audk/QuarkPlatformPkg/Library/PlatformHelperLib/PlatformHelperLib.c

488 lines
13 KiB
C
Raw Normal View History

2015-12-15 20:23:57 +01:00
/** @file
Helper routines with common PEI / DXE implementation.
Copyright (c) 2013-2016 Intel Corporation.
2015-12-15 20:23:57 +01:00
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "CommonHeader.h"
#include <Library/I2cLib.h>
2015-12-15 20:23:57 +01:00
CHAR16 *mPlatTypeNameTable[] = { EFI_PLATFORM_TYPE_NAME_TABLE_DEFINITION };
UINTN mPlatTypeNameTableLen = ((sizeof(mPlatTypeNameTable)) / sizeof (CHAR16 *));
//
// Routines defined in other source modules of this component.
//
//
// Routines local to this source module.
//
//
// Routines shared with other souce modules in this component.
//
EFI_STATUS
WriteFirstFreeSpiProtect (
IN CONST UINT32 PchRootComplexBar,
IN CONST UINT32 DirectValue,
IN CONST UINT32 BaseAddress,
IN CONST UINT32 Length,
OUT UINT32 *OffsetPtr
)
{
UINT32 RegVal;
UINT32 Offset;
UINT32 StepLen;
ASSERT (PchRootComplexBar > 0);
Offset = 0;
if (OffsetPtr != NULL) {
*OffsetPtr = Offset;
}
if (MmioRead32 (PchRootComplexBar + R_QNC_RCRB_SPIPBR0) == 0) {
Offset = R_QNC_RCRB_SPIPBR0;
} else {
if (MmioRead32 (PchRootComplexBar + R_QNC_RCRB_SPIPBR1) == 0) {
Offset = R_QNC_RCRB_SPIPBR1;
} else {
if (MmioRead32 (PchRootComplexBar + R_QNC_RCRB_SPIPBR2) == 0) {
Offset = R_QNC_RCRB_SPIPBR2;
}
}
}
if (Offset != 0) {
if (DirectValue == 0) {
StepLen = ALIGN_VALUE (Length,SIZE_4KB); // Bring up to 4K boundary.
RegVal = BaseAddress + StepLen - 1;
RegVal &= 0x00FFF000; // Set EDS Protected Range Limit (PRL).
RegVal |= ((BaseAddress >> 12) & 0xfff); // or in EDS Protected Range Base (PRB).
} else {
RegVal = DirectValue;
}
//
// Enable protection.
//
RegVal |= B_QNC_RCRB_SPIPBRn_WPE;
MmioWrite32 (PchRootComplexBar + Offset, RegVal);
if (RegVal == MmioRead32 (PchRootComplexBar + Offset)) {
if (OffsetPtr != NULL) {
*OffsetPtr = Offset;
}
return EFI_SUCCESS;
}
return EFI_DEVICE_ERROR;
}
return EFI_NOT_FOUND;
}
//
// Routines exported by this component.
//
/**
Clear SPI Protect registers.
@retval EFI_SUCCESS SPI protect registers cleared.
@retval EFI_ACCESS_DENIED Unable to clear SPI protect registers.
**/
EFI_STATUS
EFIAPI
PlatformClearSpiProtect (
VOID
)
{
UINT32 PchRootComplexBar;
PchRootComplexBar = QNC_RCRB_BASE;
//
// Check if the SPI interface has been locked-down.
//
if ((MmioRead16 (PchRootComplexBar + R_QNC_RCRB_SPIS) & B_QNC_RCRB_SPIS_SCL) != 0) {
return EFI_ACCESS_DENIED;
}
MmioWrite32 (PchRootComplexBar + R_QNC_RCRB_SPIPBR0, 0);
if (MmioRead32 (PchRootComplexBar + R_QNC_RCRB_SPIPBR0) != 0) {
return EFI_ACCESS_DENIED;
}
MmioWrite32 (PchRootComplexBar + R_QNC_RCRB_SPIPBR1, 0);
if (MmioRead32 (PchRootComplexBar + R_QNC_RCRB_SPIPBR0) != 0) {
return EFI_ACCESS_DENIED;
}
MmioWrite32 (PchRootComplexBar + R_QNC_RCRB_SPIPBR2, 0);
if (MmioRead32 (PchRootComplexBar + R_QNC_RCRB_SPIPBR0) != 0) {
return EFI_ACCESS_DENIED;
}
return EFI_SUCCESS;
}
/**
Determine if an SPI address range is protected.
@param SpiBaseAddress Base of SPI range.
@param Length Length of SPI range.
@retval TRUE Range is protected.
@retval FALSE Range is not protected.
**/
BOOLEAN
EFIAPI
PlatformIsSpiRangeProtected (
IN CONST UINT32 SpiBaseAddress,
IN CONST UINT32 Length
)
{
UINT32 RegVal;
UINT32 Offset;
UINT32 Limit;
UINT32 ProtectedBase;
UINT32 ProtectedLimit;
UINT32 PchRootComplexBar;
PchRootComplexBar = QNC_RCRB_BASE;
if (Length > 0) {
Offset = R_QNC_RCRB_SPIPBR0;
Limit = SpiBaseAddress + (Length - 1);
do {
RegVal = MmioRead32 (PchRootComplexBar + Offset);
if ((RegVal & B_QNC_RCRB_SPIPBRn_WPE) != 0) {
ProtectedBase = (RegVal & 0xfff) << 12;
ProtectedLimit = (RegVal & 0x00fff000) + 0xfff;
if (SpiBaseAddress >= ProtectedBase && Limit <= ProtectedLimit) {
return TRUE;
}
}
if (Offset == R_QNC_RCRB_SPIPBR0) {
Offset = R_QNC_RCRB_SPIPBR1;
} else if (Offset == R_QNC_RCRB_SPIPBR1) {
Offset = R_QNC_RCRB_SPIPBR2;
} else {
break;
}
} while (TRUE);
}
return FALSE;
}
/**
Set Legacy GPIO Level
@param LevelRegOffset GPIO level register Offset from GPIO Base Address.
@param GpioNum GPIO bit to change.
@param HighLevel If TRUE set GPIO High else Set GPIO low.
**/
VOID
EFIAPI
PlatformLegacyGpioSetLevel (
IN CONST UINT32 LevelRegOffset,
IN CONST UINT32 GpioNum,
IN CONST BOOLEAN HighLevel
)
{
UINT32 RegValue;
UINT32 GpioBaseAddress;
UINT32 GpioNumMask;
GpioBaseAddress = LpcPciCfg32 (R_QNC_LPC_GBA_BASE) & B_QNC_LPC_GPA_BASE_MASK;
ASSERT (GpioBaseAddress > 0);
RegValue = IoRead32 (GpioBaseAddress + LevelRegOffset);
GpioNumMask = (1 << GpioNum);
if (HighLevel) {
RegValue |= (GpioNumMask);
} else {
RegValue &= ~(GpioNumMask);
}
IoWrite32 (GpioBaseAddress + LevelRegOffset, RegValue);
}
/**
Get Legacy GPIO Level
@param LevelRegOffset GPIO level register Offset from GPIO Base Address.
@param GpioNum GPIO bit to check.
@retval TRUE If bit is SET.
@retval FALSE If bit is CLEAR.
**/
BOOLEAN
EFIAPI
PlatformLegacyGpioGetLevel (
IN CONST UINT32 LevelRegOffset,
IN CONST UINT32 GpioNum
)
{
UINT32 RegValue;
UINT32 GpioBaseAddress;
UINT32 GpioNumMask;
GpioBaseAddress = LpcPciCfg32 (R_QNC_LPC_GBA_BASE) & B_QNC_LPC_GPA_BASE_MASK;
RegValue = IoRead32 (GpioBaseAddress + LevelRegOffset);
GpioNumMask = (1 << GpioNum);
return ((RegValue & GpioNumMask) != 0);
}
BOOLEAN
Pcal9555GetPortRegBit (
IN CONST UINT32 Pcal9555SlaveAddr,
IN CONST UINT32 GpioNum,
IN CONST UINT8 RegBase
)
{
EFI_STATUS Status;
UINTN ReadLength;
UINTN WriteLength;
UINT8 Data[2];
EFI_I2C_DEVICE_ADDRESS I2cDeviceAddr;
EFI_I2C_ADDR_MODE I2cAddrMode;
UINT8 *RegValuePtr;
UINT8 GpioNumMask;
UINT8 SubAddr;
I2cDeviceAddr.I2CDeviceAddress = (UINTN)Pcal9555SlaveAddr;
I2cAddrMode = EfiI2CSevenBitAddrMode;
if (GpioNum < 8) {
SubAddr = RegBase;
GpioNumMask = (UINT8)(1 << GpioNum);
} else {
SubAddr = RegBase + 1;
GpioNumMask = (UINT8)(1 << (GpioNum - 8));
}
//
// Output port value always at 2nd byte in Data variable.
//
RegValuePtr = &Data[1];
//
// On read entry sub address at 2nd byte, on read exit output
// port value in 2nd byte.
//
Data[1] = SubAddr;
WriteLength = 1;
ReadLength = 1;
Status = I2cReadMultipleByte (
I2cDeviceAddr,
I2cAddrMode,
&WriteLength,
&ReadLength,
&Data[1]
);
ASSERT_EFI_ERROR (Status);
//
// Adjust output port bit given callers request.
//
return ((*RegValuePtr & GpioNumMask) != 0);
}
VOID
Pcal9555SetPortRegBit (
IN CONST UINT32 Pcal9555SlaveAddr,
IN CONST UINT32 GpioNum,
IN CONST UINT8 RegBase,
IN CONST BOOLEAN LogicOne
)
{
EFI_STATUS Status;
UINTN ReadLength;
UINTN WriteLength;
UINT8 Data[2];
EFI_I2C_DEVICE_ADDRESS I2cDeviceAddr;
EFI_I2C_ADDR_MODE I2cAddrMode;
UINT8 *RegValuePtr;
UINT8 GpioNumMask;
UINT8 SubAddr;
I2cDeviceAddr.I2CDeviceAddress = (UINTN)Pcal9555SlaveAddr;
I2cAddrMode = EfiI2CSevenBitAddrMode;
if (GpioNum < 8) {
SubAddr = RegBase;
GpioNumMask = (UINT8)(1 << GpioNum);
} else {
SubAddr = RegBase + 1;
GpioNumMask = (UINT8)(1 << (GpioNum - 8));
}
//
// Output port value always at 2nd byte in Data variable.
//
RegValuePtr = &Data[1];
//
// On read entry sub address at 2nd byte, on read exit output
// port value in 2nd byte.
//
Data[1] = SubAddr;
WriteLength = 1;
ReadLength = 1;
Status = I2cReadMultipleByte (
I2cDeviceAddr,
I2cAddrMode,
&WriteLength,
&ReadLength,
&Data[1]
);
ASSERT_EFI_ERROR (Status);
//
// Adjust output port bit given callers request.
//
if (LogicOne) {
*RegValuePtr = *RegValuePtr | GpioNumMask;
} else {
*RegValuePtr = *RegValuePtr & ~(GpioNumMask);
}
//
// Update register. Sub address at 1st byte, value at 2nd byte.
//
WriteLength = 2;
Data[0] = SubAddr;
Status = I2cWriteMultipleByte (
I2cDeviceAddr,
I2cAddrMode,
&WriteLength,
Data
);
ASSERT_EFI_ERROR (Status);
}
/**
Set the direction of Pcal9555 IO Expander GPIO pin.
@param Pcal9555SlaveAddr I2c Slave address of Pcal9555 Io Expander.
@param GpioNum Gpio direction to configure - values 0-7 for Port0
and 8-15 for Port1.
@param CfgAsInput If TRUE set pin direction as input else set as output.
**/
VOID
EFIAPI
PlatformPcal9555GpioSetDir (
IN CONST UINT32 Pcal9555SlaveAddr,
IN CONST UINT32 GpioNum,
IN CONST BOOLEAN CfgAsInput
)
{
Pcal9555SetPortRegBit (
Pcal9555SlaveAddr,
GpioNum,
PCAL9555_REG_CFG_PORT0,
CfgAsInput
);
}
/**
Set the level of Pcal9555 IO Expander GPIO high or low.
@param Pcal9555SlaveAddr I2c Slave address of Pcal9555 Io Expander.
@param GpioNum Gpio to change values 0-7 for Port0 and 8-15
for Port1.
@param HighLevel If TRUE set pin high else set pin low.
**/
VOID
EFIAPI
PlatformPcal9555GpioSetLevel (
IN CONST UINT32 Pcal9555SlaveAddr,
IN CONST UINT32 GpioNum,
IN CONST BOOLEAN HighLevel
)
{
Pcal9555SetPortRegBit (
Pcal9555SlaveAddr,
GpioNum,
PCAL9555_REG_OUT_PORT0,
HighLevel
);
}
/**
Enable pull-up/pull-down resistors of Pcal9555 GPIOs.
@param Pcal9555SlaveAddr I2c Slave address of Pcal9555 Io Expander.
@param GpioNum Gpio to change values 0-7 for Port0 and 8-15
for Port1.
**/
VOID
EFIAPI
PlatformPcal9555GpioEnablePull (
IN CONST UINT32 Pcal9555SlaveAddr,
IN CONST UINT32 GpioNum
)
{
Pcal9555SetPortRegBit (
Pcal9555SlaveAddr,
GpioNum,
PCAL9555_REG_PULL_EN_PORT0,
TRUE
);
}
/**
Disable pull-up/pull-down resistors of Pcal9555 GPIOs.
@param Pcal9555SlaveAddr I2c Slave address of Pcal9555 Io Expander.
@param GpioNum Gpio to change values 0-7 for Port0 and 8-15
for Port1.
**/
VOID
EFIAPI
PlatformPcal9555GpioDisablePull (
IN CONST UINT32 Pcal9555SlaveAddr,
IN CONST UINT32 GpioNum
)
{
Pcal9555SetPortRegBit (
Pcal9555SlaveAddr,
GpioNum,
PCAL9555_REG_PULL_EN_PORT0,
FALSE
);
}
/**
Get state of Pcal9555 GPIOs.
@param Pcal9555SlaveAddr I2c Slave address of Pcal9555 Io Expander.
@param GpioNum Gpio to change values 0-7 for Port0 and 8-15
for Port1.
@retval TRUE GPIO pin is high
@retval FALSE GPIO pin is low
**/
BOOLEAN
EFIAPI
PlatformPcal9555GpioGetState (
IN CONST UINT32 Pcal9555SlaveAddr,
IN CONST UINT32 GpioNum
)
{
return Pcal9555GetPortRegBit (Pcal9555SlaveAddr, GpioNum, PCAL9555_REG_IN_PORT0);
}