audk/MdePkg/Library/UefiLib/UefiLib.c

812 lines
25 KiB
C
Raw Normal View History

/** @file
Mde UEFI library functions.
Copyright (c) 2006 - 2007, Intel Corporation<BR>
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name: UefiLib.c
**/
/**
Compare whether two names of languages are identical.
@param Language1 Name of language 1.
@param Language2 Name of language 2.
@retval TRUE Language 1 and language 2 are the same.
@retval FALSE Language 1 and language 2 are not the same.
**/
STATIC
BOOLEAN
CompareIso639LanguageCode (
IN CONST CHAR8 *Language1,
IN CONST CHAR8 *Language2
)
{
UINT32 Name1;
UINT32 Name2;
Name1 = ReadUnaligned24 ((CONST UINT32 *) Language1);
Name2 = ReadUnaligned24 ((CONST UINT32 *) Language2);
return (BOOLEAN) (Name1 == Name2);
}
/**
This function searches the list of configuration tables stored in the EFI System
Table for a table with a GUID that matches TableGuid. If a match is found,
then a pointer to the configuration table is returned in Table, and EFI_SUCCESS
is returned. If a matching GUID is not found, then EFI_NOT_FOUND is returned.
@param TableGuid Pointer to table's GUID type..
@param Table Pointer to the table associated with TableGuid in the EFI System Table.
@retval EFI_SUCCESS A configuration table matching TableGuid was found.
@retval EFI_NOT_FOUND A configuration table matching TableGuid could not be found.
**/
EFI_STATUS
EFIAPI
EfiGetSystemConfigurationTable (
IN EFI_GUID *TableGuid,
OUT VOID **Table
)
{
EFI_SYSTEM_TABLE *SystemTable;
UINTN Index;
ASSERT (TableGuid != NULL);
ASSERT (Table != NULL);
SystemTable = gST;
*Table = NULL;
for (Index = 0; Index < SystemTable->NumberOfTableEntries; Index++) {
if (CompareGuid (TableGuid, &(SystemTable->ConfigurationTable[Index].VendorGuid))) {
*Table = SystemTable->ConfigurationTable[Index].VendorTable;
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
/**
This function causes the notification function to be executed for every protocol
of type ProtocolGuid instance that exists in the system when this function is
invoked. In addition, every time a protocol of type ProtocolGuid instance is
installed or reinstalled, the notification function is also executed.
@param ProtocolGuid Supplies GUID of the protocol upon whose installation the event is fired.
@param NotifyTpl Supplies the task priority level of the event notifications.
@param NotifyFunction Supplies the function to notify when the event is signaled.
@param NotifyContext The context parameter to pass to NotifyFunction.
@param Registration A pointer to a memory location to receive the registration value.
@return The notification event that was created.
**/
EFI_EVENT
EFIAPI
EfiCreateProtocolNotifyEvent(
IN EFI_GUID *ProtocolGuid,
IN EFI_TPL NotifyTpl,
IN EFI_EVENT_NOTIFY NotifyFunction,
IN VOID *NotifyContext, OPTIONAL
OUT VOID **Registration
)
{
EFI_STATUS Status;
EFI_EVENT Event;
//
// Create the event
//
Status = gBS->CreateEvent (
EFI_EVENT_NOTIFY_SIGNAL,
NotifyTpl,
NotifyFunction,
NotifyContext,
&Event
);
ASSERT_EFI_ERROR (Status);
//
// Register for protocol notifactions on this event
//
Status = gBS->RegisterProtocolNotify (
ProtocolGuid,
Event,
Registration
);
ASSERT_EFI_ERROR (Status);
//
// Kick the event so we will perform an initial pass of
// current installed drivers
//
gBS->SignalEvent (Event);
return Event;
}
/**
This function creates an event using NotifyTpl, NoifyFunction, and NotifyContext.
This event is signaled with EfiNamedEventSignal(). This provide the ability for
one or more listeners on the same event named by the GUID specified by Name.
@param Name Supplies GUID name of the event.
@param NotifyTpl Supplies the task priority level of the event notifications.
@param NotifyFunction Supplies the function to notify when the event is signaled.
@param NotifyContext The context parameter to pass to NotifyFunction.
@param Registration A pointer to a memory location to receive the registration value.
@retval EFI_SUCCESS A named event was created.
@retval EFI_OUT_OF_RESOURCES There are not enough resource to create the named event.
**/
EFI_STATUS
EFIAPI
EfiNamedEventListen (
IN CONST EFI_GUID *Name,
IN EFI_TPL NotifyTpl,
IN EFI_EVENT_NOTIFY NotifyFunction,
IN CONST VOID *NotifyContext, OPTIONAL
OUT VOID *Registration OPTIONAL
)
{
EFI_STATUS Status;
EFI_EVENT Event;
VOID *RegistrationLocal;
//
// Create event
//
Status = gBS->CreateEvent (
EFI_EVENT_NOTIFY_SIGNAL,
NotifyTpl,
NotifyFunction,
(VOID *) NotifyContext,
&Event
);
ASSERT_EFI_ERROR (Status);
//
// The Registration is not optional to RegisterProtocolNotify().
// To make it optional to EfiNamedEventListen(), may need to substitute with a local.
//
if (Registration != NULL) {
RegistrationLocal = Registration;
} else {
RegistrationLocal = &RegistrationLocal;
}
//
// Register for an installation of protocol interface
//
Status = gBS->RegisterProtocolNotify (
(EFI_GUID *) Name,
Event,
RegistrationLocal
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}
/**
This function signals the named event specified by Name. The named event must
have been created with EfiNamedEventListen().
@param Name Supplies GUID name of the event.
@retval EFI_SUCCESS A named event was signaled.
@retval EFI_OUT_OF_RESOURCES There are not enough resource to signal the named event.
**/
EFI_STATUS
EFIAPI
EfiNamedEventSignal (
IN CONST EFI_GUID *Name
)
{
EFI_STATUS Status;
EFI_HANDLE Handle;
Handle = NULL;
Status = gBS->InstallProtocolInterface (
&Handle,
(EFI_GUID *) Name,
EFI_NATIVE_INTERFACE,
NULL
);
ASSERT_EFI_ERROR (Status);
Status = gBS->UninstallProtocolInterface (
Handle,
(EFI_GUID *) Name,
NULL
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}
/**
Returns the current TPL.
This function returns the current TPL. There is no EFI service to directly
retrieve the current TPL. Instead, the RaiseTPL() function is used to raise
the TPL to TPL_HIGH_LEVEL. This will return the current TPL. The TPL level
can then immediately be restored back to the current TPL level with a call
to RestoreTPL().
@param VOID
@retvale EFI_TPL The current TPL.
**/
EFI_TPL
EFIAPI
EfiGetCurrentTpl (
VOID
)
{
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (EFI_TPL_HIGH_LEVEL);
gBS->RestoreTPL (Tpl);
return Tpl;
}
/**
This function initializes a basic mutual exclusion lock to the released state
and returns the lock. Each lock provides mutual exclusion access at its task
priority level. Since there is no preemption or multiprocessor support in EFI,
acquiring the lock only consists of raising to the locks TPL.
@param Lock A pointer to the lock data structure to initialize.
@param Priority EFI TPL associated with the lock.
@return The lock.
**/
EFI_LOCK *
EFIAPI
EfiInitializeLock (
IN OUT EFI_LOCK *Lock,
IN EFI_TPL Priority
)
{
ASSERT (Lock != NULL);
ASSERT (Priority <= EFI_TPL_HIGH_LEVEL);
Lock->Tpl = Priority;
Lock->OwnerTpl = EFI_TPL_APPLICATION;
Lock->Lock = EfiLockReleased ;
return Lock;
}
/**
This function raises the system's current task priority level to the task
priority level of the mutual exclusion lock. Then, it places the lock in the
acquired state.
@param Priority The task priority level of the lock.
**/
VOID
EFIAPI
EfiAcquireLock (
IN EFI_LOCK *Lock
)
{
ASSERT (Lock != NULL);
ASSERT (Lock->Lock == EfiLockReleased);
Lock->OwnerTpl = gBS->RaiseTPL (Lock->Tpl);
Lock->Lock = EfiLockAcquired;
}
/**
This function raises the system's current task priority level to the task
priority level of the mutual exclusion lock. Then, it attempts to place the
lock in the acquired state.
@param Lock A pointer to the lock to acquire.
@retval EFI_SUCCESS The lock was acquired.
@retval EFI_ACCESS_DENIED The lock could not be acquired because it is already owned.
**/
EFI_STATUS
EFIAPI
EfiAcquireLockOrFail (
IN EFI_LOCK *Lock
)
{
ASSERT (Lock != NULL);
ASSERT (Lock->Lock != EfiLockUninitialized);
if (Lock->Lock == EfiLockAcquired) {
//
// Lock is already owned, so bail out
//
return EFI_ACCESS_DENIED;
}
Lock->OwnerTpl = gBS->RaiseTPL (Lock->Tpl);
Lock->Lock = EfiLockAcquired;
return EFI_SUCCESS;
}
/**
This function transitions a mutual exclusion lock from the acquired state to
the released state, and restores the system's task priority level to its
previous level.
@param Lock A pointer to the lock to release.
**/
VOID
EFIAPI
EfiReleaseLock (
IN EFI_LOCK *Lock
)
{
EFI_TPL Tpl;
ASSERT (Lock != NULL);
ASSERT (Lock->Lock == EfiLockAcquired);
Tpl = Lock->OwnerTpl;
Lock->Lock = EfiLockReleased;
gBS->RestoreTPL (Tpl);
}
/**
Tests whether a controller handle is being managed by a specific driver.
This function tests whether the driver specified by DriverBindingHandle is
currently managing the controller specified by ControllerHandle. This test
is performed by evaluating if the the protocol specified by ProtocolGuid is
present on ControllerHandle and is was opened by DriverBindingHandle with an
attribute of EFI_OPEN_PROTOCOL_BY_DRIVER.
If ProtocolGuid is NULL, then ASSERT().
@param ControllerHandle A handle for a controller to test.
@param DriverBindingHandle Specifies the driver binding handle for the
driver.
@param ProtocolGuid Specifies the protocol that the driver specified
by DriverBindingHandle opens in its Start()
function.
@retval EFI_SUCCESS ControllerHandle is managed by the driver
specifed by DriverBindingHandle.
@retval EFI_UNSUPPORTED ControllerHandle is not managed by the driver
specifed by DriverBindingHandle.
**/
EFI_STATUS
EFIAPI
EfiTestManagedDevice (
IN CONST EFI_HANDLE ControllerHandle,
IN CONST EFI_HANDLE DriverBindingHandle,
IN CONST EFI_GUID *ProtocolGuid
)
{
EFI_STATUS Status;
VOID *ManagedInterface;
ASSERT (ProtocolGuid != NULL);
Status = gBS->OpenProtocol (
ControllerHandle,
(EFI_GUID *) ProtocolGuid,
&ManagedInterface,
DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (!EFI_ERROR (Status)) {
gBS->CloseProtocol (
ControllerHandle,
(EFI_GUID *) ProtocolGuid,
DriverBindingHandle,
ControllerHandle
);
return EFI_UNSUPPORTED;
}
if (Status != EFI_ALREADY_STARTED) {
return EFI_UNSUPPORTED;
}
return EFI_SUCCESS;
}
/**
Tests whether a child handle is a child device of the controller.
This function tests whether ChildHandle is one of the children of
ControllerHandle. This test is performed by checking to see if the protocol
specified by ProtocolGuid is present on ControllerHandle and opened by
ChildHandle with an attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
If ProtocolGuid is NULL, then ASSERT().
@param ControllerHandle A handle for a (parent) controller to test.
@param ChildHandle A child handle to test.
@param ConsumsedGuid Supplies the protocol that the child controller
opens on its parent controller.
@retval EFI_SUCCESS ChildHandle is a child of the ControllerHandle.
@retval EFI_UNSUPPORTED ChildHandle is not a child of the
ControllerHandle.
**/
EFI_STATUS
EFIAPI
EfiTestChildHandle (
IN CONST EFI_HANDLE ControllerHandle,
IN CONST EFI_HANDLE ChildHandle,
IN CONST EFI_GUID *ProtocolGuid
)
{
EFI_STATUS Status;
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfoBuffer;
UINTN EntryCount;
UINTN Index;
ASSERT (ProtocolGuid != NULL);
//
// Retrieve the list of agents that are consuming the specific protocol
// on ControllerHandle.
//
Status = gBS->OpenProtocolInformation (
ControllerHandle,
(EFI_GUID *) ProtocolGuid,
&OpenInfoBuffer,
&EntryCount
);
if (EFI_ERROR (Status)) {
return EFI_UNSUPPORTED;
}
//
// Inspect if ChildHandle is one of the agents.
//
Status = EFI_UNSUPPORTED;
for (Index = 0; Index < EntryCount; Index++) {
if ((OpenInfoBuffer[Index].ControllerHandle == ChildHandle) &&
(OpenInfoBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) != 0) {
Status = EFI_SUCCESS;
break;
}
}
FreePool (OpenInfoBuffer);
return Status;
}
/**
This function looks up a Unicode string in UnicodeStringTable. If Language is
a member of SupportedLanguages and a Unicode string is found in UnicodeStringTable
that matches the language code specified by Language, then it is returned in
UnicodeString.
@param Language A pointer to the ISO 639-2 language code for the
Unicode string to look up and return.
@param SupportedLanguages A pointer to the set of ISO 639-2 language codes
that the Unicode string table supports. Language
must be a member of this set.
@param UnicodeStringTable A pointer to the table of Unicode strings.
@param UnicodeString A pointer to the Unicode string from UnicodeStringTable
that matches the language specified by Language.
@retval EFI_SUCCESS The Unicode string that matches the language
specified by Language was found
in the table of Unicoide strings UnicodeStringTable,
and it was returned in UnicodeString.
@retval EFI_INVALID_PARAMETER Language is NULL.
@retval EFI_INVALID_PARAMETER UnicodeString is NULL.
@retval EFI_UNSUPPORTED SupportedLanguages is NULL.
@retval EFI_UNSUPPORTED UnicodeStringTable is NULL.
@retval EFI_UNSUPPORTED The language specified by Language is not a
member of SupportedLanguages.
@retval EFI_UNSUPPORTED The language specified by Language is not
supported by UnicodeStringTable.
**/
EFI_STATUS
EFIAPI
LookupUnicodeString (
IN CONST CHAR8 *Language,
IN CONST CHAR8 *SupportedLanguages,
IN CONST EFI_UNICODE_STRING_TABLE *UnicodeStringTable,
OUT CHAR16 **UnicodeString
)
{
//
// Make sure the parameters are valid
//
if (Language == NULL || UnicodeString == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// If there are no supported languages, or the Unicode String Table is empty, then the
// Unicode String specified by Language is not supported by this Unicode String Table
//
if (SupportedLanguages == NULL || UnicodeStringTable == NULL) {
return EFI_UNSUPPORTED;
}
//
// Make sure Language is in the set of Supported Languages
//
while (*SupportedLanguages != 0) {
if (CompareIso639LanguageCode (Language, SupportedLanguages)) {
//
// Search the Unicode String Table for the matching Language specifier
//
while (UnicodeStringTable->Language != NULL) {
if (CompareIso639LanguageCode (Language, UnicodeStringTable->Language)) {
//
// A matching string was found, so return it
//
*UnicodeString = UnicodeStringTable->UnicodeString;
return EFI_SUCCESS;
}
UnicodeStringTable++;
}
return EFI_UNSUPPORTED;
}
SupportedLanguages += 3;
}
return EFI_UNSUPPORTED;
}
/**
This function adds a Unicode string to UnicodeStringTable.
If Language is a member of SupportedLanguages then UnicodeString is added to
UnicodeStringTable. New buffers are allocated for both Language and
UnicodeString. The contents of Language and UnicodeString are copied into
these new buffers. These buffers are automatically freed when
FreeUnicodeStringTable() is called.
@param Language A pointer to the ISO 639-2 language code for the Unicode
string to add.
@param SupportedLanguages A pointer to the set of ISO 639-2 language codes
that the Unicode string table supports.
Language must be a member of this set.
@param UnicodeStringTable A pointer to the table of Unicode strings.
@param UnicodeString A pointer to the Unicode string to add.
@retval EFI_SUCCESS The Unicode string that matches the language
specified by Language was found in the table of
Unicode strings UnicodeStringTable, and it was
returned in UnicodeString.
@retval EFI_INVALID_PARAMETER Language is NULL.
@retval EFI_INVALID_PARAMETER UnicodeString is NULL.
@retval EFI_INVALID_PARAMETER UnicodeString is an empty string.
@retval EFI_UNSUPPORTED SupportedLanguages is NULL.
@retval EFI_ALREADY_STARTED A Unicode string with language Language is
already present in UnicodeStringTable.
@retval EFI_OUT_OF_RESOURCES There is not enough memory to add another
Unicode string to UnicodeStringTable.
@retval EFI_UNSUPPORTED The language specified by Language is not a
member of SupportedLanguages.
**/
EFI_STATUS
EFIAPI
AddUnicodeString (
IN CONST CHAR8 *Language,
IN CONST CHAR8 *SupportedLanguages,
IN EFI_UNICODE_STRING_TABLE **UnicodeStringTable,
IN CONST CHAR16 *UnicodeString
)
{
UINTN NumberOfEntries;
EFI_UNICODE_STRING_TABLE *OldUnicodeStringTable;
EFI_UNICODE_STRING_TABLE *NewUnicodeStringTable;
UINTN UnicodeStringLength;
//
// Make sure the parameter are valid
//
if (Language == NULL || UnicodeString == NULL || UnicodeStringTable == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// If there are no supported languages, then a Unicode String can not be added
//
if (SupportedLanguages == NULL) {
return EFI_UNSUPPORTED;
}
//
// If the Unicode String is empty, then a Unicode String can not be added
//
if (UnicodeString[0] == 0) {
return EFI_INVALID_PARAMETER;
}
//
// Make sure Language is a member of SupportedLanguages
//
while (*SupportedLanguages != 0) {
if (CompareIso639LanguageCode (Language, SupportedLanguages)) {
//
// Determine the size of the Unicode String Table by looking for a NULL Language entry
//
NumberOfEntries = 0;
if (*UnicodeStringTable != NULL) {
OldUnicodeStringTable = *UnicodeStringTable;
while (OldUnicodeStringTable->Language != NULL) {
if (CompareIso639LanguageCode (Language, OldUnicodeStringTable->Language)) {
return EFI_ALREADY_STARTED;
}
OldUnicodeStringTable++;
NumberOfEntries++;
}
}
//
// Allocate space for a new Unicode String Table. It must hold the current number of
// entries, plus 1 entry for the new Unicode String, plus 1 entry for the end of table
// marker
//
NewUnicodeStringTable = AllocatePool ((NumberOfEntries + 2) * sizeof (EFI_UNICODE_STRING_TABLE));
if (NewUnicodeStringTable == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// If the current Unicode String Table contains any entries, then copy them to the
// newly allocated Unicode String Table.
//
if (*UnicodeStringTable != NULL) {
CopyMem (
NewUnicodeStringTable,
*UnicodeStringTable,
NumberOfEntries * sizeof (EFI_UNICODE_STRING_TABLE)
);
}
//
// Allocate space for a copy of the Language specifier
//
NewUnicodeStringTable[NumberOfEntries].Language = AllocateCopyPool (3, Language);
if (NewUnicodeStringTable[NumberOfEntries].Language == NULL) {
gBS->FreePool (NewUnicodeStringTable);
return EFI_OUT_OF_RESOURCES;
}
//
// Compute the length of the Unicode String
//
for (UnicodeStringLength = 0; UnicodeString[UnicodeStringLength] != 0; UnicodeStringLength++)
;
//
// Allocate space for a copy of the Unicode String
//
NewUnicodeStringTable[NumberOfEntries].UnicodeString = AllocateCopyPool (
(UnicodeStringLength + 1) * sizeof (CHAR16),
UnicodeString
);
if (NewUnicodeStringTable[NumberOfEntries].UnicodeString == NULL) {
gBS->FreePool (NewUnicodeStringTable[NumberOfEntries].Language);
gBS->FreePool (NewUnicodeStringTable);
return EFI_OUT_OF_RESOURCES;
}
//
// Mark the end of the Unicode String Table
//
NewUnicodeStringTable[NumberOfEntries + 1].Language = NULL;
NewUnicodeStringTable[NumberOfEntries + 1].UnicodeString = NULL;
//
// Free the old Unicode String Table
//
if (*UnicodeStringTable != NULL) {
gBS->FreePool (*UnicodeStringTable);
}
//
// Point UnicodeStringTable at the newly allocated Unicode String Table
//
*UnicodeStringTable = NewUnicodeStringTable;
return EFI_SUCCESS;
}
SupportedLanguages += 3;
}
return EFI_UNSUPPORTED;
}
/**
This function frees the table of Unicode strings in UnicodeStringTable.
If UnicodeStringTable is NULL, then EFI_SUCCESS is returned.
Otherwise, each language code, and each Unicode string in the Unicode string
table are freed, and EFI_SUCCESS is returned.
@param UnicodeStringTable A pointer to the table of Unicode strings.
@retval EFI_SUCCESS The Unicode string table was freed.
**/
EFI_STATUS
EFIAPI
FreeUnicodeStringTable (
IN EFI_UNICODE_STRING_TABLE *UnicodeStringTable
)
{
UINTN Index;
//
// If the Unicode String Table is NULL, then it is already freed
//
if (UnicodeStringTable == NULL) {
return EFI_SUCCESS;
}
//
// Loop through the Unicode String Table until we reach the end of table marker
//
for (Index = 0; UnicodeStringTable[Index].Language != NULL; Index++) {
//
// Free the Language string from the Unicode String Table
//
gBS->FreePool (UnicodeStringTable[Index].Language);
//
// Free the Unicode String from the Unicode String Table
//
if (UnicodeStringTable[Index].UnicodeString != NULL) {
gBS->FreePool (UnicodeStringTable[Index].UnicodeString);
}
}
//
// Free the Unicode String Table itself
//
gBS->FreePool (UnicodeStringTable);
return EFI_SUCCESS;
}