidField( "The SplitKey object is missing the SplitKeyMethod field." ) if self._prime_field_size: self._prime_field_size.write( local_buffer, kmip_version=kmip_version ) else: corner_case = enums.SplitKeyMethod.POLYNOMIAL_SHARING_PRIME_FIELD if self.split_key_method == corner_case: raise exceptions.InvalidField( "The SplitKey object is missing the PrimeFieldSize field. " "This field is required when the SplitKeyMethod is " "PolynomialSharingPrimeField." ) if self._key_block: self._key_block.write(local_buffer, kmip_version=kmip_version) else: raise exceptions.InvalidField( "The SplitKey object is missing the KeyBlock field." ) self.length = local_buffer.length() super(SplitKey, self).write(output_buffer, kmip_version=kmip_version) output_buffer.write(local_buffer.buffer) def __repr__(self): args = [ "split_key_parts={}".format(repr(self.split_key_parts)), "key_part_identifier={}".format(repr(self.key_part_identifier)), "split_key_threshold={}".format(repr(self.split_key_threshold)), "split_key_method={}".format(self.split_key_method), "prime_field_size={}".format(repr(self.prime_field_size)), "key_block={}".format(repr(self.key_block)) ] return "SplitKey({})".format(", ".join(args)) def __str__(self): # TODO (peter-hamilton) Replace str() call below with a dict() call. value = ", ".join( [ '"split_key_parts": {}'.format(self.split_key_parts), '"key_part_identifier": {}'.format(self.key_part_identifier), '"split_key_threshold": {}'.format(self.split_key_threshold), '"split_key_method": {}'.format(self.split_key_method), '"prime_field_size": {}'.format(self.prime_field_size), '"key_block": {}'.format(str(self.key_block)) ] ) return "{" + value + "}" def __eq__(self, other): if isinstance(other, SplitKey): if self.split_key_parts != other.split_key_parts: return False elif self.key_part_identifier != other.key_part_identifier: return False elif self.split_key_threshold != other.split_key_threshold: return False elif self.split_key_method != other.split_key_method: return False elif self.prime_field_size != other.prime_field_size: return False # elif self.key_block != other.key_block: # return False return True else: return NotImplemented def __ne__(self, other): if isinstance(other, SplitKey): return not self.__eq__(other) else: return NotImplemented # 2.2.6 class Template(Struct): def __init__(self, attributes=None): super(Template, self).__init__(Tags.TEMPLATE) self.attributes = attributes self.validate() def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): super(Template, self).read(istream, kmip_version=kmip_version) tstream = BytearrayStream(istream.read(self.length)) self.attributes = list() attribute = Attribute() attribute.read(tstream, kmip_version=kmip_version) self.attributes.append(attribute) while self.is_tag_next(Tags.ATTRIBUTE, tstream): attribute = Attribute() attribute.read(tstream, kmip_version=kmip_version) self.attributes.append(attribute) self.is_oversized(tstream) self.validate() def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0): tstream = BytearrayStream() for attribute in self.attributes: attribute.write(tstream, kmip_version=kmip_version) # Write the length and value of the template attribute self.length = tstream.length() super(Template, self).write(ostream, kmip_version=kmip_version) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass # 2.2.7 class SecretData(Struct): class SecretDataType(Enumeration): def __init__(self, value=None): super(SecretData.SecretDataType, self).__init__( enums.SecretDataType, value, Tags.SECRET_DATA_TYPE) def __init__(self, secret_data_type=None, key_block=None): super(SecretData, self).__init__(Tags.SECRET_DATA) self.secret_data_type = secret_data_type self.key_block = key_block self.validate() def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): super(SecretData, self).read(istream, kmip_version=kmip_version) tstream = BytearrayStream(istream.read(self.length)) self.secret_data_type = SecretData.SecretDataType() self.key_block = KeyBlock() self.secret_data_type.read(tstream, kmip_version=kmip_version) self.key_block.read(tstream, kmip_version=kmip_version) self.is_oversized(tstream) self.validate() def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0): tstream = BytearrayStream() self.secret_data_type.write(tstream, kmip_version=kmip_version) self.key_block.write(tstream, kmip_version=kmip_version) # Write the length and value of the template attribute self.length = tstream.length() super(SecretData, self).write(ostream, kmip_version=kmip_version) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass # 2.2.8 class OpaqueObject(Struct): class OpaqueDataType(Enumeration): def __init__(self, value=None): super(OpaqueObject.OpaqueDataType, self).__init__( enums.OpaqueDataType, value, Tags.OPAQUE_DATA_TYPE) class OpaqueDataValue(ByteString): def __init__(self, value=None): super(OpaqueObject.OpaqueDataValue, self).__init__( value, Tags.OPAQUE_DATA_VALUE) def __init__(self, opaque_data_type=None, opaque_data_value=None): super(OpaqueObject, self).__init__(Tags.OPAQUE_OBJECT) self.opaque_data_type = opaque_data_type self.opaque_data_value = opaque_data_value self.validate() def read(self, istream, kmip_version=enums.KMIPVersion.KMIP_1_0): super(OpaqueObject, self).read(istream, kmip_version=kmip_version) tstream = BytearrayStream(istream.read(self.length)) self.opaque_data_type = OpaqueObject.OpaqueDataType() self.opaque_data_value = OpaqueObject.OpaqueDataValue() self.opaque_data_type.read(tstream, kmip_version=kmip_version) self.opaque_data_value.read(tstream, kmip_version=kmip_version) self.is_oversized(tstream) self.validate() def write(self, ostream, kmip_version=enums.KMIPVersion.KMIP_1_0): tstream = BytearrayStream() self.opaque_data_type.write(tstream, kmip_version=kmip_version) self.opaque_data_value.write(tstream, kmip_version=kmip_version) # Write the length and value of the template attribute self.length = tstream.length() super(OpaqueObject, self).write(ostream, kmip_version=kmip_version) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass