audk/CryptoPkg/Library/TlsLib/TlsConfig.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1665 lines
45 KiB
C
Raw Normal View History

/** @file
SSL/TLS Configuration Library Wrapper Implementation over OpenSSL.
Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.<BR>
(C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "InternalTlsLib.h"
typedef struct {
//
// IANA/IETF defined Cipher Suite ID
//
UINT16 IanaCipher;
//
// OpenSSL-used Cipher Suite String
//
CONST CHAR8 *OpensslCipher;
//
// Length of OpensslCipher
//
UINTN OpensslCipherLength;
} TLS_CIPHER_MAPPING;
//
// Create a TLS_CIPHER_MAPPING initializer from IanaCipher and OpensslCipher so
// that OpensslCipherLength is filled in automatically. IanaCipher must be an
// integer constant expression, and OpensslCipher must be a string literal.
//
#define MAP(IanaCipher, OpensslCipher) \
{ (IanaCipher), (OpensslCipher), sizeof (OpensslCipher) - 1 }
//
// The mapping table between IANA/IETF Cipher Suite definitions and
// OpenSSL-used Cipher Suite name.
//
// Keep the table uniquely sorted by the IanaCipher field, in increasing order.
//
STATIC CONST TLS_CIPHER_MAPPING TlsCipherMappingTable[] = {
MAP (0x0001, "NULL-MD5"), /// TLS_RSA_WITH_NULL_MD5
MAP (0x0002, "NULL-SHA"), /// TLS_RSA_WITH_NULL_SHA
MAP (0x0004, "RC4-MD5"), /// TLS_RSA_WITH_RC4_128_MD5
MAP (0x0005, "RC4-SHA"), /// TLS_RSA_WITH_RC4_128_SHA
MAP (0x000A, "DES-CBC3-SHA"), /// TLS_RSA_WITH_3DES_EDE_CBC_SHA, mandatory TLS 1.1
MAP (0x0016, "DHE-RSA-DES-CBC3-SHA"), /// TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
MAP (0x002F, "AES128-SHA"), /// TLS_RSA_WITH_AES_128_CBC_SHA, mandatory TLS 1.2
MAP (0x0030, "DH-DSS-AES128-SHA"), /// TLS_DH_DSS_WITH_AES_128_CBC_SHA
MAP (0x0031, "DH-RSA-AES128-SHA"), /// TLS_DH_RSA_WITH_AES_128_CBC_SHA
MAP (0x0033, "DHE-RSA-AES128-SHA"), /// TLS_DHE_RSA_WITH_AES_128_CBC_SHA
MAP (0x0035, "AES256-SHA"), /// TLS_RSA_WITH_AES_256_CBC_SHA
MAP (0x0036, "DH-DSS-AES256-SHA"), /// TLS_DH_DSS_WITH_AES_256_CBC_SHA
MAP (0x0037, "DH-RSA-AES256-SHA"), /// TLS_DH_RSA_WITH_AES_256_CBC_SHA
MAP (0x0039, "DHE-RSA-AES256-SHA"), /// TLS_DHE_RSA_WITH_AES_256_CBC_SHA
MAP (0x003B, "NULL-SHA256"), /// TLS_RSA_WITH_NULL_SHA256
MAP (0x003C, "AES128-SHA256"), /// TLS_RSA_WITH_AES_128_CBC_SHA256
MAP (0x003D, "AES256-SHA256"), /// TLS_RSA_WITH_AES_256_CBC_SHA256
MAP (0x003E, "DH-DSS-AES128-SHA256"), /// TLS_DH_DSS_WITH_AES_128_CBC_SHA256
MAP (0x003F, "DH-RSA-AES128-SHA256"), /// TLS_DH_RSA_WITH_AES_128_CBC_SHA256
MAP (0x0067, "DHE-RSA-AES128-SHA256"), /// TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
MAP (0x0068, "DH-DSS-AES256-SHA256"), /// TLS_DH_DSS_WITH_AES_256_CBC_SHA256
MAP (0x0069, "DH-RSA-AES256-SHA256"), /// TLS_DH_RSA_WITH_AES_256_CBC_SHA256
MAP (0x006B, "DHE-RSA-AES256-SHA256"), /// TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
CryptoPkg: Extend Tls function library REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3892 1. TlsSetSignatureAlgoList(): Configure the list of TLS signature algorithms that should be used as part of the TLS session establishment. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 2. TlsSetEcCurve(): Configure the Elliptic Curve that should be used for TLS flows the use cipher suite with EC, e.g., TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 3. TlsShutdown(): Shutdown the TLS connection without releasing the resources, meaning a new connection can be started without calling TlsNew() and without setting certificates etc. 4. TlsGetExportKey(): Derive keying material from a TLS connection using the mechanism described in RFC 5705 and export the key material (needed by EAP methods such as EAP-TTLS and EAP-PEAP). 5. TlsSetHostPrivateKeyEx(): This function adds the local private key (PEM-encoded or PKCS#8 or DER-encoded private key) into the specified TLS object for TLS negotiation. There is already a similar function TlsSetHostPrivateKey(), the new Ex function introduces a new parameter Password, set Password to NULL when useless. Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Xiaoyu Lu <xiaoyu1.lu@intel.com> Cc: Guomin Jiang <guomin.jiang@intel.com> Signed-off-by: Yi Li <yi1.li@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2022-09-25 11:14:06 +02:00
MAP (0x009F, "DHE-RSA-AES256-GCM-SHA384"), /// TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
MAP (0xC02B, "ECDHE-ECDSA-AES128-GCM-SHA256"), /// TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
MAP (0xC02C, "ECDHE-ECDSA-AES256-GCM-SHA384"), /// TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
MAP (0xC030, "ECDHE-RSA-AES256-GCM-SHA384"), /// TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
};
typedef struct {
//
// TLS Algorithm
//
UINT8 Algo;
//
// TLS Algorithm name
//
CONST CHAR8 *Name;
} TLS_ALGO_TO_NAME;
STATIC CONST TLS_ALGO_TO_NAME TlsHashAlgoToName[] = {
{ TlsHashAlgoNone, NULL },
{ TlsHashAlgoMd5, "MD5" },
{ TlsHashAlgoSha1, "SHA1" },
{ TlsHashAlgoSha224, "SHA224" },
{ TlsHashAlgoSha256, "SHA256" },
{ TlsHashAlgoSha384, "SHA384" },
{ TlsHashAlgoSha512, "SHA512" },
};
STATIC CONST TLS_ALGO_TO_NAME TlsSignatureAlgoToName[] = {
{ TlsSignatureAlgoAnonymous, NULL },
{ TlsSignatureAlgoRsa, "RSA" },
{ TlsSignatureAlgoDsa, "DSA" },
{ TlsSignatureAlgoEcdsa, "ECDSA" },
};
/**
Gets the OpenSSL cipher suite mapping for the supplied IANA TLS cipher suite.
@param[in] CipherId The supplied IANA TLS cipher suite ID.
@return The corresponding OpenSSL cipher suite mapping if found,
NULL otherwise.
**/
STATIC
CONST TLS_CIPHER_MAPPING *
TlsGetCipherMapping (
IN UINT16 CipherId
)
{
INTN Left;
INTN Right;
INTN Middle;
//
// Binary Search Cipher Mapping Table for IANA-OpenSSL Cipher Translation
//
Left = 0;
Right = ARRAY_SIZE (TlsCipherMappingTable) - 1;
while (Right >= Left) {
Middle = (Left + Right) / 2;
if (CipherId == TlsCipherMappingTable[Middle].IanaCipher) {
//
// Translate IANA cipher suite ID to OpenSSL name.
//
return &TlsCipherMappingTable[Middle];
}
if (CipherId < TlsCipherMappingTable[Middle].IanaCipher) {
Right = Middle - 1;
} else {
Left = Middle + 1;
}
}
//
// No Cipher Mapping found, return NULL.
//
return NULL;
}
/**
Set a new TLS/SSL method for a particular TLS object.
This function sets a new TLS/SSL method for a particular TLS object.
@param[in] Tls Pointer to a TLS object.
@param[in] MajorVer Major Version of TLS/SSL Protocol.
@param[in] MinorVer Minor Version of TLS/SSL Protocol.
@retval EFI_SUCCESS The TLS/SSL method was set successfully.
@retval EFI_INVALID_PARAMETER The parameter is invalid.
@retval EFI_UNSUPPORTED Unsupported TLS/SSL method.
**/
EFI_STATUS
EFIAPI
TlsSetVersion (
IN VOID *Tls,
IN UINT8 MajorVer,
IN UINT8 MinorVer
)
{
TLS_CONNECTION *TlsConn;
UINT16 ProtoVersion;
TlsConn = (TLS_CONNECTION *)Tls;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL)) {
return EFI_INVALID_PARAMETER;
}
ProtoVersion = (MajorVer << 8) | MinorVer;
//
// Bound TLS method to the particular specified version.
//
switch (ProtoVersion) {
case TLS1_VERSION:
//
// TLS 1.0
//
SSL_set_min_proto_version (TlsConn->Ssl, TLS1_VERSION);
SSL_set_max_proto_version (TlsConn->Ssl, TLS1_VERSION);
break;
case TLS1_1_VERSION:
//
// TLS 1.1
//
SSL_set_min_proto_version (TlsConn->Ssl, TLS1_1_VERSION);
SSL_set_max_proto_version (TlsConn->Ssl, TLS1_1_VERSION);
break;
case TLS1_2_VERSION:
//
// TLS 1.2
//
SSL_set_min_proto_version (TlsConn->Ssl, TLS1_2_VERSION);
SSL_set_max_proto_version (TlsConn->Ssl, TLS1_2_VERSION);
break;
default:
//
// Unsupported Protocol Version
//
return EFI_UNSUPPORTED;
}
return EFI_SUCCESS;
}
/**
Set TLS object to work in client or server mode.
This function prepares a TLS object to work in client or server mode.
@param[in] Tls Pointer to a TLS object.
@param[in] IsServer Work in server mode.
@retval EFI_SUCCESS The TLS/SSL work mode was set successfully.
@retval EFI_INVALID_PARAMETER The parameter is invalid.
@retval EFI_UNSUPPORTED Unsupported TLS/SSL work mode.
**/
EFI_STATUS
EFIAPI
TlsSetConnectionEnd (
IN VOID *Tls,
IN BOOLEAN IsServer
)
{
TLS_CONNECTION *TlsConn;
TlsConn = (TLS_CONNECTION *)Tls;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL)) {
return EFI_INVALID_PARAMETER;
}
if (!IsServer) {
//
// Set TLS to work in Client mode.
//
SSL_set_connect_state (TlsConn->Ssl);
} else {
//
// Set TLS to work in Server mode.
// It is unsupported for UEFI version currently.
//
// SSL_set_accept_state (TlsConn->Ssl);
return EFI_UNSUPPORTED;
}
return EFI_SUCCESS;
}
/**
Set the ciphers list to be used by the TLS object.
This function sets the ciphers for use by a specified TLS object.
@param[in] Tls Pointer to a TLS object.
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
@param[in] CipherId Array of UINT16 cipher identifiers. Each UINT16
cipher identifier comes from the TLS Cipher Suite
Registry of the IANA, interpreting Byte1 and Byte2
in network (big endian) byte order.
@param[in] CipherNum The number of cipher in the list.
@retval EFI_SUCCESS The ciphers list was set successfully.
@retval EFI_INVALID_PARAMETER The parameter is invalid.
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
@retval EFI_UNSUPPORTED No supported TLS cipher was found in CipherId.
@retval EFI_OUT_OF_RESOURCES Memory allocation failed.
**/
EFI_STATUS
EFIAPI
TlsSetCipherList (
IN VOID *Tls,
IN UINT16 *CipherId,
IN UINTN CipherNum
)
{
TLS_CONNECTION *TlsConn;
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
EFI_STATUS Status;
CONST TLS_CIPHER_MAPPING **MappedCipher;
UINTN MappedCipherBytes;
UINTN MappedCipherCount;
UINTN CipherStringSize;
UINTN Index;
CONST TLS_CIPHER_MAPPING *Mapping;
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
CHAR8 *CipherString;
CHAR8 *CipherStringPosition;
TlsConn = (TLS_CONNECTION *)Tls;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL) || (CipherId == NULL)) {
return EFI_INVALID_PARAMETER;
}
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
//
// Allocate the MappedCipher array for recording the mappings that we find
// for the input IANA identifiers in CipherId.
//
Status = SafeUintnMult (
CipherNum,
sizeof (*MappedCipher),
&MappedCipherBytes
);
if (EFI_ERROR (Status)) {
return EFI_OUT_OF_RESOURCES;
}
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
MappedCipher = AllocatePool (MappedCipherBytes);
if (MappedCipher == NULL) {
return EFI_OUT_OF_RESOURCES;
}
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
//
// Map the cipher IDs, and count the number of bytes for the full
// CipherString.
//
MappedCipherCount = 0;
CipherStringSize = 0;
for (Index = 0; Index < CipherNum; Index++) {
//
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
// Look up the IANA-to-OpenSSL mapping.
//
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
Mapping = TlsGetCipherMapping (CipherId[Index]);
if (Mapping == NULL) {
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
DEBUG ((
DEBUG_VERBOSE,
"%a:%a: skipping CipherId=0x%04x\n",
gEfiCallerBaseName,
__func__,
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
CipherId[Index]
));
//
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
// Skipping the cipher is valid because CipherId is an ordered
// preference list of ciphers, thus we can filter it as long as we
// don't change the relative order of elements on it.
//
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
continue;
}
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
//
// Accumulate Mapping->OpensslCipherLength into CipherStringSize. If this
// is not the first successful mapping, account for a colon (":") prefix
// too.
//
if (MappedCipherCount > 0) {
Status = SafeUintnAdd (CipherStringSize, 1, &CipherStringSize);
if (EFI_ERROR (Status)) {
Status = EFI_OUT_OF_RESOURCES;
goto FreeMappedCipher;
}
}
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
Status = SafeUintnAdd (
CipherStringSize,
Mapping->OpensslCipherLength,
&CipherStringSize
);
if (EFI_ERROR (Status)) {
Status = EFI_OUT_OF_RESOURCES;
goto FreeMappedCipher;
}
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
//
// Record the mapping.
//
MappedCipher[MappedCipherCount++] = Mapping;
}
//
// Verify that at least one IANA cipher ID could be mapped; account for the
// terminating NUL character in CipherStringSize; allocate CipherString.
//
if (MappedCipherCount == 0) {
DEBUG ((
DEBUG_ERROR,
"%a:%a: no CipherId could be mapped\n",
gEfiCallerBaseName,
__func__
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
));
Status = EFI_UNSUPPORTED;
goto FreeMappedCipher;
}
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
Status = SafeUintnAdd (CipherStringSize, 1, &CipherStringSize);
if (EFI_ERROR (Status)) {
Status = EFI_OUT_OF_RESOURCES;
goto FreeMappedCipher;
}
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
CipherString = AllocatePool (CipherStringSize);
if (CipherString == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto FreeMappedCipher;
}
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
//
// Go over the collected mappings and populate CipherString.
//
CipherStringPosition = CipherString;
for (Index = 0; Index < MappedCipherCount; Index++) {
Mapping = MappedCipher[Index];
//
// Append the colon (":") prefix except for the first mapping, then append
// Mapping->OpensslCipher.
//
if (Index > 0) {
*(CipherStringPosition++) = ':';
}
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
CopyMem (
CipherStringPosition,
Mapping->OpensslCipher,
Mapping->OpensslCipherLength
);
CipherStringPosition += Mapping->OpensslCipherLength;
}
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
//
// NUL-terminate CipherString.
//
*(CipherStringPosition++) = '\0';
ASSERT (CipherStringPosition == CipherString + CipherStringSize);
//
// Log CipherString for debugging. CipherString can be very long if the
// caller provided a large CipherId array, so log CipherString in segments of
// 79 non-newline characters. (MAX_DEBUG_MESSAGE_LENGTH is usually 0x100 in
// DebugLib instances.)
//
DEBUG_CODE_BEGIN ();
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
UINTN FullLength;
UINTN SegmentLength;
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
FullLength = CipherStringSize - 1;
DEBUG ((
DEBUG_VERBOSE,
"%a:%a: CipherString={\n",
gEfiCallerBaseName,
__func__
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
));
for (CipherStringPosition = CipherString;
CipherStringPosition < CipherString + FullLength;
CipherStringPosition += SegmentLength)
{
SegmentLength = FullLength - (CipherStringPosition - CipherString);
if (SegmentLength > 79) {
SegmentLength = 79;
}
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
DEBUG ((DEBUG_VERBOSE, "%.*a\n", SegmentLength, CipherStringPosition));
}
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
DEBUG ((DEBUG_VERBOSE, "}\n"));
//
// Restore the pre-debug value of CipherStringPosition by skipping over the
// trailing NUL.
//
CipherStringPosition++;
ASSERT (CipherStringPosition == CipherString + CipherStringSize);
DEBUG_CODE_END ();
//
// Sets the ciphers for use by the Tls object.
//
if (SSL_set_cipher_list (TlsConn->Ssl, CipherString) <= 0) {
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
Status = EFI_UNSUPPORTED;
goto FreeCipherString;
}
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
Status = EFI_SUCCESS;
FreeCipherString:
FreePool (CipherString);
FreeMappedCipher:
FreePool ((VOID *)MappedCipher);
CryptoPkg/TlsLib: rewrite TlsSetCipherList() Rewrite the TlsSetCipherList() function in order to fix the following issues: - Any cipher identifier in CipherId that is not recognized by TlsGetCipherMapping() will cause the function to return EFI_UNSUPPORTED. This is a problem because CipherId is an ordered preference list, and a caller should not get EFI_UNSUPPORTED just because it has an elaborate CipherId preference list. Instead, we can filter out cipher identifiers that we don't recognize, as long as we keep the relative order intact. - CipherString is allocated on the stack, with 500 bytes. While processing a large CipherId preference list, this room may not be enough. Although no buffer overflow is possible, CipherString exhaustion can lead to a failed TLS connection, because any cipher names that don't fit on CipherString cannot be negotiated. Compute CipherStringSize first, and allocate CipherString dynamically. - Finally, the "@STRENGTH" pseudo cipher name is appended to CipherString. (Assuming there is enough room left in CipherString.) This causes OpenSSL to sort the cipher list "in order of encryption algorithm key length". This is a bad idea. The caller specifically passes an ordered preference list in CipherId. Therefore TlsSetCipherList() must not ask OpenSSL to reorder the list, for any reason. Drop "@STRENGTH". While at it, fix and unify the documentation of the CipherId parameter. Cc: Jiaxin Wu <jiaxin.wu@intel.com> Cc: Qin Long <qin.long@intel.com> Cc: Siyuan Fu <siyuan.fu@intel.com> Cc: Ting Ye <ting.ye@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=915 Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Long Qin <qin.long@intel.com> Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
2018-03-31 17:33:14 +02:00
return Status;
}
/**
Set the compression method for TLS/SSL operations.
This function handles TLS/SSL integrated compression methods.
@param[in] CompMethod The compression method ID.
@retval EFI_SUCCESS The compression method for the communication was
set successfully.
@retval EFI_UNSUPPORTED Unsupported compression method.
**/
EFI_STATUS
EFIAPI
TlsSetCompressionMethod (
IN UINT8 CompMethod
)
{
COMP_METHOD *Cm;
INTN Ret;
Cm = NULL;
Ret = 0;
if (CompMethod == 0) {
//
// TLS defines one standard compression method, CompressionMethod.null (0),
// which specifies that data exchanged via the record protocol will not be compressed.
// So, return EFI_SUCCESS directly (RFC 3749).
//
return EFI_SUCCESS;
} else if (CompMethod == 1) {
Cm = COMP_zlib ();
} else {
return EFI_UNSUPPORTED;
}
//
// Adds the compression method to the list of available
// compression methods.
//
Ret = SSL_COMP_add_compression_method (CompMethod, Cm);
if (Ret != 0) {
return EFI_UNSUPPORTED;
}
return EFI_SUCCESS;
}
/**
Set peer certificate verification mode for the TLS connection.
This function sets the verification mode flags for the TLS connection.
@param[in] Tls Pointer to the TLS object.
@param[in] VerifyMode A set of logically or'ed verification mode flags.
**/
VOID
EFIAPI
TlsSetVerify (
IN VOID *Tls,
IN UINT32 VerifyMode
)
{
TLS_CONNECTION *TlsConn;
TlsConn = (TLS_CONNECTION *)Tls;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL)) {
return;
}
//
// Set peer certificate verification parameters with NULL callback.
//
SSL_set_verify (TlsConn->Ssl, VerifyMode, NULL);
}
/**
Set the specified host name to be verified.
@param[in] Tls Pointer to the TLS object.
@param[in] Flags The setting flags during the validation.
@param[in] HostName The specified host name to be verified.
@retval EFI_SUCCESS The HostName setting was set successfully.
@retval EFI_INVALID_PARAMETER The parameter is invalid.
@retval EFI_ABORTED Invalid HostName setting.
**/
EFI_STATUS
EFIAPI
TlsSetVerifyHost (
IN VOID *Tls,
IN UINT32 Flags,
IN CHAR8 *HostName
)
{
TLS_CONNECTION *TlsConn;
X509_VERIFY_PARAM *VerifyParam;
UINTN BinaryAddressSize;
UINT8 BinaryAddress[MAX (NS_INADDRSZ, NS_IN6ADDRSZ)];
INTN ParamStatus;
TlsConn = (TLS_CONNECTION *)Tls;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL) || (HostName == NULL)) {
return EFI_INVALID_PARAMETER;
}
SSL_set_hostflags (TlsConn->Ssl, Flags);
VerifyParam = SSL_get0_param (TlsConn->Ssl);
ASSERT (VerifyParam != NULL);
BinaryAddressSize = 0;
if (inet_pton (AF_INET6, HostName, BinaryAddress) == 1) {
BinaryAddressSize = NS_IN6ADDRSZ;
} else if (inet_pton (AF_INET, HostName, BinaryAddress) == 1) {
BinaryAddressSize = NS_INADDRSZ;
}
if (BinaryAddressSize > 0) {
DEBUG ((
DEBUG_VERBOSE,
"%a:%a: parsed \"%a\" as an IPv%c address "
"literal\n",
gEfiCallerBaseName,
__func__,
HostName,
(UINTN)((BinaryAddressSize == NS_IN6ADDRSZ) ? '6' : '4')
));
ParamStatus = X509_VERIFY_PARAM_set1_ip (
VerifyParam,
BinaryAddress,
BinaryAddressSize
);
} else {
ParamStatus = X509_VERIFY_PARAM_set1_host (VerifyParam, HostName, 0);
}
return (ParamStatus == 1) ? EFI_SUCCESS : EFI_ABORTED;
}
/**
Sets a TLS/SSL session ID to be used during TLS/SSL connect.
This function sets a session ID to be used when the TLS/SSL connection is
to be established.
@param[in] Tls Pointer to the TLS object.
@param[in] SessionId Session ID data used for session resumption.
@param[in] SessionIdLen Length of Session ID in bytes.
@retval EFI_SUCCESS Session ID was set successfully.
@retval EFI_INVALID_PARAMETER The parameter is invalid.
@retval EFI_UNSUPPORTED No available session for ID setting.
**/
EFI_STATUS
EFIAPI
TlsSetSessionId (
IN VOID *Tls,
IN UINT8 *SessionId,
IN UINT16 SessionIdLen
)
{
TLS_CONNECTION *TlsConn;
SSL_SESSION *Session;
TlsConn = (TLS_CONNECTION *)Tls;
Session = NULL;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL) || (SessionId == NULL)) {
return EFI_INVALID_PARAMETER;
}
Session = SSL_get_session (TlsConn->Ssl);
if (Session == NULL) {
return EFI_UNSUPPORTED;
}
SSL_SESSION_set1_id (Session, (const unsigned char *)SessionId, SessionIdLen);
return EFI_SUCCESS;
}
/**
Adds the CA to the cert store when requesting Server or Client authentication.
This function adds the CA certificate to the list of CAs when requesting
Server or Client authentication for the chosen TLS connection.
@param[in] Tls Pointer to the TLS object.
@param[in] Data Pointer to the data buffer of a DER-encoded binary
X.509 certificate or PEM-encoded X.509 certificate.
@param[in] DataSize The size of data buffer in bytes.
@retval EFI_SUCCESS The operation succeeded.
@retval EFI_INVALID_PARAMETER The parameter is invalid.
@retval EFI_OUT_OF_RESOURCES Required resources could not be allocated.
@retval EFI_ABORTED Invalid X.509 certificate.
**/
EFI_STATUS
EFIAPI
TlsSetCaCertificate (
IN VOID *Tls,
IN VOID *Data,
IN UINTN DataSize
)
{
BIO *BioCert;
X509 *Cert;
X509_STORE *X509Store;
EFI_STATUS Status;
TLS_CONNECTION *TlsConn;
SSL_CTX *SslCtx;
INTN Ret;
UINTN ErrorCode;
BioCert = NULL;
Cert = NULL;
X509Store = NULL;
Status = EFI_SUCCESS;
TlsConn = (TLS_CONNECTION *)Tls;
Ret = 0;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL) || (Data == NULL) || (DataSize == 0)) {
return EFI_INVALID_PARAMETER;
}
//
// DER-encoded binary X.509 certificate or PEM-encoded X.509 certificate.
// Determine whether certificate is from DER encoding, if so, translate it to X509 structure.
//
Cert = d2i_X509 (NULL, (const unsigned char **)&Data, (long)DataSize);
if (Cert == NULL) {
//
// Certificate is from PEM encoding.
//
BioCert = BIO_new (BIO_s_mem ());
if (BioCert == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto ON_EXIT;
}
if (BIO_write (BioCert, Data, (UINT32)DataSize) <= 0) {
Status = EFI_ABORTED;
goto ON_EXIT;
}
Cert = PEM_read_bio_X509 (BioCert, NULL, NULL, NULL);
if (Cert == NULL) {
Status = EFI_ABORTED;
goto ON_EXIT;
}
}
SslCtx = SSL_get_SSL_CTX (TlsConn->Ssl);
X509Store = SSL_CTX_get_cert_store (SslCtx);
if (X509Store == NULL) {
Status = EFI_ABORTED;
goto ON_EXIT;
}
//
// Add certificate to X509 store
//
Ret = X509_STORE_add_cert (X509Store, Cert);
if (Ret != 1) {
ErrorCode = ERR_peek_last_error ();
//
// Ignore "already in table" errors
//
if (!((ERR_GET_FUNC (ErrorCode) == X509_F_X509_STORE_ADD_CERT) &&
(ERR_GET_REASON (ErrorCode) == X509_R_CERT_ALREADY_IN_HASH_TABLE)))
{
Status = EFI_ABORTED;
goto ON_EXIT;
}
}
ON_EXIT:
if (BioCert != NULL) {
BIO_free (BioCert);
}
if (Cert != NULL) {
X509_free (Cert);
}
return Status;
}
/**
Loads the local public certificate into the specified TLS object.
This function loads the X.509 certificate into the specified TLS object
for TLS negotiation.
@param[in] Tls Pointer to the TLS object.
@param[in] Data Pointer to the data buffer of a DER-encoded binary
X.509 certificate or PEM-encoded X.509 certificate.
@param[in] DataSize The size of data buffer in bytes.
@retval EFI_SUCCESS The operation succeeded.
@retval EFI_INVALID_PARAMETER The parameter is invalid.
@retval EFI_OUT_OF_RESOURCES Required resources could not be allocated.
@retval EFI_ABORTED Invalid X.509 certificate.
**/
EFI_STATUS
EFIAPI
TlsSetHostPublicCert (
IN VOID *Tls,
IN VOID *Data,
IN UINTN DataSize
)
{
BIO *BioCert;
X509 *Cert;
EFI_STATUS Status;
TLS_CONNECTION *TlsConn;
BioCert = NULL;
Cert = NULL;
Status = EFI_SUCCESS;
TlsConn = (TLS_CONNECTION *)Tls;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL) || (Data == NULL) || (DataSize == 0)) {
return EFI_INVALID_PARAMETER;
}
//
// DER-encoded binary X.509 certificate or PEM-encoded X.509 certificate.
// Determine whether certificate is from DER encoding, if so, translate it to X509 structure.
//
Cert = d2i_X509 (NULL, (const unsigned char **)&Data, (long)DataSize);
if (Cert == NULL) {
//
// Certificate is from PEM encoding.
//
BioCert = BIO_new (BIO_s_mem ());
if (BioCert == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto ON_EXIT;
}
if (BIO_write (BioCert, Data, (UINT32)DataSize) <= 0) {
Status = EFI_ABORTED;
goto ON_EXIT;
}
Cert = PEM_read_bio_X509 (BioCert, NULL, NULL, NULL);
if (Cert == NULL) {
Status = EFI_ABORTED;
goto ON_EXIT;
}
}
if (SSL_use_certificate (TlsConn->Ssl, Cert) != 1) {
Status = EFI_ABORTED;
goto ON_EXIT;
}
ON_EXIT:
if (BioCert != NULL) {
BIO_free (BioCert);
}
if (Cert != NULL) {
X509_free (Cert);
}
return Status;
}
/**
Adds the local private key to the specified TLS object.
CryptoPkg: Extend Tls function library REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3892 1. TlsSetSignatureAlgoList(): Configure the list of TLS signature algorithms that should be used as part of the TLS session establishment. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 2. TlsSetEcCurve(): Configure the Elliptic Curve that should be used for TLS flows the use cipher suite with EC, e.g., TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 3. TlsShutdown(): Shutdown the TLS connection without releasing the resources, meaning a new connection can be started without calling TlsNew() and without setting certificates etc. 4. TlsGetExportKey(): Derive keying material from a TLS connection using the mechanism described in RFC 5705 and export the key material (needed by EAP methods such as EAP-TTLS and EAP-PEAP). 5. TlsSetHostPrivateKeyEx(): This function adds the local private key (PEM-encoded or PKCS#8 or DER-encoded private key) into the specified TLS object for TLS negotiation. There is already a similar function TlsSetHostPrivateKey(), the new Ex function introduces a new parameter Password, set Password to NULL when useless. Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Xiaoyu Lu <xiaoyu1.lu@intel.com> Cc: Guomin Jiang <guomin.jiang@intel.com> Signed-off-by: Yi Li <yi1.li@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2022-09-25 11:14:06 +02:00
This function adds the local private key (DER-encoded or PEM-encoded or PKCS#8 private
key) into the specified TLS object for TLS negotiation.
@param[in] Tls Pointer to the TLS object.
CryptoPkg: Extend Tls function library REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3892 1. TlsSetSignatureAlgoList(): Configure the list of TLS signature algorithms that should be used as part of the TLS session establishment. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 2. TlsSetEcCurve(): Configure the Elliptic Curve that should be used for TLS flows the use cipher suite with EC, e.g., TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 3. TlsShutdown(): Shutdown the TLS connection without releasing the resources, meaning a new connection can be started without calling TlsNew() and without setting certificates etc. 4. TlsGetExportKey(): Derive keying material from a TLS connection using the mechanism described in RFC 5705 and export the key material (needed by EAP methods such as EAP-TTLS and EAP-PEAP). 5. TlsSetHostPrivateKeyEx(): This function adds the local private key (PEM-encoded or PKCS#8 or DER-encoded private key) into the specified TLS object for TLS negotiation. There is already a similar function TlsSetHostPrivateKey(), the new Ex function introduces a new parameter Password, set Password to NULL when useless. Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Xiaoyu Lu <xiaoyu1.lu@intel.com> Cc: Guomin Jiang <guomin.jiang@intel.com> Signed-off-by: Yi Li <yi1.li@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2022-09-25 11:14:06 +02:00
@param[in] Data Pointer to the data buffer of a DER-encoded or PEM-encoded
or PKCS#8 private key.
@param[in] DataSize The size of data buffer in bytes.
@param[in] Password Pointer to NULL-terminated private key password, set it to NULL
if private key not encrypted.
@retval EFI_SUCCESS The operation succeeded.
@retval EFI_UNSUPPORTED This function is not supported.
@retval EFI_ABORTED Invalid private key data.
**/
EFI_STATUS
EFIAPI
TlsSetHostPrivateKeyEx (
IN VOID *Tls,
IN VOID *Data,
IN UINTN DataSize,
IN VOID *Password OPTIONAL
)
{
TLS_CONNECTION *TlsConn;
BIO *Bio;
EVP_PKEY *Pkey;
BOOLEAN Verify;
TlsConn = (TLS_CONNECTION *)Tls;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL) || (Data == NULL) || (DataSize == 0)) {
return EFI_INVALID_PARAMETER;
}
// Try to parse the private key in DER format or un-encrypted PKC#8
if (SSL_use_PrivateKey_ASN1 (
EVP_PKEY_RSA,
TlsConn->Ssl,
Data,
(long)DataSize
) == 1)
{
goto verify;
}
if (SSL_use_PrivateKey_ASN1 (
EVP_PKEY_DSA,
TlsConn->Ssl,
Data,
(long)DataSize
) == 1)
{
goto verify;
}
if (SSL_use_PrivateKey_ASN1 (
EVP_PKEY_EC,
TlsConn->Ssl,
Data,
(long)DataSize
) == 1)
{
goto verify;
}
// Try to parse the private key in PEM format or encrypted PKC#8
Bio = BIO_new_mem_buf (Data, (int)DataSize);
if (Bio != NULL) {
Verify = FALSE;
Pkey = PEM_read_bio_PrivateKey (Bio, NULL, NULL, Password);
if ((Pkey != NULL) && (SSL_use_PrivateKey (TlsConn->Ssl, Pkey) == 1)) {
Verify = TRUE;
}
EVP_PKEY_free (Pkey);
BIO_free (Bio);
if (Verify) {
goto verify;
}
}
return EFI_ABORTED;
verify:
if (SSL_check_private_key (TlsConn->Ssl) == 1) {
return EFI_SUCCESS;
}
return EFI_ABORTED;
}
/**
Adds the local private key to the specified TLS object.
This function adds the local private key (DER-encoded or PEM-encoded or PKCS#8 private
key) into the specified TLS object for TLS negotiation.
@param[in] Tls Pointer to the TLS object.
@param[in] Data Pointer to the data buffer of a DER-encoded or PEM-encoded
or PKCS#8 private key.
@param[in] DataSize The size of data buffer in bytes.
@retval EFI_SUCCESS The operation succeeded.
@retval EFI_UNSUPPORTED This function is not supported.
@retval EFI_ABORTED Invalid private key data.
**/
EFI_STATUS
EFIAPI
TlsSetHostPrivateKey (
IN VOID *Tls,
IN VOID *Data,
IN UINTN DataSize
)
{
CryptoPkg: Extend Tls function library REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3892 1. TlsSetSignatureAlgoList(): Configure the list of TLS signature algorithms that should be used as part of the TLS session establishment. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 2. TlsSetEcCurve(): Configure the Elliptic Curve that should be used for TLS flows the use cipher suite with EC, e.g., TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 3. TlsShutdown(): Shutdown the TLS connection without releasing the resources, meaning a new connection can be started without calling TlsNew() and without setting certificates etc. 4. TlsGetExportKey(): Derive keying material from a TLS connection using the mechanism described in RFC 5705 and export the key material (needed by EAP methods such as EAP-TTLS and EAP-PEAP). 5. TlsSetHostPrivateKeyEx(): This function adds the local private key (PEM-encoded or PKCS#8 or DER-encoded private key) into the specified TLS object for TLS negotiation. There is already a similar function TlsSetHostPrivateKey(), the new Ex function introduces a new parameter Password, set Password to NULL when useless. Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Xiaoyu Lu <xiaoyu1.lu@intel.com> Cc: Guomin Jiang <guomin.jiang@intel.com> Signed-off-by: Yi Li <yi1.li@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2022-09-25 11:14:06 +02:00
return TlsSetHostPrivateKeyEx (Tls, Data, DataSize, NULL);
}
/**
Adds the CA-supplied certificate revocation list for certificate validation.
This function adds the CA-supplied certificate revocation list data for
certificate validity checking.
@param[in] Data Pointer to the data buffer of a DER-encoded CRL data.
@param[in] DataSize The size of data buffer in bytes.
@retval EFI_SUCCESS The operation succeeded.
@retval EFI_UNSUPPORTED This function is not supported.
@retval EFI_ABORTED Invalid CRL data.
**/
EFI_STATUS
EFIAPI
TlsSetCertRevocationList (
IN VOID *Data,
IN UINTN DataSize
)
{
return EFI_UNSUPPORTED;
}
CryptoPkg: Extend Tls function library REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3892 1. TlsSetSignatureAlgoList(): Configure the list of TLS signature algorithms that should be used as part of the TLS session establishment. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 2. TlsSetEcCurve(): Configure the Elliptic Curve that should be used for TLS flows the use cipher suite with EC, e.g., TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 3. TlsShutdown(): Shutdown the TLS connection without releasing the resources, meaning a new connection can be started without calling TlsNew() and without setting certificates etc. 4. TlsGetExportKey(): Derive keying material from a TLS connection using the mechanism described in RFC 5705 and export the key material (needed by EAP methods such as EAP-TTLS and EAP-PEAP). 5. TlsSetHostPrivateKeyEx(): This function adds the local private key (PEM-encoded or PKCS#8 or DER-encoded private key) into the specified TLS object for TLS negotiation. There is already a similar function TlsSetHostPrivateKey(), the new Ex function introduces a new parameter Password, set Password to NULL when useless. Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Xiaoyu Lu <xiaoyu1.lu@intel.com> Cc: Guomin Jiang <guomin.jiang@intel.com> Signed-off-by: Yi Li <yi1.li@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2022-09-25 11:14:06 +02:00
/**
Set the signature algorithm list to used by the TLS object.
This function sets the signature algorithms for use by a specified TLS object.
@param[in] Tls Pointer to a TLS object.
@param[in] Data Array of UINT8 of signature algorithms. The array consists of
pairs of the hash algorithm and the signature algorithm as defined
in RFC 5246
@param[in] DataSize The length the SignatureAlgoList. Must be divisible by 2.
@retval EFI_SUCCESS The signature algorithm list was set successfully.
@retval EFI_INVALID_PARAMETER The parameters are invalid.
@retval EFI_UNSUPPORTED No supported TLS signature algorithm was found in SignatureAlgoList
@retval EFI_OUT_OF_RESOURCES Memory allocation failed.
**/
EFI_STATUS
EFIAPI
TlsSetSignatureAlgoList (
IN VOID *Tls,
IN UINT8 *Data,
IN UINTN DataSize
)
{
TLS_CONNECTION *TlsConn;
UINTN Index;
UINTN SignAlgoStrSize;
CHAR8 *SignAlgoStr;
CHAR8 *Pos;
UINT8 *SignatureAlgoList;
EFI_STATUS Status;
TlsConn = (TLS_CONNECTION *)Tls;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL) || (Data == NULL) || (DataSize < 3) ||
((DataSize % 2) == 0) || (Data[0] != DataSize - 1))
{
return EFI_INVALID_PARAMETER;
}
SignatureAlgoList = Data + 1;
SignAlgoStrSize = 0;
for (Index = 0; Index < Data[0]; Index += 2) {
CONST CHAR8 *Tmp;
if (SignatureAlgoList[Index] >= ARRAY_SIZE (TlsHashAlgoToName)) {
return EFI_INVALID_PARAMETER;
}
Tmp = TlsHashAlgoToName[SignatureAlgoList[Index]].Name;
if (!Tmp) {
return EFI_INVALID_PARAMETER;
}
// Add 1 for the '+'
SignAlgoStrSize += AsciiStrLen (Tmp) + 1;
if (SignatureAlgoList[Index + 1] >= ARRAY_SIZE (TlsSignatureAlgoToName)) {
return EFI_INVALID_PARAMETER;
}
Tmp = TlsSignatureAlgoToName[SignatureAlgoList[Index + 1]].Name;
if (!Tmp) {
return EFI_INVALID_PARAMETER;
}
// Add 1 for the ':' or for the NULL terminator
SignAlgoStrSize += AsciiStrLen (Tmp) + 1;
}
if (!SignAlgoStrSize) {
return EFI_UNSUPPORTED;
}
SignAlgoStr = AllocatePool (SignAlgoStrSize);
if (SignAlgoStr == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Pos = SignAlgoStr;
for (Index = 0; Index < Data[0]; Index += 2) {
CONST CHAR8 *Tmp;
Tmp = TlsHashAlgoToName[SignatureAlgoList[Index]].Name;
CopyMem (Pos, Tmp, AsciiStrLen (Tmp));
Pos += AsciiStrLen (Tmp);
*Pos++ = '+';
Tmp = TlsSignatureAlgoToName[SignatureAlgoList[Index + 1]].Name;
CopyMem (Pos, Tmp, AsciiStrLen (Tmp));
Pos += AsciiStrLen (Tmp);
*Pos++ = ':';
}
*(Pos - 1) = '\0';
if (SSL_set1_sigalgs_list (TlsConn->Ssl, SignAlgoStr) < 1) {
Status = EFI_INVALID_PARAMETER;
} else {
Status = EFI_SUCCESS;
}
FreePool (SignAlgoStr);
return Status;
}
/**
Set the EC curve to be used for TLS flows
This function sets the EC curve to be used for TLS flows.
@param[in] Tls Pointer to a TLS object.
@param[in] Data An EC named curve as defined in section 5.1.1 of RFC 4492.
@param[in] DataSize Size of Data, it should be sizeof (UINT32)
@retval EFI_SUCCESS The EC curve was set successfully.
@retval EFI_INVALID_PARAMETER The parameters are invalid.
@retval EFI_UNSUPPORTED The requested TLS EC curve is not supported
**/
EFI_STATUS
EFIAPI
TlsSetEcCurve (
IN VOID *Tls,
IN UINT8 *Data,
IN UINTN DataSize
)
{
TLS_CONNECTION *TlsConn;
EC_KEY *EcKey;
INT32 Nid;
INT32 Ret;
TlsConn = (TLS_CONNECTION *)Tls;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL) || (Data == NULL) || (DataSize != sizeof (UINT32))) {
return EFI_INVALID_PARAMETER;
}
switch (*((UINT32 *)Data)) {
case TlsEcNamedCurveSecp256r1:
return EFI_UNSUPPORTED;
case TlsEcNamedCurveSecp384r1:
Nid = NID_secp384r1;
break;
case TlsEcNamedCurveSecp521r1:
Nid = NID_secp521r1;
break;
case TlsEcNamedCurveX25519:
Nid = NID_X25519;
break;
case TlsEcNamedCurveX448:
Nid = NID_X448;
break;
default:
return EFI_UNSUPPORTED;
}
if (SSL_set1_curves (TlsConn->Ssl, &Nid, 1) != 1) {
return EFI_UNSUPPORTED;
CryptoPkg: Extend Tls function library REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3892 1. TlsSetSignatureAlgoList(): Configure the list of TLS signature algorithms that should be used as part of the TLS session establishment. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 2. TlsSetEcCurve(): Configure the Elliptic Curve that should be used for TLS flows the use cipher suite with EC, e.g., TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 3. TlsShutdown(): Shutdown the TLS connection without releasing the resources, meaning a new connection can be started without calling TlsNew() and without setting certificates etc. 4. TlsGetExportKey(): Derive keying material from a TLS connection using the mechanism described in RFC 5705 and export the key material (needed by EAP methods such as EAP-TTLS and EAP-PEAP). 5. TlsSetHostPrivateKeyEx(): This function adds the local private key (PEM-encoded or PKCS#8 or DER-encoded private key) into the specified TLS object for TLS negotiation. There is already a similar function TlsSetHostPrivateKey(), the new Ex function introduces a new parameter Password, set Password to NULL when useless. Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Xiaoyu Lu <xiaoyu1.lu@intel.com> Cc: Guomin Jiang <guomin.jiang@intel.com> Signed-off-by: Yi Li <yi1.li@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2022-09-25 11:14:06 +02:00
}
EcKey = EC_KEY_new_by_curve_name (Nid);
if (EcKey == NULL) {
return EFI_UNSUPPORTED;
CryptoPkg: Extend Tls function library REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3892 1. TlsSetSignatureAlgoList(): Configure the list of TLS signature algorithms that should be used as part of the TLS session establishment. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 2. TlsSetEcCurve(): Configure the Elliptic Curve that should be used for TLS flows the use cipher suite with EC, e.g., TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 3. TlsShutdown(): Shutdown the TLS connection without releasing the resources, meaning a new connection can be started without calling TlsNew() and without setting certificates etc. 4. TlsGetExportKey(): Derive keying material from a TLS connection using the mechanism described in RFC 5705 and export the key material (needed by EAP methods such as EAP-TTLS and EAP-PEAP). 5. TlsSetHostPrivateKeyEx(): This function adds the local private key (PEM-encoded or PKCS#8 or DER-encoded private key) into the specified TLS object for TLS negotiation. There is already a similar function TlsSetHostPrivateKey(), the new Ex function introduces a new parameter Password, set Password to NULL when useless. Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Xiaoyu Lu <xiaoyu1.lu@intel.com> Cc: Guomin Jiang <guomin.jiang@intel.com> Signed-off-by: Yi Li <yi1.li@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2022-09-25 11:14:06 +02:00
}
Ret = SSL_set_tmp_ecdh (TlsConn->Ssl, EcKey);
EC_KEY_free (EcKey);
if (Ret != 1) {
return EFI_UNSUPPORTED;
CryptoPkg: Extend Tls function library REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3892 1. TlsSetSignatureAlgoList(): Configure the list of TLS signature algorithms that should be used as part of the TLS session establishment. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 2. TlsSetEcCurve(): Configure the Elliptic Curve that should be used for TLS flows the use cipher suite with EC, e.g., TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 3. TlsShutdown(): Shutdown the TLS connection without releasing the resources, meaning a new connection can be started without calling TlsNew() and without setting certificates etc. 4. TlsGetExportKey(): Derive keying material from a TLS connection using the mechanism described in RFC 5705 and export the key material (needed by EAP methods such as EAP-TTLS and EAP-PEAP). 5. TlsSetHostPrivateKeyEx(): This function adds the local private key (PEM-encoded or PKCS#8 or DER-encoded private key) into the specified TLS object for TLS negotiation. There is already a similar function TlsSetHostPrivateKey(), the new Ex function introduces a new parameter Password, set Password to NULL when useless. Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Xiaoyu Lu <xiaoyu1.lu@intel.com> Cc: Guomin Jiang <guomin.jiang@intel.com> Signed-off-by: Yi Li <yi1.li@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2022-09-25 11:14:06 +02:00
}
return EFI_SUCCESS;
}
/**
Gets the protocol version used by the specified TLS connection.
This function returns the protocol version used by the specified TLS
connection.
If Tls is NULL, then ASSERT().
@param[in] Tls Pointer to the TLS object.
@return The protocol version of the specified TLS connection.
**/
UINT16
EFIAPI
TlsGetVersion (
IN VOID *Tls
)
{
TLS_CONNECTION *TlsConn;
TlsConn = (TLS_CONNECTION *)Tls;
ASSERT (TlsConn != NULL);
return (UINT16)(SSL_version (TlsConn->Ssl));
}
/**
Gets the connection end of the specified TLS connection.
This function returns the connection end (as client or as server) used by
the specified TLS connection.
If Tls is NULL, then ASSERT().
@param[in] Tls Pointer to the TLS object.
@return The connection end used by the specified TLS connection.
**/
UINT8
EFIAPI
TlsGetConnectionEnd (
IN VOID *Tls
)
{
TLS_CONNECTION *TlsConn;
TlsConn = (TLS_CONNECTION *)Tls;
ASSERT (TlsConn != NULL);
return (UINT8)SSL_is_server (TlsConn->Ssl);
}
/**
Gets the cipher suite used by the specified TLS connection.
This function returns current cipher suite used by the specified
TLS connection.
@param[in] Tls Pointer to the TLS object.
@param[in,out] CipherId The cipher suite used by the TLS object.
@retval EFI_SUCCESS The cipher suite was returned successfully.
@retval EFI_INVALID_PARAMETER The parameter is invalid.
@retval EFI_UNSUPPORTED Unsupported cipher suite.
**/
EFI_STATUS
EFIAPI
TlsGetCurrentCipher (
IN VOID *Tls,
IN OUT UINT16 *CipherId
)
{
TLS_CONNECTION *TlsConn;
CONST SSL_CIPHER *Cipher;
TlsConn = (TLS_CONNECTION *)Tls;
Cipher = NULL;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL) || (CipherId == NULL)) {
return EFI_INVALID_PARAMETER;
}
Cipher = SSL_get_current_cipher (TlsConn->Ssl);
if (Cipher == NULL) {
return EFI_UNSUPPORTED;
}
*CipherId = (SSL_CIPHER_get_id (Cipher)) & 0xFFFF;
return EFI_SUCCESS;
}
/**
Gets the compression methods used by the specified TLS connection.
This function returns current integrated compression methods used by
the specified TLS connection.
@param[in] Tls Pointer to the TLS object.
@param[in,out] CompressionId The current compression method used by
the TLS object.
@retval EFI_SUCCESS The compression method was returned successfully.
@retval EFI_INVALID_PARAMETER The parameter is invalid.
@retval EFI_ABORTED Invalid Compression method.
@retval EFI_UNSUPPORTED This function is not supported.
**/
EFI_STATUS
EFIAPI
TlsGetCurrentCompressionId (
IN VOID *Tls,
IN OUT UINT8 *CompressionId
)
{
return EFI_UNSUPPORTED;
}
/**
Gets the verification mode currently set in the TLS connection.
This function returns the peer verification mode currently set in the
specified TLS connection.
If Tls is NULL, then ASSERT().
@param[in] Tls Pointer to the TLS object.
@return The verification mode set in the specified TLS connection.
**/
UINT32
EFIAPI
TlsGetVerify (
IN VOID *Tls
)
{
TLS_CONNECTION *TlsConn;
TlsConn = (TLS_CONNECTION *)Tls;
ASSERT (TlsConn != NULL);
return SSL_get_verify_mode (TlsConn->Ssl);
}
/**
Gets the session ID used by the specified TLS connection.
This function returns the TLS/SSL session ID currently used by the
specified TLS connection.
@param[in] Tls Pointer to the TLS object.
@param[in,out] SessionId Buffer to contain the returned session ID.
@param[in,out] SessionIdLen The length of Session ID in bytes.
@retval EFI_SUCCESS The Session ID was returned successfully.
@retval EFI_INVALID_PARAMETER The parameter is invalid.
@retval EFI_UNSUPPORTED Invalid TLS/SSL session.
**/
EFI_STATUS
EFIAPI
TlsGetSessionId (
IN VOID *Tls,
IN OUT UINT8 *SessionId,
IN OUT UINT16 *SessionIdLen
)
{
TLS_CONNECTION *TlsConn;
SSL_SESSION *Session;
CONST UINT8 *SslSessionId;
TlsConn = (TLS_CONNECTION *)Tls;
Session = NULL;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL) || (SessionId == NULL) || (SessionIdLen == NULL)) {
return EFI_INVALID_PARAMETER;
}
Session = SSL_get_session (TlsConn->Ssl);
if (Session == NULL) {
return EFI_UNSUPPORTED;
}
SslSessionId = SSL_SESSION_get_id (Session, (unsigned int *)SessionIdLen);
CopyMem (SessionId, SslSessionId, *SessionIdLen);
return EFI_SUCCESS;
}
/**
Gets the client random data used in the specified TLS connection.
This function returns the TLS/SSL client random data currently used in
the specified TLS connection.
@param[in] Tls Pointer to the TLS object.
@param[in,out] ClientRandom Buffer to contain the returned client
random data (32 bytes).
**/
VOID
EFIAPI
TlsGetClientRandom (
IN VOID *Tls,
IN OUT UINT8 *ClientRandom
)
{
TLS_CONNECTION *TlsConn;
TlsConn = (TLS_CONNECTION *)Tls;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL) || (ClientRandom == NULL)) {
return;
}
SSL_get_client_random (TlsConn->Ssl, ClientRandom, SSL3_RANDOM_SIZE);
}
/**
Gets the server random data used in the specified TLS connection.
This function returns the TLS/SSL server random data currently used in
the specified TLS connection.
@param[in] Tls Pointer to the TLS object.
@param[in,out] ServerRandom Buffer to contain the returned server
random data (32 bytes).
**/
VOID
EFIAPI
TlsGetServerRandom (
IN VOID *Tls,
IN OUT UINT8 *ServerRandom
)
{
TLS_CONNECTION *TlsConn;
TlsConn = (TLS_CONNECTION *)Tls;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL) || (ServerRandom == NULL)) {
return;
}
SSL_get_server_random (TlsConn->Ssl, ServerRandom, SSL3_RANDOM_SIZE);
}
/**
Gets the master key data used in the specified TLS connection.
This function returns the TLS/SSL master key material currently used in
the specified TLS connection.
@param[in] Tls Pointer to the TLS object.
@param[in,out] KeyMaterial Buffer to contain the returned key material.
@retval EFI_SUCCESS Key material was returned successfully.
@retval EFI_INVALID_PARAMETER The parameter is invalid.
@retval EFI_UNSUPPORTED Invalid TLS/SSL session.
**/
EFI_STATUS
EFIAPI
TlsGetKeyMaterial (
IN VOID *Tls,
IN OUT UINT8 *KeyMaterial
)
{
TLS_CONNECTION *TlsConn;
SSL_SESSION *Session;
TlsConn = (TLS_CONNECTION *)Tls;
Session = NULL;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL) || (KeyMaterial == NULL)) {
return EFI_INVALID_PARAMETER;
}
Session = SSL_get_session (TlsConn->Ssl);
if (Session == NULL) {
return EFI_UNSUPPORTED;
}
SSL_SESSION_get_master_key (Session, KeyMaterial, SSL3_MASTER_SECRET_SIZE);
return EFI_SUCCESS;
}
/**
Gets the CA Certificate from the cert store.
This function returns the CA certificate for the chosen
TLS connection.
@param[in] Tls Pointer to the TLS object.
@param[out] Data Pointer to the data buffer to receive the CA
certificate data sent to the client.
@param[in,out] DataSize The size of data buffer in bytes.
@retval EFI_SUCCESS The operation succeeded.
@retval EFI_UNSUPPORTED This function is not supported.
@retval EFI_BUFFER_TOO_SMALL The Data is too small to hold the data.
**/
EFI_STATUS
EFIAPI
TlsGetCaCertificate (
IN VOID *Tls,
OUT VOID *Data,
IN OUT UINTN *DataSize
)
{
return EFI_UNSUPPORTED;
}
/**
Gets the local public Certificate set in the specified TLS object.
This function returns the local public certificate which was currently set
in the specified TLS object.
@param[in] Tls Pointer to the TLS object.
@param[out] Data Pointer to the data buffer to receive the local
public certificate.
@param[in,out] DataSize The size of data buffer in bytes.
@retval EFI_SUCCESS The operation succeeded.
@retval EFI_INVALID_PARAMETER The parameter is invalid.
@retval EFI_NOT_FOUND The certificate is not found.
@retval EFI_BUFFER_TOO_SMALL The Data is too small to hold the data.
**/
EFI_STATUS
EFIAPI
TlsGetHostPublicCert (
IN VOID *Tls,
OUT VOID *Data,
IN OUT UINTN *DataSize
)
{
X509 *Cert;
TLS_CONNECTION *TlsConn;
Cert = NULL;
TlsConn = (TLS_CONNECTION *)Tls;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL) || (DataSize == NULL) || ((*DataSize != 0) && (Data == NULL))) {
return EFI_INVALID_PARAMETER;
}
Cert = SSL_get_certificate (TlsConn->Ssl);
if (Cert == NULL) {
return EFI_NOT_FOUND;
}
//
// Only DER encoding is supported currently.
//
if (*DataSize < (UINTN)i2d_X509 (Cert, NULL)) {
*DataSize = (UINTN)i2d_X509 (Cert, NULL);
return EFI_BUFFER_TOO_SMALL;
}
*DataSize = (UINTN)i2d_X509 (Cert, (unsigned char **)&Data);
return EFI_SUCCESS;
}
/**
Gets the local private key set in the specified TLS object.
This function returns the local private key data which was currently set
in the specified TLS object.
@param[in] Tls Pointer to the TLS object.
@param[out] Data Pointer to the data buffer to receive the local
private key data.
@param[in,out] DataSize The size of data buffer in bytes.
@retval EFI_SUCCESS The operation succeeded.
@retval EFI_UNSUPPORTED This function is not supported.
@retval EFI_BUFFER_TOO_SMALL The Data is too small to hold the data.
**/
EFI_STATUS
EFIAPI
TlsGetHostPrivateKey (
IN VOID *Tls,
OUT VOID *Data,
IN OUT UINTN *DataSize
)
{
return EFI_UNSUPPORTED;
}
/**
Gets the CA-supplied certificate revocation list data set in the specified
TLS object.
This function returns the CA-supplied certificate revocation list data which
was currently set in the specified TLS object.
@param[out] Data Pointer to the data buffer to receive the CRL data.
@param[in,out] DataSize The size of data buffer in bytes.
@retval EFI_SUCCESS The operation succeeded.
@retval EFI_UNSUPPORTED This function is not supported.
@retval EFI_BUFFER_TOO_SMALL The Data is too small to hold the data.
**/
EFI_STATUS
EFIAPI
TlsGetCertRevocationList (
OUT VOID *Data,
IN OUT UINTN *DataSize
)
{
return EFI_UNSUPPORTED;
}
CryptoPkg: Extend Tls function library REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3892 1. TlsSetSignatureAlgoList(): Configure the list of TLS signature algorithms that should be used as part of the TLS session establishment. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 2. TlsSetEcCurve(): Configure the Elliptic Curve that should be used for TLS flows the use cipher suite with EC, e.g., TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384. This is needed for some WLAN Supplicant connection establishment flows that allow only specific TLS signature algorithms to be used, e.g., Authenticate and Key Managmenet (AKM) suites that are SUITE-B compliant. 3. TlsShutdown(): Shutdown the TLS connection without releasing the resources, meaning a new connection can be started without calling TlsNew() and without setting certificates etc. 4. TlsGetExportKey(): Derive keying material from a TLS connection using the mechanism described in RFC 5705 and export the key material (needed by EAP methods such as EAP-TTLS and EAP-PEAP). 5. TlsSetHostPrivateKeyEx(): This function adds the local private key (PEM-encoded or PKCS#8 or DER-encoded private key) into the specified TLS object for TLS negotiation. There is already a similar function TlsSetHostPrivateKey(), the new Ex function introduces a new parameter Password, set Password to NULL when useless. Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Jian J Wang <jian.j.wang@intel.com> Cc: Xiaoyu Lu <xiaoyu1.lu@intel.com> Cc: Guomin Jiang <guomin.jiang@intel.com> Signed-off-by: Yi Li <yi1.li@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
2022-09-25 11:14:06 +02:00
/**
Derive keying material from a TLS connection.
This function exports keying material using the mechanism described in RFC
5705.
@param[in] Tls Pointer to the TLS object
@param[in] Label Description of the key for the PRF function
@param[in] Context Optional context
@param[in] ContextLen The length of the context value in bytes
@param[out] KeyBuffer Buffer to hold the output of the TLS-PRF
@param[in] KeyBufferLen The length of the KeyBuffer
@retval EFI_SUCCESS The operation succeeded.
@retval EFI_INVALID_PARAMETER The TLS object is invalid.
@retval EFI_PROTOCOL_ERROR Some other error occurred.
**/
EFI_STATUS
EFIAPI
TlsGetExportKey (
IN VOID *Tls,
IN CONST VOID *Label,
IN CONST VOID *Context,
IN UINTN ContextLen,
OUT VOID *KeyBuffer,
IN UINTN KeyBufferLen
)
{
TLS_CONNECTION *TlsConn;
TlsConn = (TLS_CONNECTION *)Tls;
if ((TlsConn == NULL) || (TlsConn->Ssl == NULL)) {
return EFI_INVALID_PARAMETER;
}
return SSL_export_keying_material (
TlsConn->Ssl,
KeyBuffer,
KeyBufferLen,
Label,
AsciiStrLen (Label),
Context,
ContextLen,
Context != NULL
) == 1 ?
EFI_SUCCESS : EFI_PROTOCOL_ERROR;
}