2007-06-26 11:35:19 +02:00
|
|
|
/*++
|
|
|
|
|
|
|
|
Copyright (c) 2006 - 2007, Intel Corporation
|
|
|
|
All rights reserved. This program and the accompanying materials
|
|
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
|
|
|
|
Module Name:
|
|
|
|
|
|
|
|
BdsConnect.c
|
|
|
|
|
|
|
|
Abstract:
|
|
|
|
|
|
|
|
BDS Lib functions which relate with connect the device
|
|
|
|
|
|
|
|
--*/
|
|
|
|
|
2007-07-10 19:16:14 +02:00
|
|
|
#include <EdkGenericBdsLibInternal.h>
|
2007-06-26 11:35:19 +02:00
|
|
|
|
|
|
|
VOID
|
|
|
|
BdsLibConnectAll (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
/*++
|
|
|
|
|
|
|
|
Routine Description:
|
|
|
|
|
|
|
|
This function will connect all the system driver to controller
|
|
|
|
first, and then special connect the default console, this make
|
|
|
|
sure all the system controller avialbe and the platform default
|
|
|
|
console connected.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
|
|
|
|
None
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
None
|
|
|
|
|
|
|
|
--*/
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// Connect the platform console first
|
|
|
|
//
|
|
|
|
BdsLibConnectAllDefaultConsoles ();
|
|
|
|
|
|
|
|
//
|
|
|
|
// Generic way to connect all the drivers
|
|
|
|
//
|
|
|
|
BdsLibConnectAllDriversToAllControllers ();
|
|
|
|
|
|
|
|
//
|
|
|
|
// Here we have the assumption that we have already had
|
|
|
|
// platform default console
|
|
|
|
//
|
|
|
|
BdsLibConnectAllDefaultConsoles ();
|
|
|
|
}
|
|
|
|
|
|
|
|
VOID
|
|
|
|
BdsLibGenericConnectAll (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
/*++
|
|
|
|
|
|
|
|
Routine Description:
|
|
|
|
|
|
|
|
This function will connect all the system drivers to all controllers
|
|
|
|
first, and then connect all the console devices the system current
|
|
|
|
have. After this we should get all the device work and console avariable
|
|
|
|
if the system have console device.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
|
|
|
|
None
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
None
|
|
|
|
|
|
|
|
--*/
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// Most generic way to connect all the drivers
|
|
|
|
//
|
|
|
|
BdsLibConnectAllDriversToAllControllers ();
|
|
|
|
BdsLibConnectAllConsoles ();
|
|
|
|
}
|
|
|
|
|
|
|
|
EFI_STATUS
|
|
|
|
BdsLibConnectDevicePath (
|
|
|
|
IN EFI_DEVICE_PATH_PROTOCOL *DevicePathToConnect
|
|
|
|
)
|
|
|
|
/*++
|
|
|
|
|
|
|
|
Routine Description:
|
|
|
|
This function will create all handles associate with every device
|
|
|
|
path node. If the handle associate with one device path node can not
|
|
|
|
be created success, then still give one chance to do the dispatch,
|
|
|
|
which load the missing drivers if possible.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
|
|
|
|
DevicePathToConnect - The device path which will be connected, it can
|
|
|
|
be a multi-instance device path
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
EFI_SUCCESS - All handles associate with every device path
|
|
|
|
node have been created
|
|
|
|
|
|
|
|
EFI_OUT_OF_RESOURCES - There is no resource to create new handles
|
|
|
|
|
|
|
|
EFI_NOT_FOUND - Create the handle associate with one device
|
|
|
|
path node failed
|
|
|
|
|
|
|
|
--*/
|
|
|
|
{
|
|
|
|
EFI_STATUS Status;
|
|
|
|
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
|
|
|
|
EFI_DEVICE_PATH_PROTOCOL *CopyOfDevicePath;
|
|
|
|
EFI_DEVICE_PATH_PROTOCOL *Instance;
|
|
|
|
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;
|
|
|
|
EFI_DEVICE_PATH_PROTOCOL *Next;
|
|
|
|
EFI_HANDLE Handle;
|
|
|
|
EFI_HANDLE PreviousHandle;
|
|
|
|
UINTN Size;
|
|
|
|
|
|
|
|
if (DevicePathToConnect == NULL) {
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
DevicePath = DuplicateDevicePath (DevicePathToConnect);
|
|
|
|
CopyOfDevicePath = DevicePath;
|
|
|
|
if (DevicePath == NULL) {
|
|
|
|
return EFI_OUT_OF_RESOURCES;
|
|
|
|
}
|
|
|
|
|
|
|
|
do {
|
|
|
|
//
|
|
|
|
// The outer loop handles multi instance device paths.
|
|
|
|
// Only console variables contain multiple instance device paths.
|
|
|
|
//
|
|
|
|
// After this call DevicePath points to the next Instance
|
|
|
|
//
|
|
|
|
Instance = GetNextDevicePathInstance (&DevicePath, &Size);
|
|
|
|
Next = Instance;
|
|
|
|
while (!IsDevicePathEndType (Next)) {
|
|
|
|
Next = NextDevicePathNode (Next);
|
|
|
|
}
|
|
|
|
|
|
|
|
SetDevicePathEndNode (Next);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Start the real work of connect with RemainingDevicePath
|
|
|
|
//
|
|
|
|
PreviousHandle = NULL;
|
|
|
|
do {
|
|
|
|
//
|
|
|
|
// Find the handle that best matches the Device Path. If it is only a
|
|
|
|
// partial match the remaining part of the device path is returned in
|
|
|
|
// RemainingDevicePath.
|
|
|
|
//
|
|
|
|
RemainingDevicePath = Instance;
|
|
|
|
Status = gBS->LocateDevicePath (&gEfiDevicePathProtocolGuid, &RemainingDevicePath, &Handle);
|
|
|
|
|
|
|
|
if (!EFI_ERROR (Status)) {
|
|
|
|
if (Handle == PreviousHandle) {
|
|
|
|
//
|
|
|
|
// If no forward progress is made try invoking the Dispatcher.
|
|
|
|
// A new FV may have been added to the system an new drivers
|
|
|
|
// may now be found.
|
|
|
|
// Status == EFI_SUCCESS means a driver was dispatched
|
|
|
|
// Status == EFI_NOT_FOUND means no new drivers were dispatched
|
|
|
|
//
|
|
|
|
Status = gDS->Dispatch ();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!EFI_ERROR (Status)) {
|
|
|
|
PreviousHandle = Handle;
|
|
|
|
//
|
|
|
|
// Connect all drivers that apply to Handle and RemainingDevicePath,
|
|
|
|
// the Recursive flag is FALSE so only one level will be expanded.
|
|
|
|
//
|
|
|
|
// Do not check the connect status here, if the connect controller fail,
|
|
|
|
// then still give the chance to do dispatch, because partial
|
|
|
|
// RemainingDevicepath may be in the new FV
|
|
|
|
//
|
|
|
|
// 1. If the connect fail, RemainingDevicepath and handle will not
|
|
|
|
// change, so next time will do the dispatch, then dispatch's status
|
|
|
|
// will take effect
|
|
|
|
// 2. If the connect success, the RemainingDevicepath and handle will
|
|
|
|
// change, then avoid the dispatch, we have chance to continue the
|
|
|
|
// next connection
|
|
|
|
//
|
|
|
|
gBS->ConnectController (Handle, NULL, RemainingDevicePath, FALSE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//
|
|
|
|
// Loop until RemainingDevicePath is an empty device path
|
|
|
|
//
|
|
|
|
} while (!EFI_ERROR (Status) && !IsDevicePathEnd (RemainingDevicePath));
|
|
|
|
|
|
|
|
} while (DevicePath != NULL);
|
|
|
|
|
|
|
|
if (CopyOfDevicePath != NULL) {
|
|
|
|
FreePool (CopyOfDevicePath);
|
|
|
|
}
|
|
|
|
//
|
|
|
|
// All handle with DevicePath exists in the handle database
|
|
|
|
//
|
|
|
|
return Status;
|
|
|
|
}
|
|
|
|
|
|
|
|
EFI_STATUS
|
|
|
|
BdsLibConnectAllEfi (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
/*++
|
|
|
|
|
|
|
|
Routine Description:
|
|
|
|
|
|
|
|
This function will connect all current system handles recursively. The
|
|
|
|
connection will finish until every handle's child handle created if it have.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
|
|
|
|
None
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
EFI_SUCCESS - All handles and it's child handle have been connected
|
|
|
|
|
|
|
|
EFI_STATUS - Return the status of gBS->LocateHandleBuffer().
|
|
|
|
|
|
|
|
--*/
|
|
|
|
{
|
|
|
|
EFI_STATUS Status;
|
|
|
|
UINTN HandleCount;
|
|
|
|
EFI_HANDLE *HandleBuffer;
|
|
|
|
UINTN Index;
|
|
|
|
|
|
|
|
Status = gBS->LocateHandleBuffer (
|
|
|
|
AllHandles,
|
|
|
|
NULL,
|
|
|
|
NULL,
|
|
|
|
&HandleCount,
|
|
|
|
&HandleBuffer
|
|
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
|
|
return Status;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (Index = 0; Index < HandleCount; Index++) {
|
|
|
|
Status = gBS->ConnectController (HandleBuffer[Index], NULL, NULL, TRUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
FreePool (HandleBuffer);
|
|
|
|
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
EFI_STATUS
|
|
|
|
BdsLibDisconnectAllEfi (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
/*++
|
|
|
|
|
|
|
|
Routine Description:
|
|
|
|
|
|
|
|
This function will disconnect all current system handles. The disconnection
|
|
|
|
will finish until every handle have been disconnected.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
|
|
|
|
None
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
EFI_SUCCESS - All handles have been disconnected
|
|
|
|
|
|
|
|
EFI_STATUS - Return the status of gBS->LocateHandleBuffer().
|
|
|
|
|
|
|
|
--*/
|
|
|
|
{
|
|
|
|
EFI_STATUS Status;
|
|
|
|
UINTN HandleCount;
|
|
|
|
EFI_HANDLE *HandleBuffer;
|
|
|
|
UINTN Index;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Disconnect all
|
|
|
|
//
|
|
|
|
Status = gBS->LocateHandleBuffer (
|
|
|
|
AllHandles,
|
|
|
|
NULL,
|
|
|
|
NULL,
|
|
|
|
&HandleCount,
|
|
|
|
&HandleBuffer
|
|
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
|
|
return Status;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (Index = 0; Index < HandleCount; Index++) {
|
|
|
|
Status = gBS->DisconnectController (HandleBuffer[Index], NULL, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
FreePool (HandleBuffer);
|
|
|
|
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
VOID
|
|
|
|
BdsLibConnectAllDriversToAllControllers (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
/*++
|
|
|
|
|
|
|
|
Routine Description:
|
|
|
|
|
|
|
|
Connects all drivers to all controllers.
|
|
|
|
This function make sure all the current system driver will manage
|
|
|
|
the correspoinding controllers if have. And at the same time, make
|
|
|
|
sure all the system controllers have driver to manage it if have.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
|
|
|
|
None
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
None
|
|
|
|
|
|
|
|
--*/
|
|
|
|
{
|
|
|
|
EFI_STATUS Status;
|
|
|
|
|
|
|
|
do {
|
|
|
|
//
|
|
|
|
// Connect All EFI 1.10 drivers following EFI 1.10 algorithm
|
|
|
|
//
|
|
|
|
BdsLibConnectAllEfi ();
|
|
|
|
|
|
|
|
//
|
|
|
|
// Check to see if it's possible to dispatch an more DXE drivers.
|
|
|
|
// The BdsLibConnectAllEfi () may have made new DXE drivers show up.
|
|
|
|
// If anything is Dispatched Status == EFI_SUCCESS and we will try
|
|
|
|
// the connect again.
|
|
|
|
//
|
|
|
|
Status = gDS->Dispatch ();
|
|
|
|
|
|
|
|
} while (!EFI_ERROR (Status));
|
|
|
|
|
|
|
|
}
|