2011-06-22 01:41:31 +02:00
|
|
|
/** @file
|
|
|
|
A non-functional instance of the Timer Library.
|
|
|
|
|
2019-06-13 00:59:08 +02:00
|
|
|
Copyright (c) 2007 - 2019, Intel Corporation. All rights reserved.<BR>
|
2019-04-04 01:03:44 +02:00
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
2011-06-22 01:41:31 +02:00
|
|
|
|
|
|
|
**/
|
|
|
|
|
|
|
|
#include <PiPei.h>
|
2019-06-13 00:59:08 +02:00
|
|
|
#include <Library/BaseLib.h>
|
2011-06-22 01:41:31 +02:00
|
|
|
#include <Library/TimerLib.h>
|
|
|
|
#include <Library/DebugLib.h>
|
|
|
|
#include <Library/EmuThunkLib.h>
|
|
|
|
#include <Library/UefiBootServicesTableLib.h>
|
|
|
|
#include <Library/UefiLib.h>
|
|
|
|
|
|
|
|
#include <Protocol/Timer.h>
|
|
|
|
|
|
|
|
/**
|
|
|
|
Stalls the CPU for at least the given number of microseconds.
|
|
|
|
|
|
|
|
Stalls the CPU for the number of microseconds specified by MicroSeconds.
|
|
|
|
|
|
|
|
@param MicroSeconds The minimum number of microseconds to delay.
|
|
|
|
|
|
|
|
@return The value of MicroSeconds inputted.
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINTN
|
|
|
|
EFIAPI
|
|
|
|
MicroSecondDelay (
|
2021-12-05 23:53:57 +01:00
|
|
|
IN UINTN MicroSeconds
|
2011-06-22 01:41:31 +02:00
|
|
|
)
|
|
|
|
{
|
|
|
|
return NanoSecondDelay (MicroSeconds * 1000);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Stalls the CPU for at least the given number of nanoseconds.
|
|
|
|
|
|
|
|
Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
|
|
|
|
|
|
|
|
@param NanoSeconds The minimum number of nanoseconds to delay.
|
|
|
|
|
|
|
|
@return The value of NanoSeconds inputted.
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINTN
|
|
|
|
EFIAPI
|
|
|
|
NanoSecondDelay (
|
2021-12-05 23:53:57 +01:00
|
|
|
IN UINTN NanoSeconds
|
2011-06-22 01:41:31 +02:00
|
|
|
)
|
|
|
|
{
|
|
|
|
gEmuThunk->Sleep (NanoSeconds);
|
|
|
|
return NanoSeconds;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Retrieves the current value of a 64-bit free running performance counter.
|
|
|
|
|
|
|
|
The counter can either count up by 1 or count down by 1. If the physical
|
|
|
|
performance counter counts by a larger increment, then the counter values
|
|
|
|
must be translated. The properties of the counter can be retrieved from
|
|
|
|
GetPerformanceCounterProperties().
|
|
|
|
|
|
|
|
@return The current value of the free running performance counter.
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINT64
|
|
|
|
EFIAPI
|
|
|
|
GetPerformanceCounter (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
|
|
|
return gEmuThunk->QueryPerformanceCounter ();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Retrieves the 64-bit frequency in Hz and the range of performance counter
|
|
|
|
values.
|
|
|
|
|
|
|
|
If StartValue is not NULL, then the value that the performance counter starts
|
|
|
|
with immediately after is it rolls over is returned in StartValue. If
|
|
|
|
EndValue is not NULL, then the value that the performance counter end with
|
|
|
|
immediately before it rolls over is returned in EndValue. The 64-bit
|
|
|
|
frequency of the performance counter in Hz is always returned. If StartValue
|
|
|
|
is less than EndValue, then the performance counter counts up. If StartValue
|
|
|
|
is greater than EndValue, then the performance counter counts down. For
|
|
|
|
example, a 64-bit free running counter that counts up would have a StartValue
|
|
|
|
of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter
|
|
|
|
that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.
|
|
|
|
|
|
|
|
@param StartValue The value the performance counter starts with when it
|
|
|
|
rolls over.
|
|
|
|
@param EndValue The value that the performance counter ends with before
|
|
|
|
it rolls over.
|
|
|
|
|
|
|
|
@return The frequency in Hz.
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINT64
|
|
|
|
EFIAPI
|
|
|
|
GetPerformanceCounterProperties (
|
2021-12-05 23:53:57 +01:00
|
|
|
OUT UINT64 *StartValue OPTIONAL,
|
|
|
|
OUT UINT64 *EndValue OPTIONAL
|
2011-06-22 01:41:31 +02:00
|
|
|
)
|
|
|
|
{
|
|
|
|
if (StartValue != NULL) {
|
|
|
|
*StartValue = 0ULL;
|
|
|
|
}
|
2021-12-05 23:53:57 +01:00
|
|
|
|
2011-06-22 01:41:31 +02:00
|
|
|
if (EndValue != NULL) {
|
|
|
|
*EndValue = (UINT64)-1LL;
|
|
|
|
}
|
2011-06-28 18:50:26 +02:00
|
|
|
|
2011-06-22 01:41:31 +02:00
|
|
|
return gEmuThunk->QueryPerformanceFrequency ();
|
|
|
|
}
|
|
|
|
|
2019-06-13 00:59:08 +02:00
|
|
|
/**
|
|
|
|
Converts elapsed ticks of performance counter to time in nanoseconds.
|
|
|
|
|
|
|
|
This function converts the elapsed ticks of running performance counter to
|
|
|
|
time value in unit of nanoseconds.
|
|
|
|
|
|
|
|
@param Ticks The number of elapsed ticks of running performance counter.
|
|
|
|
|
|
|
|
@return The elapsed time in nanoseconds.
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINT64
|
|
|
|
EFIAPI
|
|
|
|
GetTimeInNanoSecond (
|
|
|
|
IN UINT64 Ticks
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT64 Frequency;
|
|
|
|
UINT64 NanoSeconds;
|
|
|
|
UINT64 Remainder;
|
|
|
|
INTN Shift;
|
|
|
|
|
|
|
|
Frequency = GetPerformanceCounterProperties (NULL, NULL);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Ticks
|
|
|
|
// Time = --------- x 1,000,000,000
|
|
|
|
// Frequency
|
|
|
|
//
|
|
|
|
NanoSeconds = MultU64x32 (DivU64x64Remainder (Ticks, Frequency, &Remainder), 1000000000u);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Ensure (Remainder * 1,000,000,000) will not overflow 64-bit.
|
|
|
|
// Since 2^29 < 1,000,000,000 = 0x3B9ACA00 < 2^30, Remainder should < 2^(64-30) = 2^34,
|
|
|
|
// i.e. highest bit set in Remainder should <= 33.
|
|
|
|
//
|
2021-12-05 23:53:57 +01:00
|
|
|
Shift = MAX (0, HighBitSet64 (Remainder) - 33);
|
|
|
|
Remainder = RShiftU64 (Remainder, (UINTN)Shift);
|
|
|
|
Frequency = RShiftU64 (Frequency, (UINTN)Shift);
|
2019-06-13 00:59:08 +02:00
|
|
|
NanoSeconds += DivU64x64Remainder (MultU64x32 (Remainder, 1000000000u), Frequency, NULL);
|
2011-06-22 01:41:31 +02:00
|
|
|
|
2019-06-13 00:59:08 +02:00
|
|
|
return NanoSeconds;
|
|
|
|
}
|