audk/UefiCpuPkg/Library/CpuExceptionHandlerLib/DxeException.c

294 lines
12 KiB
C
Raw Normal View History

/** @file
CPU exception handler library implemenation for DXE modules.
Copyright (c) 2013 - 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <PiDxe.h>
#include "CpuExceptionCommon.h"
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
CONST UINTN mDoFarReturnFlag = 0;
RESERVED_VECTORS_DATA mReservedVectorsData[CPU_EXCEPTION_NUM];
EFI_CPU_INTERRUPT_HANDLER mExternalInterruptHandlerTable[CPU_EXCEPTION_NUM];
UINTN mEnabledInterruptNum = 0;
EXCEPTION_HANDLER_DATA mExceptionHandlerData;
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
UINT8 mNewStack[CPU_STACK_SWITCH_EXCEPTION_NUMBER *
CPU_KNOWN_GOOD_STACK_SIZE];
UINT8 mNewGdt[CPU_TSS_GDT_SIZE];
/**
Common exception handler.
@param ExceptionType Exception type.
@param SystemContext Pointer to EFI_SYSTEM_CONTEXT.
**/
VOID
EFIAPI
CommonExceptionHandler (
IN EFI_EXCEPTION_TYPE ExceptionType,
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
CommonExceptionHandlerWorker (ExceptionType, SystemContext, &mExceptionHandlerData);
}
/**
Initializes all CPU exceptions entries and provides the default exception handlers.
Caller should try to get an array of interrupt and/or exception vectors that are in use and need to
persist by EFI_VECTOR_HANDOFF_INFO defined in PI 1.3 specification.
If caller cannot get reserved vector list or it does not exists, set VectorInfo to NULL.
If VectorInfo is not NULL, the exception vectors will be initialized per vector attribute accordingly.
@param[in] VectorInfo Pointer to reserved vector list.
@retval EFI_SUCCESS CPU Exception Entries have been successfully initialized
with default exception handlers.
@retval EFI_INVALID_PARAMETER VectorInfo includes the invalid content if VectorInfo is not NULL.
@retval EFI_UNSUPPORTED This function is not supported.
**/
EFI_STATUS
EFIAPI
InitializeCpuExceptionHandlers (
IN EFI_VECTOR_HANDOFF_INFO *VectorInfo OPTIONAL
)
{
mExceptionHandlerData.ReservedVectors = mReservedVectorsData;
mExceptionHandlerData.ExternalInterruptHandler = mExternalInterruptHandlerTable;
InitializeSpinLock (&mExceptionHandlerData.DisplayMessageSpinLock);
return InitializeCpuExceptionHandlersWorker (VectorInfo, &mExceptionHandlerData);
}
/**
Initializes all CPU interrupt/exceptions entries and provides the default interrupt/exception handlers.
Caller should try to get an array of interrupt and/or exception vectors that are in use and need to
persist by EFI_VECTOR_HANDOFF_INFO defined in PI 1.3 specification.
If caller cannot get reserved vector list or it does not exists, set VectorInfo to NULL.
If VectorInfo is not NULL, the exception vectors will be initialized per vector attribute accordingly.
@param[in] VectorInfo Pointer to reserved vector list.
@retval EFI_SUCCESS All CPU interrupt/exception entries have been successfully initialized
with default interrupt/exception handlers.
@retval EFI_INVALID_PARAMETER VectorInfo includes the invalid content if VectorInfo is not NULL.
@retval EFI_UNSUPPORTED This function is not supported.
**/
EFI_STATUS
EFIAPI
InitializeCpuInterruptHandlers (
IN EFI_VECTOR_HANDOFF_INFO *VectorInfo OPTIONAL
)
{
EFI_STATUS Status;
IA32_IDT_GATE_DESCRIPTOR *IdtTable;
IA32_DESCRIPTOR IdtDescriptor;
UINTN IdtEntryCount;
EXCEPTION_HANDLER_TEMPLATE_MAP TemplateMap;
UINTN Index;
UINTN InterruptEntry;
UINT8 *InterruptEntryCode;
RESERVED_VECTORS_DATA *ReservedVectors;
EFI_CPU_INTERRUPT_HANDLER *ExternalInterruptHandler;
Status = gBS->AllocatePool (
EfiBootServicesCode,
sizeof (RESERVED_VECTORS_DATA) * CPU_INTERRUPT_NUM,
(VOID **)&ReservedVectors
);
ASSERT (!EFI_ERROR (Status) && ReservedVectors != NULL);
SetMem ((VOID *) ReservedVectors, sizeof (RESERVED_VECTORS_DATA) * CPU_INTERRUPT_NUM, 0xff);
if (VectorInfo != NULL) {
Status = ReadAndVerifyVectorInfo (VectorInfo, ReservedVectors, CPU_INTERRUPT_NUM);
if (EFI_ERROR (Status)) {
FreePool (ReservedVectors);
return EFI_INVALID_PARAMETER;
}
}
ExternalInterruptHandler = AllocateZeroPool (sizeof (EFI_CPU_INTERRUPT_HANDLER) * CPU_INTERRUPT_NUM);
ASSERT (ExternalInterruptHandler != NULL);
//
// Read IDT descriptor and calculate IDT size
//
AsmReadIdtr (&IdtDescriptor);
IdtEntryCount = (IdtDescriptor.Limit + 1) / sizeof (IA32_IDT_GATE_DESCRIPTOR);
if (IdtEntryCount > CPU_INTERRUPT_NUM) {
IdtEntryCount = CPU_INTERRUPT_NUM;
}
//
// Create Interrupt Descriptor Table and Copy the old IDT table in
//
IdtTable = AllocateZeroPool (sizeof (IA32_IDT_GATE_DESCRIPTOR) * CPU_INTERRUPT_NUM);
ASSERT (IdtTable != NULL);
CopyMem (IdtTable, (VOID *)IdtDescriptor.Base, sizeof (IA32_IDT_GATE_DESCRIPTOR) * IdtEntryCount);
AsmGetTemplateAddressMap (&TemplateMap);
ASSERT (TemplateMap.ExceptionStubHeaderSize <= HOOKAFTER_STUB_SIZE);
Status = gBS->AllocatePool (
EfiBootServicesCode,
TemplateMap.ExceptionStubHeaderSize * CPU_INTERRUPT_NUM,
(VOID **)&InterruptEntryCode
);
ASSERT (!EFI_ERROR (Status) && InterruptEntryCode != NULL);
InterruptEntry = (UINTN) InterruptEntryCode;
for (Index = 0; Index < CPU_INTERRUPT_NUM; Index ++) {
CopyMem (
(VOID *) InterruptEntry,
(VOID *) TemplateMap.ExceptionStart,
TemplateMap.ExceptionStubHeaderSize
);
AsmVectorNumFixup ((VOID *) InterruptEntry, (UINT8) Index, (VOID *) TemplateMap.ExceptionStart);
InterruptEntry += TemplateMap.ExceptionStubHeaderSize;
}
TemplateMap.ExceptionStart = (UINTN) InterruptEntryCode;
mExceptionHandlerData.IdtEntryCount = CPU_INTERRUPT_NUM;
mExceptionHandlerData.ReservedVectors = ReservedVectors;
mExceptionHandlerData.ExternalInterruptHandler = ExternalInterruptHandler;
InitializeSpinLock (&mExceptionHandlerData.DisplayMessageSpinLock);
UpdateIdtTable (IdtTable, &TemplateMap, &mExceptionHandlerData);
//
// Load Interrupt Descriptor Table
//
IdtDescriptor.Base = (UINTN) IdtTable;
IdtDescriptor.Limit = (UINT16) (sizeof (IA32_IDT_GATE_DESCRIPTOR) * CPU_INTERRUPT_NUM - 1);
AsmWriteIdtr ((IA32_DESCRIPTOR *) &IdtDescriptor);
return EFI_SUCCESS;
}
/**
Registers a function to be called from the processor interrupt handler.
This function registers and enables the handler specified by InterruptHandler for a processor
interrupt or exception type specified by InterruptType. If InterruptHandler is NULL, then the
handler for the processor interrupt or exception type specified by InterruptType is uninstalled.
The installed handler is called once for each processor interrupt or exception.
NOTE: This function should be invoked after InitializeCpuExceptionHandlers() or
InitializeCpuInterruptHandlers() invoked, otherwise EFI_UNSUPPORTED returned.
@param[in] InterruptType Defines which interrupt or exception to hook.
@param[in] InterruptHandler A pointer to a function of type EFI_CPU_INTERRUPT_HANDLER that is called
when a processor interrupt occurs. If this parameter is NULL, then the handler
will be uninstalled.
@retval EFI_SUCCESS The handler for the processor interrupt was successfully installed or uninstalled.
@retval EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler for InterruptType was
previously installed.
@retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for InterruptType was not
previously installed.
@retval EFI_UNSUPPORTED The interrupt specified by InterruptType is not supported,
or this function is not supported.
**/
EFI_STATUS
EFIAPI
RegisterCpuInterruptHandler (
IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
)
{
return RegisterCpuInterruptHandlerWorker (InterruptType, InterruptHandler, &mExceptionHandlerData);
}
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
/**
Initializes CPU exceptions entries and setup stack switch for given exceptions.
This method will call InitializeCpuExceptionHandlers() to setup default
exception handlers unless indicated not to do it explicitly.
If InitData is passed with NULL, this method will use the resource reserved
by global variables to initialize it; Otherwise it will use data in InitData
to setup stack switch. This is for the different use cases in DxeCore and
Cpu MP exception initialization.
@param[in] VectorInfo Pointer to reserved vector list.
@param[in] InitData Pointer to data required to setup stack switch for
given exceptions.
@retval EFI_SUCCESS The exceptions have been successfully
initialized.
@retval EFI_INVALID_PARAMETER VectorInfo or InitData contains invalid
content.
**/
EFI_STATUS
EFIAPI
InitializeCpuExceptionHandlersEx (
IN EFI_VECTOR_HANDOFF_INFO *VectorInfo OPTIONAL,
IN CPU_EXCEPTION_INIT_DATA *InitData OPTIONAL
)
{
EFI_STATUS Status;
CPU_EXCEPTION_INIT_DATA EssData;
IA32_DESCRIPTOR Idtr;
IA32_DESCRIPTOR Gdtr;
//
// To avoid repeat initialization of default handlers, the caller should pass
// an extended init data with InitDefaultHandlers set to FALSE. There's no
// need to call this method to just initialize default handlers. Call non-ex
// version instead; or this method must be implemented as a simple wrapper of
// non-ex version of it, if this version has to be called.
//
if (InitData == NULL || InitData->X64.InitDefaultHandlers) {
Status = InitializeCpuExceptionHandlers (VectorInfo);
} else {
Status = EFI_SUCCESS;
}
if (!EFI_ERROR (Status)) {
//
// Initializing stack switch is only necessary for Stack Guard functionality.
//
if (PcdGetBool (PcdCpuStackGuard)) {
if (InitData == NULL) {
SetMem (mNewGdt, sizeof (mNewGdt), 0);
AsmReadIdtr (&Idtr);
AsmReadGdtr (&Gdtr);
EssData.X64.Revision = CPU_EXCEPTION_INIT_DATA_REV;
EssData.X64.KnownGoodStackTop = (UINTN)mNewStack + sizeof (mNewStack);
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
EssData.X64.KnownGoodStackSize = CPU_KNOWN_GOOD_STACK_SIZE;
EssData.X64.StackSwitchExceptions = CPU_STACK_SWITCH_EXCEPTION_LIST;
EssData.X64.StackSwitchExceptionNumber = CPU_STACK_SWITCH_EXCEPTION_NUMBER;
EssData.X64.IdtTable = (VOID *)Idtr.Base;
EssData.X64.IdtTableSize = Idtr.Limit + 1;
EssData.X64.GdtTable = mNewGdt;
EssData.X64.GdtTableSize = sizeof (mNewGdt);
EssData.X64.ExceptionTssDesc = mNewGdt + Gdtr.Limit + 1;
EssData.X64.ExceptionTssDescSize = CPU_TSS_DESC_SIZE;
EssData.X64.ExceptionTss = mNewGdt + Gdtr.Limit + 1 + CPU_TSS_DESC_SIZE;
EssData.X64.ExceptionTssSize = CPU_TSS_SIZE;
InitData = &EssData;
}
Status = ArchSetupExcpetionStack (InitData);
}
}
return Status;
}