2009-05-27 23:10:18 +02:00
|
|
|
/** @file
|
|
|
|
ACPI Timer implements one instance of Timer Library.
|
|
|
|
|
2011-07-27 17:13:54 +02:00
|
|
|
Copyright (c) 2008 - 2011, Intel Corporation. All rights reserved.<BR>
|
|
|
|
Copyright (c) 2011, Andrei Warkentin <andreiw@motorola.com>
|
|
|
|
|
2010-04-28 14:43:04 +02:00
|
|
|
This program and the accompanying materials are
|
2009-05-27 23:10:18 +02:00
|
|
|
licensed and made available under the terms and conditions of the BSD License
|
|
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
|
|
|
|
**/
|
|
|
|
|
|
|
|
#include <Base.h>
|
|
|
|
#include <Library/TimerLib.h>
|
|
|
|
#include <Library/BaseLib.h>
|
|
|
|
#include <Library/IoLib.h>
|
|
|
|
#include <Library/PciLib.h>
|
2011-07-27 17:13:54 +02:00
|
|
|
#include <Library/DebugLib.h>
|
|
|
|
|
|
|
|
//
|
|
|
|
// PIIX4 Power Management Base Address
|
|
|
|
//
|
|
|
|
UINT32 mPmba = 0x401;
|
2009-05-27 23:10:18 +02:00
|
|
|
|
2011-07-27 17:13:54 +02:00
|
|
|
#define PCI_BAR_IO 0x1
|
2009-05-27 23:10:18 +02:00
|
|
|
#define ACPI_TIMER_FREQUENCY 3579545
|
|
|
|
#define ACPI_TIMER_COUNT_SIZE 0x01000000
|
2011-07-27 17:13:54 +02:00
|
|
|
#define ACPI_TIMER_OFFSET 0x8
|
2009-05-27 23:10:18 +02:00
|
|
|
|
|
|
|
/**
|
|
|
|
The constructor function enables ACPI IO space.
|
|
|
|
|
|
|
|
If ACPI I/O space not enabled, this function will enable it.
|
|
|
|
It will always return RETURN_SUCCESS.
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS The constructor always returns RETURN_SUCCESS.
|
|
|
|
|
|
|
|
**/
|
|
|
|
RETURN_STATUS
|
|
|
|
EFIAPI
|
|
|
|
AcpiTimerLibConstructor (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT8 Device;
|
|
|
|
|
|
|
|
Device = 1;
|
|
|
|
// Device = 7;
|
|
|
|
|
2011-07-27 17:13:54 +02:00
|
|
|
if (PciRead8 (PCI_LIB_ADDRESS (0,Device,3,0x80)) & 1) {
|
|
|
|
mPmba = PciRead32 (PCI_LIB_ADDRESS (0,Device,3,0x40));
|
|
|
|
ASSERT (mPmba & PCI_BAR_IO);
|
|
|
|
mPmba &= ~PCI_BAR_IO;
|
|
|
|
} else {
|
|
|
|
PciAndThenOr32 (PCI_LIB_ADDRESS (0,Device,3,0x40),
|
|
|
|
(UINT32) ~0xfc0, mPmba);
|
|
|
|
PciOr8 (PCI_LIB_ADDRESS (0,Device,3,0x04), 0x01);
|
|
|
|
}
|
|
|
|
|
2009-05-27 23:10:18 +02:00
|
|
|
//
|
|
|
|
// ACPI Timer enable is in Bus 0, Device ?, Function 3
|
|
|
|
//
|
2011-07-27 17:13:54 +02:00
|
|
|
PciOr8 (PCI_LIB_ADDRESS (0,Device,3,0x80), 0x01);
|
|
|
|
return RETURN_SUCCESS;
|
2009-05-27 23:10:18 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Internal function to read the current tick counter of ACPI.
|
|
|
|
|
|
|
|
Internal function to read the current tick counter of ACPI.
|
|
|
|
|
|
|
|
@return The tick counter read.
|
|
|
|
|
|
|
|
**/
|
|
|
|
STATIC
|
|
|
|
UINT32
|
|
|
|
InternalAcpiGetTimerTick (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
2011-07-27 17:13:54 +02:00
|
|
|
return IoRead32 (mPmba + ACPI_TIMER_OFFSET);
|
2009-05-27 23:10:18 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Stalls the CPU for at least the given number of ticks.
|
|
|
|
|
|
|
|
Stalls the CPU for at least the given number of ticks. It's invoked by
|
|
|
|
MicroSecondDelay() and NanoSecondDelay().
|
|
|
|
|
|
|
|
@param Delay A period of time to delay in ticks.
|
|
|
|
|
|
|
|
**/
|
|
|
|
STATIC
|
|
|
|
VOID
|
|
|
|
InternalAcpiDelay (
|
|
|
|
IN UINT32 Delay
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT32 Ticks;
|
|
|
|
UINT32 Times;
|
|
|
|
|
|
|
|
Times = Delay >> 22;
|
|
|
|
Delay &= BIT22 - 1;
|
|
|
|
do {
|
|
|
|
//
|
|
|
|
// The target timer count is calculated here
|
|
|
|
//
|
|
|
|
Ticks = InternalAcpiGetTimerTick () + Delay;
|
|
|
|
Delay = BIT22;
|
|
|
|
//
|
|
|
|
// Wait until time out
|
|
|
|
// Delay >= 2^23 could not be handled by this function
|
|
|
|
// Timer wrap-arounds are handled correctly by this function
|
|
|
|
//
|
|
|
|
while (((Ticks - InternalAcpiGetTimerTick ()) & BIT23) == 0) {
|
|
|
|
CpuPause ();
|
|
|
|
}
|
|
|
|
} while (Times-- > 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Stalls the CPU for at least the given number of microseconds.
|
|
|
|
|
|
|
|
Stalls the CPU for the number of microseconds specified by MicroSeconds.
|
|
|
|
|
|
|
|
@param MicroSeconds The minimum number of microseconds to delay.
|
|
|
|
|
|
|
|
@return MicroSeconds
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINTN
|
|
|
|
EFIAPI
|
|
|
|
MicroSecondDelay (
|
|
|
|
IN UINTN MicroSeconds
|
|
|
|
)
|
|
|
|
{
|
|
|
|
InternalAcpiDelay (
|
|
|
|
(UINT32)DivU64x32 (
|
|
|
|
MultU64x32 (
|
|
|
|
MicroSeconds,
|
|
|
|
ACPI_TIMER_FREQUENCY
|
|
|
|
),
|
|
|
|
1000000u
|
|
|
|
)
|
|
|
|
);
|
|
|
|
return MicroSeconds;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Stalls the CPU for at least the given number of nanoseconds.
|
|
|
|
|
|
|
|
Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
|
|
|
|
|
|
|
|
@param NanoSeconds The minimum number of nanoseconds to delay.
|
|
|
|
|
|
|
|
@return NanoSeconds
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINTN
|
|
|
|
EFIAPI
|
|
|
|
NanoSecondDelay (
|
|
|
|
IN UINTN NanoSeconds
|
|
|
|
)
|
|
|
|
{
|
|
|
|
InternalAcpiDelay (
|
|
|
|
(UINT32)DivU64x32 (
|
|
|
|
MultU64x32 (
|
|
|
|
NanoSeconds,
|
|
|
|
ACPI_TIMER_FREQUENCY
|
|
|
|
),
|
|
|
|
1000000000u
|
|
|
|
)
|
|
|
|
);
|
|
|
|
return NanoSeconds;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Retrieves the current value of a 64-bit free running performance counter.
|
|
|
|
|
|
|
|
Retrieves the current value of a 64-bit free running performance counter. The
|
|
|
|
counter can either count up by 1 or count down by 1. If the physical
|
|
|
|
performance counter counts by a larger increment, then the counter values
|
|
|
|
must be translated. The properties of the counter can be retrieved from
|
|
|
|
GetPerformanceCounterProperties().
|
|
|
|
|
|
|
|
@return The current value of the free running performance counter.
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINT64
|
|
|
|
EFIAPI
|
|
|
|
GetPerformanceCounter (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
|
|
|
return (UINT64)InternalAcpiGetTimerTick ();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Retrieves the 64-bit frequency in Hz and the range of performance counter
|
|
|
|
values.
|
|
|
|
|
|
|
|
If StartValue is not NULL, then the value that the performance counter starts
|
|
|
|
with immediately after is it rolls over is returned in StartValue. If
|
|
|
|
EndValue is not NULL, then the value that the performance counter end with
|
|
|
|
immediately before it rolls over is returned in EndValue. The 64-bit
|
|
|
|
frequency of the performance counter in Hz is always returned. If StartValue
|
|
|
|
is less than EndValue, then the performance counter counts up. If StartValue
|
|
|
|
is greater than EndValue, then the performance counter counts down. For
|
|
|
|
example, a 64-bit free running counter that counts up would have a StartValue
|
|
|
|
of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter
|
|
|
|
that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.
|
|
|
|
|
|
|
|
@param StartValue The value the performance counter starts with when it
|
|
|
|
rolls over.
|
|
|
|
@param EndValue The value that the performance counter ends with before
|
|
|
|
it rolls over.
|
|
|
|
|
|
|
|
@return The frequency in Hz.
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINT64
|
|
|
|
EFIAPI
|
|
|
|
GetPerformanceCounterProperties (
|
|
|
|
OUT UINT64 *StartValue, OPTIONAL
|
|
|
|
OUT UINT64 *EndValue OPTIONAL
|
|
|
|
)
|
|
|
|
{
|
|
|
|
if (StartValue != NULL) {
|
|
|
|
*StartValue = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (EndValue != NULL) {
|
|
|
|
*EndValue = ACPI_TIMER_COUNT_SIZE - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ACPI_TIMER_FREQUENCY;
|
|
|
|
}
|