audk/OvmfPkg/MptScsiDxe/MptScsi.c

1225 lines
32 KiB
C
Raw Normal View History

/** @file
This driver produces Extended SCSI Pass Thru Protocol instances for
LSI Fusion MPT SCSI devices.
Copyright (C) 2020, Oracle and/or its affiliates.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <IndustryStandard/FusionMptScsi.h>
#include <IndustryStandard/Pci.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiLib.h>
#include <Protocol/PciIo.h>
#include <Protocol/PciRootBridgeIo.h>
#include <Protocol/ScsiPassThruExt.h>
#include <Uefi/UefiSpec.h>
//
// Higher versions will be used before lower, 0x10-0xffffffef is the version
// range for IVH (Indie Hardware Vendors)
//
#define MPT_SCSI_BINDING_VERSION 0x10
//
// Runtime Structures
//
typedef struct {
MPT_SCSI_REQUEST_ALIGNED IoRequest;
MPT_SCSI_IO_REPLY_ALIGNED IoReply;
//
// As EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET.SenseDataLength is defined
// as UINT8, defining here SenseData size to MAX_UINT8 will guarantee it
// cannot overflow when passed to device.
//
UINT8 Sense[MAX_UINT8];
//
// This size of the data is arbitrarily chosen.
// It seems to be sufficient for all I/O requests sent through
// EFI_SCSI_PASS_THRU_PROTOCOL.PassThru() for common boot scenarios.
//
UINT8 Data[0x2000];
} MPT_SCSI_DMA_BUFFER;
#define MPT_SCSI_DEV_SIGNATURE SIGNATURE_32 ('M','P','T','S')
typedef struct {
UINT32 Signature;
EFI_EXT_SCSI_PASS_THRU_PROTOCOL PassThru;
EFI_EXT_SCSI_PASS_THRU_MODE PassThruMode;
UINT8 MaxTarget;
UINT32 StallPerPollUsec;
EFI_PCI_IO_PROTOCOL *PciIo;
UINT64 OriginalPciAttributes;
EFI_EVENT ExitBoot;
MPT_SCSI_DMA_BUFFER *Dma;
EFI_PHYSICAL_ADDRESS DmaPhysical;
VOID *DmaMapping;
BOOLEAN IoReplyEnqueued;
} MPT_SCSI_DEV;
#define MPT_SCSI_FROM_PASS_THRU(PassThruPtr) \
CR (PassThruPtr, MPT_SCSI_DEV, PassThru, MPT_SCSI_DEV_SIGNATURE)
#define MPT_SCSI_DMA_ADDR(Dev, MemberName) \
(Dev->DmaPhysical + OFFSET_OF (MPT_SCSI_DMA_BUFFER, MemberName))
#define MPT_SCSI_DMA_ADDR_HIGH(Dev, MemberName) \
((UINT32)RShiftU64 (MPT_SCSI_DMA_ADDR (Dev, MemberName), 32))
#define MPT_SCSI_DMA_ADDR_LOW(Dev, MemberName) \
((UINT32)MPT_SCSI_DMA_ADDR (Dev, MemberName))
//
// Hardware functions
//
STATIC
EFI_STATUS
Out32 (
IN MPT_SCSI_DEV *Dev,
IN UINT32 Addr,
IN UINT32 Data
)
{
return Dev->PciIo->Io.Write (
Dev->PciIo,
EfiPciIoWidthUint32,
PCI_BAR_IDX0,
Addr,
1,
&Data
);
}
STATIC
EFI_STATUS
In32 (
IN MPT_SCSI_DEV *Dev,
IN UINT32 Addr,
OUT UINT32 *Data
)
{
return Dev->PciIo->Io.Read (
Dev->PciIo,
EfiPciIoWidthUint32,
PCI_BAR_IDX0,
Addr,
1,
Data
);
}
STATIC
EFI_STATUS
MptDoorbell (
IN MPT_SCSI_DEV *Dev,
IN UINT8 DoorbellFunc,
IN UINT8 DoorbellArg
)
{
return Out32 (
Dev,
MPT_REG_DOORBELL,
(((UINT32)DoorbellFunc) << 24) | (DoorbellArg << 16)
);
}
STATIC
EFI_STATUS
MptScsiReset (
IN MPT_SCSI_DEV *Dev
)
{
EFI_STATUS Status;
//
// Reset hardware
//
Status = MptDoorbell (Dev, MPT_DOORBELL_RESET, 0);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Mask interrupts
//
Status = Out32 (Dev, MPT_REG_IMASK, MPT_IMASK_DOORBELL | MPT_IMASK_REPLY);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Clear interrupt status
//
Status = Out32 (Dev, MPT_REG_ISTATUS, 0);
if (EFI_ERROR (Status)) {
return Status;
}
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
MptScsiInit (
IN MPT_SCSI_DEV *Dev
)
{
EFI_STATUS Status;
union {
MPT_IO_CONTROLLER_INIT_REQUEST Data;
UINT32 Uint32;
} AlignedReq;
MPT_IO_CONTROLLER_INIT_REQUEST *Req;
MPT_IO_CONTROLLER_INIT_REPLY Reply;
UINT8 *ReplyBytes;
UINT32 ReplyWord;
Req = &AlignedReq.Data;
Status = MptScsiReset (Dev);
if (EFI_ERROR (Status)) {
return Status;
}
ZeroMem (Req, sizeof (*Req));
ZeroMem (&Reply, sizeof (Reply));
Req->WhoInit = MPT_IOC_WHOINIT_ROM_BIOS;
Req->Function = MPT_MESSAGE_HDR_FUNCTION_IOC_INIT;
STATIC_ASSERT (
FixedPcdGet8 (PcdMptScsiMaxTargetLimit) < 255,
"Req supports 255 targets only (max target is 254)"
);
Req->MaxDevices = Dev->MaxTarget + 1;
Req->MaxBuses = 1;
Req->ReplyFrameSize = sizeof Dev->Dma->IoReply.Data;
Req->HostMfaHighAddr = MPT_SCSI_DMA_ADDR_HIGH (Dev, IoRequest);
Req->SenseBufferHighAddr = MPT_SCSI_DMA_ADDR_HIGH (Dev, Sense);
//
// Send controller init through doorbell
//
STATIC_ASSERT (
sizeof (*Req) % sizeof (UINT32) == 0,
"Req must be multiple of UINT32"
);
STATIC_ASSERT (
sizeof (*Req) / sizeof (UINT32) <= MAX_UINT8,
"Req must fit in MAX_UINT8 Dwords"
);
Status = MptDoorbell (
Dev,
MPT_DOORBELL_HANDSHAKE,
(UINT8)(sizeof (*Req) / sizeof (UINT32))
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = Dev->PciIo->Io.Write (
Dev->PciIo,
EfiPciIoWidthFifoUint32,
PCI_BAR_IDX0,
MPT_REG_DOORBELL,
sizeof (*Req) / sizeof (UINT32),
Req
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Read reply through doorbell
// Each 32bit (Dword) read produces 16bit (Word) of data
//
// The reply is read back to complete the doorbell function but it
// isn't useful because it doesn't contain relevant data or status
// codes.
//
STATIC_ASSERT (
sizeof (Reply) % sizeof (UINT16) == 0,
"Reply must be multiple of UINT16"
);
ReplyBytes = (UINT8 *)&Reply;
while (ReplyBytes != (UINT8 *)(&Reply + 1)) {
Status = In32 (Dev, MPT_REG_DOORBELL, &ReplyWord);
if (EFI_ERROR (Status)) {
return Status;
}
CopyMem (ReplyBytes, &ReplyWord, sizeof (UINT16));
ReplyBytes += sizeof (UINT16);
}
//
// Clear interrupts generated by doorbell reply
//
Status = Out32 (Dev, MPT_REG_ISTATUS, 0);
if (EFI_ERROR (Status)) {
return Status;
}
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
ReportHostAdapterError (
OUT EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET *Packet
)
{
DEBUG ((DEBUG_ERROR, "%a: fatal error in scsi request\n", __FUNCTION__));
Packet->InTransferLength = 0;
Packet->OutTransferLength = 0;
Packet->SenseDataLength = 0;
Packet->HostAdapterStatus = EFI_EXT_SCSI_STATUS_HOST_ADAPTER_OTHER;
Packet->TargetStatus = EFI_EXT_SCSI_STATUS_TARGET_TASK_ABORTED;
return EFI_DEVICE_ERROR;
}
STATIC
EFI_STATUS
ReportHostAdapterOverrunError (
OUT EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET *Packet
)
{
Packet->SenseDataLength = 0;
Packet->HostAdapterStatus =
EFI_EXT_SCSI_STATUS_HOST_ADAPTER_DATA_OVERRUN_UNDERRUN;
Packet->TargetStatus = EFI_EXT_SCSI_STATUS_TARGET_GOOD;
return EFI_BAD_BUFFER_SIZE;
}
STATIC
EFI_STATUS
MptScsiPopulateRequest (
IN MPT_SCSI_DEV *Dev,
IN UINT8 Target,
IN UINT64 Lun,
IN OUT EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET *Packet
)
{
MPT_SCSI_REQUEST_WITH_SG *Request;
Request = &Dev->Dma->IoRequest.Data;
if ((Packet->DataDirection == EFI_EXT_SCSI_DATA_DIRECTION_BIDIRECTIONAL) ||
((Packet->InTransferLength > 0) && (Packet->OutTransferLength > 0)) ||
(Packet->CdbLength > sizeof (Request->Header.Cdb)))
{
return EFI_UNSUPPORTED;
}
if ((Target > Dev->MaxTarget) || (Lun > 0) ||
(Packet->DataDirection > EFI_EXT_SCSI_DATA_DIRECTION_BIDIRECTIONAL) ||
//
// Trying to receive, but destination pointer is NULL, or contradicting
// transfer direction
//
((Packet->InTransferLength > 0) &&
((Packet->InDataBuffer == NULL) ||
(Packet->DataDirection == EFI_EXT_SCSI_DATA_DIRECTION_WRITE)
)
) ||
//
// Trying to send, but source pointer is NULL, or contradicting transfer
// direction
//
((Packet->OutTransferLength > 0) &&
((Packet->OutDataBuffer == NULL) ||
(Packet->DataDirection == EFI_EXT_SCSI_DATA_DIRECTION_READ)
)
)
)
{
return EFI_INVALID_PARAMETER;
}
if (Packet->InTransferLength > sizeof (Dev->Dma->Data)) {
Packet->InTransferLength = sizeof (Dev->Dma->Data);
return ReportHostAdapterOverrunError (Packet);
}
if (Packet->OutTransferLength > sizeof (Dev->Dma->Data)) {
Packet->OutTransferLength = sizeof (Dev->Dma->Data);
return ReportHostAdapterOverrunError (Packet);
}
ZeroMem (Request, sizeof (*Request));
Request->Header.TargetId = Target;
//
// Only LUN 0 is currently supported, hence the cast is safe
//
Request->Header.Lun[1] = (UINT8)Lun;
Request->Header.Function = MPT_MESSAGE_HDR_FUNCTION_SCSI_IO_REQUEST;
Request->Header.MessageContext = 1; // We handle one request at a time
Request->Header.CdbLength = Packet->CdbLength;
CopyMem (Request->Header.Cdb, Packet->Cdb, Packet->CdbLength);
//
// SenseDataLength is UINT8, Sense[] is MAX_UINT8, so we can't overflow
//
ZeroMem (Dev->Dma->Sense, Packet->SenseDataLength);
Request->Header.SenseBufferLength = Packet->SenseDataLength;
Request->Header.SenseBufferLowAddress = MPT_SCSI_DMA_ADDR_LOW (Dev, Sense);
Request->Sg.EndOfList = 1;
Request->Sg.EndOfBuffer = 1;
Request->Sg.LastElement = 1;
Request->Sg.ElementType = MPT_SG_ENTRY_TYPE_SIMPLE;
Request->Sg.Is64BitAddress = 1;
Request->Sg.DataBufferAddress = MPT_SCSI_DMA_ADDR (Dev, Data);
//
// "MPT_SG_ENTRY_SIMPLE.Length" is a 24-bit quantity.
//
STATIC_ASSERT (
sizeof (Dev->Dma->Data) < SIZE_16MB,
"MPT_SCSI_DMA_BUFFER.Data must be smaller than 16MB"
);
if (Packet->DataDirection == EFI_EXT_SCSI_DATA_DIRECTION_READ) {
Request->Header.DataLength = Packet->InTransferLength;
Request->Sg.Length = Packet->InTransferLength;
Request->Header.Control = MPT_SCSIIO_REQUEST_CONTROL_TXDIR_READ;
} else {
Request->Header.DataLength = Packet->OutTransferLength;
Request->Sg.Length = Packet->OutTransferLength;
Request->Header.Control = MPT_SCSIIO_REQUEST_CONTROL_TXDIR_WRITE;
CopyMem (Dev->Dma->Data, Packet->OutDataBuffer, Packet->OutTransferLength);
Request->Sg.BufferContainsData = 1;
}
if (Request->Header.DataLength == 0) {
Request->Header.Control = MPT_SCSIIO_REQUEST_CONTROL_TXDIR_NONE;
}
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
MptScsiSendRequest (
IN MPT_SCSI_DEV *Dev,
IN OUT EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET *Packet
)
{
EFI_STATUS Status;
if (!Dev->IoReplyEnqueued) {
//
// Put one free reply frame on the reply queue, the hardware may use it to
// report an error to us.
//
Status = Out32 (Dev, MPT_REG_REP_Q, MPT_SCSI_DMA_ADDR_LOW (Dev, IoReply));
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
Dev->IoReplyEnqueued = TRUE;
}
Status = Out32 (Dev, MPT_REG_REQ_Q, MPT_SCSI_DMA_ADDR_LOW (Dev, IoRequest));
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
MptScsiGetReply (
IN MPT_SCSI_DEV *Dev,
OUT UINT32 *Reply
)
{
EFI_STATUS Status;
UINT32 Istatus;
UINT32 EmptyReply;
//
// Timeouts are not supported for
// EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PassThru() in this implementation.
//
for ( ; ;) {
Status = In32 (Dev, MPT_REG_ISTATUS, &Istatus);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Interrupt raised
//
if (Istatus & MPT_IMASK_REPLY) {
break;
}
gBS->Stall (Dev->StallPerPollUsec);
}
Status = In32 (Dev, MPT_REG_REP_Q, Reply);
if (EFI_ERROR (Status)) {
return Status;
}
//
// The driver is supposed to fetch replies until 0xffffffff is returned, which
// will reset the interrupt status. We put only one request, so we expect the
// next read reply to be the last.
//
Status = In32 (Dev, MPT_REG_REP_Q, &EmptyReply);
if (EFI_ERROR (Status) || (EmptyReply != MAX_UINT32)) {
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
MptScsiHandleReply (
IN MPT_SCSI_DEV *Dev,
IN UINT32 Reply,
OUT EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET *Packet
)
{
if (Packet->DataDirection == EFI_EXT_SCSI_DATA_DIRECTION_READ) {
CopyMem (Packet->InDataBuffer, Dev->Dma->Data, Packet->InTransferLength);
}
if (Reply == Dev->Dma->IoRequest.Data.Header.MessageContext) {
//
// This is a turbo reply, everything is good
//
Packet->SenseDataLength = 0;
Packet->HostAdapterStatus = EFI_EXT_SCSI_STATUS_HOST_ADAPTER_OK;
Packet->TargetStatus = EFI_EXT_SCSI_STATUS_TARGET_GOOD;
} else if ((Reply & BIT31) != 0) {
DEBUG ((DEBUG_INFO, "%a: Full reply returned\n", __FUNCTION__));
//
// When reply MSB is set, we got a full reply. Since we submitted only one
// reply frame, we know it's IoReply.
//
Dev->IoReplyEnqueued = FALSE;
Packet->TargetStatus = Dev->Dma->IoReply.Data.ScsiStatus;
//
// Make sure device only lowers SenseDataLength before copying sense
//
ASSERT (Dev->Dma->IoReply.Data.SenseCount <= Packet->SenseDataLength);
Packet->SenseDataLength =
(UINT8)MIN (Dev->Dma->IoReply.Data.SenseCount, Packet->SenseDataLength);
CopyMem (Packet->SenseData, Dev->Dma->Sense, Packet->SenseDataLength);
if (Packet->DataDirection == EFI_EXT_SCSI_DATA_DIRECTION_READ) {
Packet->InTransferLength = Dev->Dma->IoReply.Data.TransferCount;
} else {
Packet->OutTransferLength = Dev->Dma->IoReply.Data.TransferCount;
}
switch (Dev->Dma->IoReply.Data.IocStatus) {
case MPT_SCSI_IOCSTATUS_SUCCESS:
Packet->HostAdapterStatus = EFI_EXT_SCSI_STATUS_HOST_ADAPTER_OK;
break;
case MPT_SCSI_IOCSTATUS_DEVICE_NOT_THERE:
Packet->HostAdapterStatus =
EFI_EXT_SCSI_STATUS_HOST_ADAPTER_SELECTION_TIMEOUT;
return EFI_TIMEOUT;
case MPT_SCSI_IOCSTATUS_DATA_UNDERRUN:
case MPT_SCSI_IOCSTATUS_DATA_OVERRUN:
Packet->HostAdapterStatus =
EFI_EXT_SCSI_STATUS_HOST_ADAPTER_DATA_OVERRUN_UNDERRUN;
break;
default:
Packet->HostAdapterStatus = EFI_EXT_SCSI_STATUS_HOST_ADAPTER_OTHER;
return EFI_DEVICE_ERROR;
}
} else {
DEBUG ((DEBUG_ERROR, "%a: unexpected reply (%x)\n", __FUNCTION__, Reply));
return ReportHostAdapterError (Packet);
}
return EFI_SUCCESS;
}
//
// Ext SCSI Pass Thru
//
STATIC
EFI_STATUS
EFIAPI
MptScsiPassThru (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
IN UINT8 *Target,
IN UINT64 Lun,
IN OUT EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET *Packet,
IN EFI_EVENT Event OPTIONAL
)
{
EFI_STATUS Status;
MPT_SCSI_DEV *Dev;
UINT32 Reply;
Dev = MPT_SCSI_FROM_PASS_THRU (This);
//
// We only use first byte of target identifer
//
Status = MptScsiPopulateRequest (Dev, *Target, Lun, Packet);
if (EFI_ERROR (Status)) {
//
// MptScsiPopulateRequest modified packet according to the error
//
return Status;
}
Status = MptScsiSendRequest (Dev, Packet);
if (EFI_ERROR (Status)) {
return ReportHostAdapterError (Packet);
}
Status = MptScsiGetReply (Dev, &Reply);
if (EFI_ERROR (Status)) {
return ReportHostAdapterError (Packet);
}
return MptScsiHandleReply (Dev, Reply, Packet);
}
STATIC
BOOLEAN
IsTargetInitialized (
IN UINT8 *Target
)
{
UINTN Idx;
for (Idx = 0; Idx < TARGET_MAX_BYTES; ++Idx) {
if (Target[Idx] != 0xFF) {
return TRUE;
}
}
return FALSE;
}
STATIC
EFI_STATUS
EFIAPI
MptScsiGetNextTargetLun (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
IN OUT UINT8 **Target,
IN OUT UINT64 *Lun
)
{
MPT_SCSI_DEV *Dev;
Dev = MPT_SCSI_FROM_PASS_THRU (This);
//
// Currently support only LUN 0, so hardcode it
//
if (!IsTargetInitialized (*Target)) {
ZeroMem (*Target, TARGET_MAX_BYTES);
*Lun = 0;
} else if ((**Target > Dev->MaxTarget) || (*Lun > 0)) {
return EFI_INVALID_PARAMETER;
} else if (**Target < Dev->MaxTarget) {
//
// This device interface support 256 targets only, so it's enough to
// increment the LSB of Target, as it will never overflow.
//
**Target += 1;
} else {
return EFI_NOT_FOUND;
}
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
EFIAPI
MptScsiGetNextTarget (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
IN OUT UINT8 **Target
)
{
MPT_SCSI_DEV *Dev;
Dev = MPT_SCSI_FROM_PASS_THRU (This);
if (!IsTargetInitialized (*Target)) {
ZeroMem (*Target, TARGET_MAX_BYTES);
} else if (**Target > Dev->MaxTarget) {
return EFI_INVALID_PARAMETER;
} else if (**Target < Dev->MaxTarget) {
//
// This device interface support 256 targets only, so it's enough to
// increment the LSB of Target, as it will never overflow.
//
**Target += 1;
} else {
return EFI_NOT_FOUND;
}
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
EFIAPI
MptScsiBuildDevicePath (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
IN UINT8 *Target,
IN UINT64 Lun,
IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath
)
{
MPT_SCSI_DEV *Dev;
SCSI_DEVICE_PATH *ScsiDevicePath;
if (DevicePath == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// This device support 256 targets only, so it's enough to dereference
// the LSB of Target.
//
Dev = MPT_SCSI_FROM_PASS_THRU (This);
if ((*Target > Dev->MaxTarget) || (Lun > 0)) {
return EFI_NOT_FOUND;
}
ScsiDevicePath = AllocateZeroPool (sizeof (*ScsiDevicePath));
if (ScsiDevicePath == NULL) {
return EFI_OUT_OF_RESOURCES;
}
ScsiDevicePath->Header.Type = MESSAGING_DEVICE_PATH;
ScsiDevicePath->Header.SubType = MSG_SCSI_DP;
ScsiDevicePath->Header.Length[0] = (UINT8)sizeof (*ScsiDevicePath);
ScsiDevicePath->Header.Length[1] = (UINT8)(sizeof (*ScsiDevicePath) >> 8);
ScsiDevicePath->Pun = *Target;
ScsiDevicePath->Lun = (UINT16)Lun;
*DevicePath = &ScsiDevicePath->Header;
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
EFIAPI
MptScsiGetTargetLun (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,
OUT UINT8 **Target,
OUT UINT64 *Lun
)
{
MPT_SCSI_DEV *Dev;
SCSI_DEVICE_PATH *ScsiDevicePath;
if ((DevicePath == NULL) ||
(Target == NULL) || (*Target == NULL) || (Lun == NULL))
{
return EFI_INVALID_PARAMETER;
}
if ((DevicePath->Type != MESSAGING_DEVICE_PATH) ||
(DevicePath->SubType != MSG_SCSI_DP))
{
return EFI_UNSUPPORTED;
}
Dev = MPT_SCSI_FROM_PASS_THRU (This);
ScsiDevicePath = (SCSI_DEVICE_PATH *)DevicePath;
if ((ScsiDevicePath->Pun > Dev->MaxTarget) ||
(ScsiDevicePath->Lun > 0))
{
return EFI_NOT_FOUND;
}
ZeroMem (*Target, TARGET_MAX_BYTES);
//
// This device support 256 targets only, so it's enough to set the LSB
// of Target.
//
**Target = (UINT8)ScsiDevicePath->Pun;
*Lun = ScsiDevicePath->Lun;
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
EFIAPI
MptScsiResetChannel (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This
)
{
return EFI_UNSUPPORTED;
}
STATIC
VOID
EFIAPI
MptScsiExitBoot (
IN EFI_EVENT Event,
IN VOID *Context
)
{
MPT_SCSI_DEV *Dev;
Dev = Context;
DEBUG ((DEBUG_VERBOSE, "%a: Context=0x%p\n", __FUNCTION__, Context));
MptScsiReset (Dev);
}
STATIC
EFI_STATUS
EFIAPI
MptScsiResetTargetLun (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
IN UINT8 *Target,
IN UINT64 Lun
)
{
return EFI_UNSUPPORTED;
}
//
// Driver Binding
//
STATIC
EFI_STATUS
EFIAPI
MptScsiControllerSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)
{
EFI_STATUS Status;
EFI_PCI_IO_PROTOCOL *PciIo;
PCI_TYPE00 Pci;
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiPciIoProtocolGuid,
(VOID **)&PciIo,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint32,
0,
sizeof (Pci) / sizeof (UINT32),
&Pci
);
if (EFI_ERROR (Status)) {
goto Done;
}
if ((Pci.Hdr.VendorId == LSI_LOGIC_PCI_VENDOR_ID) &&
((Pci.Hdr.DeviceId == LSI_53C1030_PCI_DEVICE_ID) ||
(Pci.Hdr.DeviceId == LSI_SAS1068_PCI_DEVICE_ID) ||
(Pci.Hdr.DeviceId == LSI_SAS1068E_PCI_DEVICE_ID)))
{
Status = EFI_SUCCESS;
} else {
Status = EFI_UNSUPPORTED;
}
Done:
gBS->CloseProtocol (
ControllerHandle,
&gEfiPciIoProtocolGuid,
This->DriverBindingHandle,
ControllerHandle
);
return Status;
}
STATIC
EFI_STATUS
EFIAPI
MptScsiControllerStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)
{
EFI_STATUS Status;
MPT_SCSI_DEV *Dev;
UINTN Pages;
UINTN BytesMapped;
Dev = AllocateZeroPool (sizeof (*Dev));
if (Dev == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Dev->Signature = MPT_SCSI_DEV_SIGNATURE;
Dev->MaxTarget = PcdGet8 (PcdMptScsiMaxTargetLimit);
Dev->StallPerPollUsec = PcdGet32 (PcdMptScsiStallPerPollUsec);
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiPciIoProtocolGuid,
(VOID **)&Dev->PciIo,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
goto FreePool;
}
Status = Dev->PciIo->Attributes (
Dev->PciIo,
EfiPciIoAttributeOperationGet,
0,
&Dev->OriginalPciAttributes
);
if (EFI_ERROR (Status)) {
goto CloseProtocol;
}
//
// Enable I/O Space & Bus-Mastering
//
Status = Dev->PciIo->Attributes (
Dev->PciIo,
EfiPciIoAttributeOperationEnable,
(EFI_PCI_IO_ATTRIBUTE_IO |
EFI_PCI_IO_ATTRIBUTE_BUS_MASTER),
NULL
);
if (EFI_ERROR (Status)) {
goto CloseProtocol;
}
//
// Signal device supports 64-bit DMA addresses
//
Status = Dev->PciIo->Attributes (
Dev->PciIo,
EfiPciIoAttributeOperationEnable,
EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE,
NULL
);
if (EFI_ERROR (Status)) {
//
// Warn user that device will only be using 32-bit DMA addresses.
//
// Note that this does not prevent the device/driver from working
// and therefore we only warn and continue as usual.
//
DEBUG ((
DEBUG_WARN,
"%a: failed to enable 64-bit DMA addresses\n",
__FUNCTION__
));
}
//
// Create buffers for data transfer
//
Pages = EFI_SIZE_TO_PAGES (sizeof (*Dev->Dma));
Status = Dev->PciIo->AllocateBuffer (
Dev->PciIo,
AllocateAnyPages,
EfiBootServicesData,
Pages,
(VOID **)&Dev->Dma,
EFI_PCI_ATTRIBUTE_MEMORY_CACHED
);
if (EFI_ERROR (Status)) {
goto RestoreAttributes;
}
BytesMapped = EFI_PAGES_TO_SIZE (Pages);
Status = Dev->PciIo->Map (
Dev->PciIo,
EfiPciIoOperationBusMasterCommonBuffer,
Dev->Dma,
&BytesMapped,
&Dev->DmaPhysical,
&Dev->DmaMapping
);
if (EFI_ERROR (Status)) {
goto FreeBuffer;
}
if (BytesMapped != EFI_PAGES_TO_SIZE (Pages)) {
Status = EFI_OUT_OF_RESOURCES;
goto Unmap;
}
Status = MptScsiInit (Dev);
if (EFI_ERROR (Status)) {
goto Unmap;
}
Status = gBS->CreateEvent (
EVT_SIGNAL_EXIT_BOOT_SERVICES,
TPL_CALLBACK,
&MptScsiExitBoot,
Dev,
&Dev->ExitBoot
);
if (EFI_ERROR (Status)) {
goto UninitDev;
}
//
// Host adapter channel, doesn't exist
//
Dev->PassThruMode.AdapterId = MAX_UINT32;
Dev->PassThruMode.Attributes =
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL |
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL;
Dev->PassThru.Mode = &Dev->PassThruMode;
Dev->PassThru.PassThru = &MptScsiPassThru;
Dev->PassThru.GetNextTargetLun = &MptScsiGetNextTargetLun;
Dev->PassThru.BuildDevicePath = &MptScsiBuildDevicePath;
Dev->PassThru.GetTargetLun = &MptScsiGetTargetLun;
Dev->PassThru.ResetChannel = &MptScsiResetChannel;
Dev->PassThru.ResetTargetLun = &MptScsiResetTargetLun;
Dev->PassThru.GetNextTarget = &MptScsiGetNextTarget;
Status = gBS->InstallProtocolInterface (
&ControllerHandle,
&gEfiExtScsiPassThruProtocolGuid,
EFI_NATIVE_INTERFACE,
&Dev->PassThru
);
if (EFI_ERROR (Status)) {
goto CloseExitBoot;
}
return EFI_SUCCESS;
CloseExitBoot:
gBS->CloseEvent (Dev->ExitBoot);
UninitDev:
MptScsiReset (Dev);
Unmap:
Dev->PciIo->Unmap (
Dev->PciIo,
Dev->DmaMapping
);
FreeBuffer:
Dev->PciIo->FreeBuffer (
Dev->PciIo,
Pages,
Dev->Dma
);
RestoreAttributes:
Dev->PciIo->Attributes (
Dev->PciIo,
EfiPciIoAttributeOperationSet,
Dev->OriginalPciAttributes,
NULL
);
CloseProtocol:
gBS->CloseProtocol (
ControllerHandle,
&gEfiPciIoProtocolGuid,
This->DriverBindingHandle,
ControllerHandle
);
FreePool:
FreePool (Dev);
return Status;
}
STATIC
EFI_STATUS
EFIAPI
MptScsiControllerStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer
)
{
EFI_STATUS Status;
EFI_EXT_SCSI_PASS_THRU_PROTOCOL *PassThru;
MPT_SCSI_DEV *Dev;
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiExtScsiPassThruProtocolGuid,
(VOID **)&PassThru,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL // Lookup only
);
if (EFI_ERROR (Status)) {
return Status;
}
Dev = MPT_SCSI_FROM_PASS_THRU (PassThru);
Status = gBS->UninstallProtocolInterface (
ControllerHandle,
&gEfiExtScsiPassThruProtocolGuid,
&Dev->PassThru
);
if (EFI_ERROR (Status)) {
return Status;
}
gBS->CloseEvent (Dev->ExitBoot);
MptScsiReset (Dev);
Dev->PciIo->Unmap (
Dev->PciIo,
Dev->DmaMapping
);
Dev->PciIo->FreeBuffer (
Dev->PciIo,
EFI_SIZE_TO_PAGES (sizeof (*Dev->Dma)),
Dev->Dma
);
Dev->PciIo->Attributes (
Dev->PciIo,
EfiPciIoAttributeOperationSet,
Dev->OriginalPciAttributes,
NULL
);
gBS->CloseProtocol (
ControllerHandle,
&gEfiPciIoProtocolGuid,
This->DriverBindingHandle,
ControllerHandle
);
FreePool (Dev);
return Status;
}
STATIC
EFI_DRIVER_BINDING_PROTOCOL mMptScsiDriverBinding = {
&MptScsiControllerSupported,
&MptScsiControllerStart,
&MptScsiControllerStop,
MPT_SCSI_BINDING_VERSION,
NULL, // ImageHandle, filled by EfiLibInstallDriverBindingComponentName2
NULL, // DriverBindingHandle, filled as well
};
//
// Component Name
//
STATIC
EFI_UNICODE_STRING_TABLE mDriverNameTable[] = {
{ "eng;en", L"LSI Fusion MPT SCSI Driver" },
{ NULL, NULL }
};
STATIC
EFI_COMPONENT_NAME_PROTOCOL mComponentName;
EFI_STATUS
EFIAPI
MptScsiGetDriverName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN CHAR8 *Language,
OUT CHAR16 **DriverName
)
{
return LookupUnicodeString2 (
Language,
This->SupportedLanguages,
mDriverNameTable,
DriverName,
(BOOLEAN)(This == &mComponentName) // Iso639Language
);
}
EFI_STATUS
EFIAPI
MptScsiGetDeviceName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE DeviceHandle,
IN EFI_HANDLE ChildHandle,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
)
{
return EFI_UNSUPPORTED;
}
STATIC
EFI_COMPONENT_NAME_PROTOCOL mComponentName = {
&MptScsiGetDriverName,
&MptScsiGetDeviceName,
"eng" // SupportedLanguages, ISO 639-2 language codes
};
STATIC
EFI_COMPONENT_NAME2_PROTOCOL mComponentName2 = {
(EFI_COMPONENT_NAME2_GET_DRIVER_NAME)&MptScsiGetDriverName,
(EFI_COMPONENT_NAME2_GET_CONTROLLER_NAME)&MptScsiGetDeviceName,
"en" // SupportedLanguages, RFC 4646 language codes
};
//
// Entry Point
//
EFI_STATUS
EFIAPI
MptScsiEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
return EfiLibInstallDriverBindingComponentName2 (
ImageHandle,
SystemTable,
&mMptScsiDriverBinding,
ImageHandle, // The handle to install onto
&mComponentName,
&mComponentName2
);
}