audk/ArmPkg/Library/BdsLib/BdsFilePath.c

1413 lines
46 KiB
C
Raw Normal View History

/** @file
*
* Copyright (c) 2011-2014, ARM Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include "BdsInternal.h"
#include <Library/NetLib.h>
#include <Protocol/Bds.h>
#include <Protocol/UsbIo.h>
#include <Protocol/DiskIo.h>
#include <Protocol/LoadedImage.h>
#include <Protocol/SimpleNetwork.h>
#include <Protocol/Dhcp4.h>
#include <Protocol/Mtftp4.h>
#define IS_DEVICE_PATH_NODE(node,type,subtype) (((node)->Type == (type)) && ((node)->SubType == (subtype)))
/* Type and defines to set up the DHCP4 options */
typedef struct {
EFI_DHCP4_PACKET_OPTION Head;
UINT8 Route;
} DHCP4_OPTION;
#define DHCP_TAG_PARA_LIST 55
#define DHCP_TAG_NETMASK 1
#define DHCP_TAG_ROUTER 3
/*
Constant strings and define related to the message indicating the amount of
progress in the dowloading of a TFTP file.
*/
// Frame for the progression slider
STATIC CONST CHAR16 mTftpProgressFrame[] = L"[ ]";
// Number of steps in the progression slider
#define TFTP_PROGRESS_SLIDER_STEPS ((sizeof (mTftpProgressFrame) / sizeof (CHAR16)) - 3)
// Size in number of characters plus one (final zero) of the message to
// indicate the progress of a tftp download. The format is "[(progress slider:
// 40 characters)] (nb of KBytes downloaded so far: 7 characters) Kb". There
// are thus the number of characters in mTftpProgressFrame[] plus 11 characters
// (2 // spaces, "Kb" and seven characters for the number of KBytes).
#define TFTP_PROGRESS_MESSAGE_SIZE ((sizeof (mTftpProgressFrame) / sizeof (CHAR16)) + 12)
// String to delete the tftp progress message to be able to update it :
// (TFTP_PROGRESS_MESSAGE_SIZE-1) '\b'
STATIC CONST CHAR16 mTftpProgressDelete[] = L"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b";
// Extract the FilePath from the Device Path
CHAR16*
BdsExtractFilePathFromDevicePath (
IN CONST CHAR16 *StrDevicePath,
IN UINTN NumberDevicePathNode
)
{
UINTN Node;
CHAR16 *Str;
Str = (CHAR16*)StrDevicePath;
Node = 0;
while ((Str != NULL) && (*Str != L'\0') && (Node < NumberDevicePathNode)) {
if ((*Str == L'/') || (*Str == L'\\')) {
Node++;
}
Str++;
}
if (*Str == L'\0') {
return NULL;
} else {
return Str;
}
}
BOOLEAN
BdsIsRemovableUsb (
IN EFI_DEVICE_PATH* DevicePath
)
{
return ((DevicePathType (DevicePath) == MESSAGING_DEVICE_PATH) &&
((DevicePathSubType (DevicePath) == MSG_USB_CLASS_DP) ||
(DevicePathSubType (DevicePath) == MSG_USB_WWID_DP)));
}
EFI_STATUS
BdsGetDeviceUsb (
IN EFI_DEVICE_PATH* RemovableDevicePath,
OUT EFI_HANDLE* DeviceHandle,
OUT EFI_DEVICE_PATH** NewDevicePath
)
{
EFI_STATUS Status;
UINTN Index;
UINTN UsbIoHandleCount;
EFI_HANDLE *UsbIoBuffer;
EFI_DEVICE_PATH* UsbIoDevicePath;
EFI_DEVICE_PATH* TmpDevicePath;
USB_WWID_DEVICE_PATH* WwidDevicePath1;
USB_WWID_DEVICE_PATH* WwidDevicePath2;
USB_CLASS_DEVICE_PATH* UsbClassDevicePath1;
USB_CLASS_DEVICE_PATH* UsbClassDevicePath2;
// Get all the UsbIo handles
UsbIoHandleCount = 0;
Status = gBS->LocateHandleBuffer (ByProtocol, &gEfiUsbIoProtocolGuid, NULL, &UsbIoHandleCount, &UsbIoBuffer);
if (EFI_ERROR (Status) || (UsbIoHandleCount == 0)) {
return Status;
}
// Check if one of the handles matches the USB description
for (Index = 0; Index < UsbIoHandleCount; Index++) {
Status = gBS->HandleProtocol (UsbIoBuffer[Index], &gEfiDevicePathProtocolGuid, (VOID **) &UsbIoDevicePath);
if (!EFI_ERROR (Status)) {
TmpDevicePath = UsbIoDevicePath;
while (!IsDevicePathEnd (TmpDevicePath)) {
// Check if the Device Path node is a USB Removable device Path node
if (BdsIsRemovableUsb (TmpDevicePath)) {
if (TmpDevicePath->SubType == MSG_USB_WWID_DP) {
WwidDevicePath1 = (USB_WWID_DEVICE_PATH*)RemovableDevicePath;
WwidDevicePath2 = (USB_WWID_DEVICE_PATH*)TmpDevicePath;
if ((WwidDevicePath1->VendorId == WwidDevicePath2->VendorId) &&
(WwidDevicePath1->ProductId == WwidDevicePath2->ProductId) &&
(CompareMem (WwidDevicePath1+1, WwidDevicePath2+1, DevicePathNodeLength(WwidDevicePath1)-sizeof (USB_WWID_DEVICE_PATH)) == 0))
{
*DeviceHandle = UsbIoBuffer[Index];
// Add the additional original Device Path Nodes (eg: FilePath Device Path Node) to the new Device Path
*NewDevicePath = AppendDevicePath (UsbIoDevicePath, NextDevicePathNode (RemovableDevicePath));
return EFI_SUCCESS;
}
} else {
UsbClassDevicePath1 = (USB_CLASS_DEVICE_PATH*)RemovableDevicePath;
UsbClassDevicePath2 = (USB_CLASS_DEVICE_PATH*)TmpDevicePath;
if ((UsbClassDevicePath1->VendorId != 0xFFFF) && (UsbClassDevicePath1->VendorId == UsbClassDevicePath2->VendorId) &&
(UsbClassDevicePath1->ProductId != 0xFFFF) && (UsbClassDevicePath1->ProductId == UsbClassDevicePath2->ProductId) &&
(UsbClassDevicePath1->DeviceClass != 0xFF) && (UsbClassDevicePath1->DeviceClass == UsbClassDevicePath2->DeviceClass) &&
(UsbClassDevicePath1->DeviceSubClass != 0xFF) && (UsbClassDevicePath1->DeviceSubClass == UsbClassDevicePath2->DeviceSubClass) &&
(UsbClassDevicePath1->DeviceProtocol != 0xFF) && (UsbClassDevicePath1->DeviceProtocol == UsbClassDevicePath2->DeviceProtocol))
{
*DeviceHandle = UsbIoBuffer[Index];
// Add the additional original Device Path Nodes (eg: FilePath Device Path Node) to the new Device Path
*NewDevicePath = AppendDevicePath (UsbIoDevicePath, NextDevicePathNode (RemovableDevicePath));
return EFI_SUCCESS;
}
}
}
TmpDevicePath = NextDevicePathNode (TmpDevicePath);
}
}
}
return EFI_NOT_FOUND;
}
BOOLEAN
BdsIsRemovableHd (
IN EFI_DEVICE_PATH* DevicePath
)
{
return IS_DEVICE_PATH_NODE (DevicePath, MEDIA_DEVICE_PATH, MEDIA_HARDDRIVE_DP);
}
EFI_STATUS
BdsGetDeviceHd (
IN EFI_DEVICE_PATH* RemovableDevicePath,
OUT EFI_HANDLE* DeviceHandle,
OUT EFI_DEVICE_PATH** NewDevicePath
)
{
EFI_STATUS Status;
UINTN Index;
UINTN PartitionHandleCount;
EFI_HANDLE *PartitionBuffer;
EFI_DEVICE_PATH* PartitionDevicePath;
EFI_DEVICE_PATH* TmpDevicePath;
HARDDRIVE_DEVICE_PATH* HardDriveDevicePath1;
HARDDRIVE_DEVICE_PATH* HardDriveDevicePath2;
// Get all the DiskIo handles
PartitionHandleCount = 0;
Status = gBS->LocateHandleBuffer (ByProtocol, &gEfiDiskIoProtocolGuid, NULL, &PartitionHandleCount, &PartitionBuffer);
if (EFI_ERROR (Status) || (PartitionHandleCount == 0)) {
return Status;
}
// Check if one of the handles matches the Hard Disk Description
for (Index = 0; Index < PartitionHandleCount; Index++) {
Status = gBS->HandleProtocol (PartitionBuffer[Index], &gEfiDevicePathProtocolGuid, (VOID **) &PartitionDevicePath);
if (!EFI_ERROR (Status)) {
TmpDevicePath = PartitionDevicePath;
while (!IsDevicePathEnd (TmpDevicePath)) {
// Check if the Device Path node is a HD Removable device Path node
if (BdsIsRemovableHd (TmpDevicePath)) {
HardDriveDevicePath1 = (HARDDRIVE_DEVICE_PATH*)RemovableDevicePath;
HardDriveDevicePath2 = (HARDDRIVE_DEVICE_PATH*)TmpDevicePath;
if ((HardDriveDevicePath1->SignatureType == HardDriveDevicePath2->SignatureType) &&
(CompareGuid ((EFI_GUID *)HardDriveDevicePath1->Signature, (EFI_GUID *)HardDriveDevicePath2->Signature) == TRUE) &&
(HardDriveDevicePath1->PartitionNumber == HardDriveDevicePath2->PartitionNumber))
{
*DeviceHandle = PartitionBuffer[Index];
// Add the additional original Device Path Nodes (eg: FilePath Device Path Node) to the new Device Path
*NewDevicePath = AppendDevicePath (PartitionDevicePath, NextDevicePathNode (RemovableDevicePath));
return EFI_SUCCESS;
}
}
TmpDevicePath = NextDevicePathNode (TmpDevicePath);
}
}
}
return EFI_NOT_FOUND;
}
/*BOOLEAN
BdsIsRemovableCdrom (
IN EFI_DEVICE_PATH* DevicePath
)
{
return IS_DEVICE_PATH_NODE (DevicePath, MEDIA_DEVICE_PATH, MEDIA_CDROM_DP);
}
EFI_STATUS
BdsGetDeviceCdrom (
IN EFI_DEVICE_PATH* RemovableDevicePath,
OUT EFI_HANDLE* DeviceHandle,
OUT EFI_DEVICE_PATH** DevicePath
)
{
ASSERT(0);
return EFI_UNSUPPORTED;
}*/
typedef BOOLEAN
(*BDS_IS_REMOVABLE) (
IN EFI_DEVICE_PATH* DevicePath
);
typedef EFI_STATUS
(*BDS_GET_DEVICE) (
IN EFI_DEVICE_PATH* RemovableDevicePath,
OUT EFI_HANDLE* DeviceHandle,
OUT EFI_DEVICE_PATH** DevicePath
);
typedef struct {
BDS_IS_REMOVABLE IsRemovable;
BDS_GET_DEVICE GetDevice;
} BDS_REMOVABLE_DEVICE_SUPPORT;
BDS_REMOVABLE_DEVICE_SUPPORT RemovableDeviceSupport[] = {
{ BdsIsRemovableUsb, BdsGetDeviceUsb },
{ BdsIsRemovableHd, BdsGetDeviceHd },
//{ BdsIsRemovableCdrom, BdsGetDeviceCdrom }
};
STATIC
BOOLEAN
IsRemovableDevice (
IN EFI_DEVICE_PATH* DevicePath
)
{
UINTN Index;
EFI_DEVICE_PATH* TmpDevicePath;
TmpDevicePath = DevicePath;
while (!IsDevicePathEnd (TmpDevicePath)) {
for (Index = 0; Index < sizeof (RemovableDeviceSupport) / sizeof (BDS_REMOVABLE_DEVICE_SUPPORT); Index++) {
if (RemovableDeviceSupport[Index].IsRemovable (TmpDevicePath)) {
return TRUE;
}
}
TmpDevicePath = NextDevicePathNode (TmpDevicePath);
}
return FALSE;
}
STATIC
EFI_STATUS
TryRemovableDevice (
IN EFI_DEVICE_PATH* DevicePath,
OUT EFI_HANDLE* DeviceHandle,
OUT EFI_DEVICE_PATH** NewDevicePath
)
{
EFI_STATUS Status;
UINTN Index;
EFI_DEVICE_PATH* TmpDevicePath;
BDS_REMOVABLE_DEVICE_SUPPORT* RemovableDevice;
EFI_DEVICE_PATH* RemovableDevicePath;
BOOLEAN RemovableFound;
RemovableDevice = NULL;
RemovableDevicePath = NULL;
RemovableFound = FALSE;
TmpDevicePath = DevicePath;
while (!IsDevicePathEnd (TmpDevicePath) && !RemovableFound) {
for (Index = 0; Index < sizeof (RemovableDeviceSupport) / sizeof (BDS_REMOVABLE_DEVICE_SUPPORT); Index++) {
RemovableDevice = &RemovableDeviceSupport[Index];
if (RemovableDevice->IsRemovable (TmpDevicePath)) {
RemovableDevicePath = TmpDevicePath;
RemovableFound = TRUE;
break;
}
}
TmpDevicePath = NextDevicePathNode (TmpDevicePath);
}
if (!RemovableFound) {
return EFI_NOT_FOUND;
}
// Search into the current started drivers
Status = RemovableDevice->GetDevice (RemovableDevicePath, DeviceHandle, NewDevicePath);
if (Status == EFI_NOT_FOUND) {
// Connect all the drivers
BdsConnectAllDrivers ();
// Search again into all the drivers
Status = RemovableDevice->GetDevice (RemovableDevicePath, DeviceHandle, NewDevicePath);
}
return Status;
}
STATIC
EFI_STATUS
BdsConnectAndUpdateDevicePath (
IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath,
OUT EFI_HANDLE *Handle,
OUT EFI_DEVICE_PATH_PROTOCOL **RemainingDevicePath
)
{
EFI_DEVICE_PATH* Remaining;
EFI_DEVICE_PATH* NewDevicePath;
EFI_STATUS Status;
EFI_HANDLE PreviousHandle;
if ((DevicePath == NULL) || (*DevicePath == NULL) || (Handle == NULL)) {
return EFI_INVALID_PARAMETER;
}
PreviousHandle = NULL;
do {
Remaining = *DevicePath;
// The LocateDevicePath() function locates all devices on DevicePath that support Protocol and returns
// the handle to the device that is closest to DevicePath. On output, the device path pointer is modified
// to point to the remaining part of the device path
Status = gBS->LocateDevicePath (&gEfiDevicePathProtocolGuid, &Remaining, Handle);
if (!EFI_ERROR (Status)) {
if (*Handle == PreviousHandle) {
//
// If no forward progress is made try invoking the Dispatcher.
// A new FV may have been added to the system and new drivers
// may now be found.
// Status == EFI_SUCCESS means a driver was dispatched
// Status == EFI_NOT_FOUND means no new drivers were dispatched
//
Status = gDS->Dispatch ();
}
if (!EFI_ERROR (Status)) {
PreviousHandle = *Handle;
// Recursive = FALSE: We do not want to start the whole device tree
Status = gBS->ConnectController (*Handle, NULL, Remaining, FALSE);
}
}
} while (!EFI_ERROR (Status) && !IsDevicePathEnd (Remaining));
if (!EFI_ERROR (Status)) {
// Now, we have got the whole Device Path connected, call again ConnectController to ensure all the supported Driver
// Binding Protocol are connected (such as DiskIo and SimpleFileSystem)
Remaining = *DevicePath;
Status = gBS->LocateDevicePath (&gEfiDevicePathProtocolGuid, &Remaining, Handle);
if (!EFI_ERROR (Status)) {
Status = gBS->ConnectController (*Handle, NULL, Remaining, FALSE);
if (EFI_ERROR (Status)) {
// If the last node is a Memory Map Device Path just return EFI_SUCCESS.
if ((Remaining->Type == HARDWARE_DEVICE_PATH) && (Remaining->SubType == HW_MEMMAP_DP)) {
Status = EFI_SUCCESS;
}
}
}
} else if (!IsDevicePathEnd (Remaining) && !IsRemovableDevice (Remaining)) {
/*// If the remaining Device Path is a FilePath or MemoryMap then we consider the Device Path has been loaded correctly
if ((Remaining->Type == MEDIA_DEVICE_PATH) && (Remaining->SubType == MEDIA_FILEPATH_DP)) {
Status = EFI_SUCCESS;
} else if ((Remaining->Type == HARDWARE_DEVICE_PATH) && (Remaining->SubType == HW_MEMMAP_DP)) {
Status = EFI_SUCCESS;
}*/
//TODO: Should we just return success and leave the caller decide if it is the expected RemainingPath
Status = EFI_SUCCESS;
} else {
Status = TryRemovableDevice (*DevicePath, Handle, &NewDevicePath);
if (!EFI_ERROR (Status)) {
Status = BdsConnectAndUpdateDevicePath (&NewDevicePath, Handle, RemainingDevicePath);
*DevicePath = NewDevicePath;
return Status;
}
}
if (RemainingDevicePath) {
*RemainingDevicePath = Remaining;
}
return Status;
}
/**
Connect a Device Path and return the handle of the driver that support this DevicePath
@param DevicePath Device Path of the File to connect
@param Handle Handle of the driver that support this DevicePath
@param RemainingDevicePath Remaining DevicePath nodes that do not match the driver DevicePath
@retval EFI_SUCCESS A driver that matches the Device Path has been found
@retval EFI_NOT_FOUND No handles match the search.
@retval EFI_INVALID_PARAMETER DevicePath or Handle is NULL
**/
EFI_STATUS
BdsConnectDevicePath (
IN EFI_DEVICE_PATH_PROTOCOL* DevicePath,
OUT EFI_HANDLE *Handle,
OUT EFI_DEVICE_PATH_PROTOCOL **RemainingDevicePath
)
{
return BdsConnectAndUpdateDevicePath (&DevicePath, Handle, RemainingDevicePath);
}
BOOLEAN
BdsFileSystemSupport (
IN EFI_DEVICE_PATH *DevicePath,
IN EFI_HANDLE Handle,
IN EFI_DEVICE_PATH *RemainingDevicePath
)
{
EFI_STATUS Status;
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL *FsProtocol;
Status = gBS->HandleProtocol (Handle, &gEfiSimpleFileSystemProtocolGuid, (VOID **)&FsProtocol);
return (!EFI_ERROR (Status) && IS_DEVICE_PATH_NODE (RemainingDevicePath, MEDIA_DEVICE_PATH, MEDIA_FILEPATH_DP));
}
EFI_STATUS
BdsFileSystemLoadImage (
IN OUT EFI_DEVICE_PATH **DevicePath,
IN EFI_HANDLE Handle,
IN EFI_DEVICE_PATH *RemainingDevicePath,
IN EFI_ALLOCATE_TYPE Type,
IN OUT EFI_PHYSICAL_ADDRESS *Image,
OUT UINTN *ImageSize
)
{
EFI_STATUS Status;
FILEPATH_DEVICE_PATH *FilePathDevicePath;
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL *FsProtocol;
EFI_FILE_PROTOCOL *Fs;
EFI_FILE_INFO *FileInfo;
EFI_FILE_PROTOCOL *File;
UINTN Size;
ASSERT (IS_DEVICE_PATH_NODE (RemainingDevicePath, MEDIA_DEVICE_PATH, MEDIA_FILEPATH_DP));
FilePathDevicePath = (FILEPATH_DEVICE_PATH*)RemainingDevicePath;
Status = gBS->OpenProtocol (
Handle,
&gEfiSimpleFileSystemProtocolGuid,
(VOID**)&FsProtocol,
gImageHandle,
Handle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
return Status;
}
// Try to Open the volume and get root directory
Status = FsProtocol->OpenVolume (FsProtocol, &Fs);
if (EFI_ERROR (Status)) {
goto CLOSE_PROTOCOL;
}
Status = Fs->Open (Fs, &File, FilePathDevicePath->PathName, EFI_FILE_MODE_READ, 0);
if (EFI_ERROR (Status)) {
goto CLOSE_PROTOCOL;
}
Size = 0;
File->GetInfo (File, &gEfiFileInfoGuid, &Size, NULL);
FileInfo = AllocatePool (Size);
Status = File->GetInfo (File, &gEfiFileInfoGuid, &Size, FileInfo);
if (EFI_ERROR (Status)) {
goto CLOSE_FILE;
}
// Get the file size
Size = FileInfo->FileSize;
if (ImageSize) {
*ImageSize = Size;
}
FreePool (FileInfo);
Status = gBS->AllocatePages (Type, EfiBootServicesCode, EFI_SIZE_TO_PAGES(Size), Image);
// Try to allocate in any pages if failed to allocate memory at the defined location
if ((Status == EFI_OUT_OF_RESOURCES) && (Type != AllocateAnyPages)) {
Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesCode, EFI_SIZE_TO_PAGES(Size), Image);
}
if (!EFI_ERROR (Status)) {
Status = File->Read (File, &Size, (VOID*)(UINTN)(*Image));
}
CLOSE_FILE:
File->Close (File);
CLOSE_PROTOCOL:
gBS->CloseProtocol (
Handle,
&gEfiSimpleFileSystemProtocolGuid,
gImageHandle,
Handle);
return Status;
}
BOOLEAN
BdsMemoryMapSupport (
IN EFI_DEVICE_PATH *DevicePath,
IN EFI_HANDLE Handle,
IN EFI_DEVICE_PATH *RemainingDevicePath
)
{
return IS_DEVICE_PATH_NODE (DevicePath, HARDWARE_DEVICE_PATH, HW_MEMMAP_DP) ||
IS_DEVICE_PATH_NODE (RemainingDevicePath, HARDWARE_DEVICE_PATH, HW_MEMMAP_DP);
}
EFI_STATUS
BdsMemoryMapLoadImage (
IN OUT EFI_DEVICE_PATH **DevicePath,
IN EFI_HANDLE Handle,
IN EFI_DEVICE_PATH *RemainingDevicePath,
IN EFI_ALLOCATE_TYPE Type,
IN OUT EFI_PHYSICAL_ADDRESS* Image,
OUT UINTN *ImageSize
)
{
EFI_STATUS Status;
MEMMAP_DEVICE_PATH* MemMapPathDevicePath;
UINTN Size;
if (IS_DEVICE_PATH_NODE (RemainingDevicePath, HARDWARE_DEVICE_PATH, HW_MEMMAP_DP)) {
MemMapPathDevicePath = (MEMMAP_DEVICE_PATH*)RemainingDevicePath;
} else {
ASSERT (IS_DEVICE_PATH_NODE (*DevicePath, HARDWARE_DEVICE_PATH, HW_MEMMAP_DP));
MemMapPathDevicePath = (MEMMAP_DEVICE_PATH*)*DevicePath;
}
Size = MemMapPathDevicePath->EndingAddress - MemMapPathDevicePath->StartingAddress;
if (Size == 0) {
return EFI_INVALID_PARAMETER;
}
Status = gBS->AllocatePages (Type, EfiBootServicesCode, EFI_SIZE_TO_PAGES(Size), Image);
// Try to allocate in any pages if failed to allocate memory at the defined location
if ((Status == EFI_OUT_OF_RESOURCES) && (Type != AllocateAnyPages)) {
Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesCode, EFI_SIZE_TO_PAGES(Size), Image);
}
if (!EFI_ERROR (Status)) {
CopyMem ((VOID*)(UINTN)(*Image), (CONST VOID*)(UINTN)MemMapPathDevicePath->StartingAddress, Size);
if (ImageSize != NULL) {
*ImageSize = Size;
}
}
return Status;
}
BOOLEAN
BdsFirmwareVolumeSupport (
IN EFI_DEVICE_PATH *DevicePath,
IN EFI_HANDLE Handle,
IN EFI_DEVICE_PATH *RemainingDevicePath
)
{
return IS_DEVICE_PATH_NODE (RemainingDevicePath, MEDIA_DEVICE_PATH, MEDIA_PIWG_FW_FILE_DP);
}
EFI_STATUS
BdsFirmwareVolumeLoadImage (
IN OUT EFI_DEVICE_PATH **DevicePath,
IN EFI_HANDLE Handle,
IN EFI_DEVICE_PATH *RemainingDevicePath,
IN EFI_ALLOCATE_TYPE Type,
IN OUT EFI_PHYSICAL_ADDRESS* Image,
OUT UINTN *ImageSize
)
{
EFI_STATUS Status;
EFI_FIRMWARE_VOLUME2_PROTOCOL *FwVol;
EFI_GUID *FvNameGuid;
EFI_SECTION_TYPE SectionType;
EFI_FV_FILETYPE FvType;
EFI_FV_FILE_ATTRIBUTES Attrib;
UINT32 AuthenticationStatus;
VOID* ImageBuffer;
ASSERT (IS_DEVICE_PATH_NODE (RemainingDevicePath, MEDIA_DEVICE_PATH, MEDIA_PIWG_FW_FILE_DP));
Status = gBS->HandleProtocol (Handle, &gEfiFirmwareVolume2ProtocolGuid, (VOID **)&FwVol);
if (EFI_ERROR (Status)) {
return Status;
}
FvNameGuid = EfiGetNameGuidFromFwVolDevicePathNode ((CONST MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *)RemainingDevicePath);
if (FvNameGuid == NULL) {
Status = EFI_INVALID_PARAMETER;
}
SectionType = EFI_SECTION_PE32;
AuthenticationStatus = 0;
//Note: ReadSection at the opposite of ReadFile does not allow to pass ImageBuffer == NULL to get the size of the file.
ImageBuffer = NULL;
Status = FwVol->ReadSection (
FwVol,
FvNameGuid,
SectionType,
0,
&ImageBuffer,
ImageSize,
&AuthenticationStatus
);
if (!EFI_ERROR (Status)) {
#if 0
// In case the buffer has some address requirements, we must copy the buffer to a buffer following the requirements
if (Type != AllocateAnyPages) {
Status = gBS->AllocatePages (Type, EfiBootServicesCode, EFI_SIZE_TO_PAGES(*ImageSize),Image);
if (!EFI_ERROR (Status)) {
CopyMem ((VOID*)(UINTN)(*Image), ImageBuffer, *ImageSize);
FreePool (ImageBuffer);
}
}
#else
// We must copy the buffer into a page allocations. Otherwise, the caller could call gBS->FreePages() on the pool allocation
Status = gBS->AllocatePages (Type, EfiBootServicesCode, EFI_SIZE_TO_PAGES(*ImageSize), Image);
// Try to allocate in any pages if failed to allocate memory at the defined location
if ((Status == EFI_OUT_OF_RESOURCES) && (Type != AllocateAnyPages)) {
Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesCode, EFI_SIZE_TO_PAGES(*ImageSize), Image);
}
if (!EFI_ERROR (Status)) {
CopyMem ((VOID*)(UINTN)(*Image), ImageBuffer, *ImageSize);
FreePool (ImageBuffer);
}
#endif
} else {
// Try a raw file, since a PE32 SECTION does not exist
Status = FwVol->ReadFile (
FwVol,
FvNameGuid,
NULL,
ImageSize,
&FvType,
&Attrib,
&AuthenticationStatus
);
if (!EFI_ERROR (Status)) {
Status = gBS->AllocatePages (Type, EfiBootServicesCode, EFI_SIZE_TO_PAGES(*ImageSize), Image);
// Try to allocate in any pages if failed to allocate memory at the defined location
if ((Status == EFI_OUT_OF_RESOURCES) && (Type != AllocateAnyPages)) {
Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesCode, EFI_SIZE_TO_PAGES(*ImageSize), Image);
}
if (!EFI_ERROR (Status)) {
Status = FwVol->ReadFile (
FwVol,
FvNameGuid,
(VOID**)Image,
ImageSize,
&FvType,
&Attrib,
&AuthenticationStatus
);
}
}
}
return Status;
}
BOOLEAN
BdsPxeSupport (
IN EFI_DEVICE_PATH* DevicePath,
IN EFI_HANDLE Handle,
IN EFI_DEVICE_PATH* RemainingDevicePath
)
{
EFI_STATUS Status;
EFI_PXE_BASE_CODE_PROTOCOL* PxeBcProtocol;
if (!IsDevicePathEnd (RemainingDevicePath)) {
return FALSE;
}
Status = gBS->HandleProtocol (Handle, &gEfiPxeBaseCodeProtocolGuid, (VOID **)&PxeBcProtocol);
if (EFI_ERROR (Status)) {
return FALSE;
} else {
return TRUE;
}
}
EFI_STATUS
BdsPxeLoadImage (
IN OUT EFI_DEVICE_PATH **DevicePath,
IN EFI_HANDLE Handle,
IN EFI_DEVICE_PATH *RemainingDevicePath,
IN EFI_ALLOCATE_TYPE Type,
IN OUT EFI_PHYSICAL_ADDRESS* Image,
OUT UINTN *ImageSize
)
{
EFI_STATUS Status;
EFI_LOAD_FILE_PROTOCOL *LoadFileProtocol;
UINTN BufferSize;
EFI_PXE_BASE_CODE_PROTOCOL *Pxe;
// Get Load File Protocol attached to the PXE protocol
Status = gBS->HandleProtocol (Handle, &gEfiLoadFileProtocolGuid, (VOID **)&LoadFileProtocol);
if (EFI_ERROR (Status)) {
return Status;
}
Status = LoadFileProtocol->LoadFile (LoadFileProtocol, RemainingDevicePath, TRUE, &BufferSize, NULL);
if (Status == EFI_BUFFER_TOO_SMALL) {
Status = gBS->AllocatePages (Type, EfiBootServicesCode, EFI_SIZE_TO_PAGES(BufferSize), Image);
if (EFI_ERROR (Status)) {
return Status;
}
Status = LoadFileProtocol->LoadFile (LoadFileProtocol, RemainingDevicePath, TRUE, &BufferSize, (VOID*)(UINTN)(*Image));
if (!EFI_ERROR (Status) && (ImageSize != NULL)) {
*ImageSize = BufferSize;
}
}
if (Status == EFI_ALREADY_STARTED) {
Status = gBS->LocateProtocol (&gEfiPxeBaseCodeProtocolGuid, NULL, (VOID **)&Pxe);
if (!EFI_ERROR(Status)) {
// If PXE is already started, we stop it
Pxe->Stop (Pxe);
// And we try again
return BdsPxeLoadImage (DevicePath, Handle, RemainingDevicePath, Type, Image, ImageSize);
}
}
return Status;
}
BOOLEAN
BdsTftpSupport (
IN EFI_DEVICE_PATH *DevicePath,
IN EFI_HANDLE Handle,
IN EFI_DEVICE_PATH *RemainingDevicePath
)
{
EFI_STATUS Status;
EFI_DEVICE_PATH *NextDevicePath;
VOID *Interface;
// Validate the Remaining Device Path
if (IsDevicePathEnd (RemainingDevicePath)) {
return FALSE;
}
if (!IS_DEVICE_PATH_NODE (RemainingDevicePath, MESSAGING_DEVICE_PATH, MSG_IPv4_DP) &&
!IS_DEVICE_PATH_NODE (RemainingDevicePath, MESSAGING_DEVICE_PATH, MSG_IPv6_DP)) {
return FALSE;
}
NextDevicePath = NextDevicePathNode (RemainingDevicePath);
if (IsDevicePathEnd (NextDevicePath)) {
return FALSE;
}
if (!IS_DEVICE_PATH_NODE (NextDevicePath, MEDIA_DEVICE_PATH, MEDIA_FILEPATH_DP)) {
return FALSE;
}
Status = gBS->HandleProtocol (
Handle, &gEfiDevicePathProtocolGuid,
&Interface
);
if (EFI_ERROR (Status)) {
return FALSE;
}
//
// Check that the controller (identified by its handle "Handle") supports the
// MTFTPv4 Service Binding Protocol. If it does, it means that it supports the
// EFI MTFTPv4 Protocol needed to download the image through TFTP.
//
Status = gBS->HandleProtocol (
Handle, &gEfiMtftp4ServiceBindingProtocolGuid,
&Interface
);
if (EFI_ERROR (Status)) {
return FALSE;
}
return TRUE;
}
/**
Worker function that get the size in numbers of bytes of a file from a TFTP
server before to download the file.
@param[in] Mtftp4 MTFTP4 protocol interface
@param[in] FilePath Path of the file, Ascii encoded
@param[out] FileSize Address where to store the file size in number of
bytes.
@retval EFI_SUCCESS The size of the file was returned.
@retval !EFI_SUCCESS The size of the file was not returned.
**/
STATIC
EFI_STATUS
Mtftp4GetFileSize (
IN EFI_MTFTP4_PROTOCOL *Mtftp4,
IN CHAR8 *FilePath,
OUT UINT64 *FileSize
)
{
EFI_STATUS Status;
EFI_MTFTP4_OPTION ReqOpt[1];
EFI_MTFTP4_PACKET *Packet;
UINT32 PktLen;
EFI_MTFTP4_OPTION *TableOfOptions;
EFI_MTFTP4_OPTION *Option;
UINT32 OptCnt;
UINT8 OptBuf[128];
ReqOpt[0].OptionStr = (UINT8*)"tsize";
OptBuf[0] = '0';
OptBuf[1] = 0;
ReqOpt[0].ValueStr = OptBuf;
Status = Mtftp4->GetInfo (
Mtftp4,
NULL,
(UINT8*)FilePath,
NULL,
1,
ReqOpt,
&PktLen,
&Packet
);
if (EFI_ERROR (Status)) {
goto Error;
}
Status = Mtftp4->ParseOptions (
Mtftp4,
PktLen,
Packet,
(UINT32 *) &OptCnt,
&TableOfOptions
);
if (EFI_ERROR (Status)) {
goto Error;
}
Option = TableOfOptions;
while (OptCnt != 0) {
if (AsciiStrnCmp ((CHAR8 *)Option->OptionStr, "tsize", 5) == 0) {
*FileSize = AsciiStrDecimalToUint64 ((CHAR8 *)Option->ValueStr);
break;
}
OptCnt--;
Option++;
}
FreePool (TableOfOptions);
if (OptCnt == 0) {
Status = EFI_UNSUPPORTED;
}
Error :
return Status;
}
/**
Update the progress of a file download
This procedure is called each time a new TFTP packet is received.
@param[in] This MTFTP4 protocol interface
@param[in] Token Parameters for the download of the file
@param[in] PacketLen Length of the packet
@param[in] Packet Address of the packet
@retval EFI_SUCCESS All packets are accepted.
**/
STATIC
EFI_STATUS
Mtftp4CheckPacket (
IN EFI_MTFTP4_PROTOCOL *This,
IN EFI_MTFTP4_TOKEN *Token,
IN UINT16 PacketLen,
IN EFI_MTFTP4_PACKET *Packet
)
{
BDS_TFTP_CONTEXT *Context;
CHAR16 Progress[TFTP_PROGRESS_MESSAGE_SIZE];
UINT64 NbOfKb;
UINTN Index;
UINTN LastStep;
UINTN Step;
UINT64 LastNbOf50Kb;
UINT64 NbOf50Kb;
if ((NTOHS (Packet->OpCode)) == EFI_MTFTP4_OPCODE_DATA) {
Context = (BDS_TFTP_CONTEXT*)Token->Context;
if (Context->DownloadedNbOfBytes == 0) {
if (Context->FileSize > 0) {
Print (L"%s 0 Kb", mTftpProgressFrame);
} else {
Print (L" 0 Kb");
}
}
//
// The data is the packet are prepended with two UINT16 :
// . OpCode = EFI_MTFTP4_OPCODE_DATA
// . Block = the number of this block of data
//
Context->DownloadedNbOfBytes += PacketLen - sizeof (Packet->OpCode) - sizeof (Packet->Data.Block);
NbOfKb = Context->DownloadedNbOfBytes / 1024;
Progress[0] = L'\0';
if (Context->FileSize > 0) {
LastStep = (Context->LastReportedNbOfBytes * TFTP_PROGRESS_SLIDER_STEPS) / Context->FileSize;
Step = (Context->DownloadedNbOfBytes * TFTP_PROGRESS_SLIDER_STEPS) / Context->FileSize;
if (Step > LastStep) {
Print (mTftpProgressDelete);
StrCpy (Progress, mTftpProgressFrame);
for (Index = 1; Index < Step; Index++) {
Progress[Index] = L'=';
}
Progress[Step] = L'>';
UnicodeSPrint (
Progress + (sizeof (mTftpProgressFrame) / sizeof (CHAR16)) - 1,
sizeof (Progress) - sizeof (mTftpProgressFrame),
L" %7d Kb",
NbOfKb
);
Context->LastReportedNbOfBytes = Context->DownloadedNbOfBytes;
}
} else {
//
// Case when we do not know the size of the final file.
// We print the updated size every 50KB of downloaded data
//
LastNbOf50Kb = Context->LastReportedNbOfBytes / (50*1024);
NbOf50Kb = Context->DownloadedNbOfBytes / (50*1024);
if (NbOf50Kb > LastNbOf50Kb) {
Print (L"\b\b\b\b\b\b\b\b\b\b");
UnicodeSPrint (Progress, sizeof (Progress), L"%7d Kb", NbOfKb);
Context->LastReportedNbOfBytes = Context->DownloadedNbOfBytes;
}
}
if (Progress[0] != L'\0') {
Print (L"%s", Progress);
}
}
return EFI_SUCCESS;
}
/**
Download an image from a TFTP server
@param[in] DevicePath Device path of the TFTP boot option
@param[in] ControllerHandle Handle of the network controller
@param[in] RemainingDevicePath Device path of the TFTP boot option but
the first node that identifies the network controller
@param[in] Type Type to allocate memory pages
@param[out] Image Address of the bufer where the image is stored in
case of success
@param[out] ImageSize Size in number of bytes of the i;age in case of
success
@retval EFI_SUCCESS The image was returned.
@retval !EFI_SUCCESS Something went wrong.
**/
EFI_STATUS
BdsTftpLoadImage (
IN OUT EFI_DEVICE_PATH **DevicePath,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH *RemainingDevicePath,
IN EFI_ALLOCATE_TYPE Type,
IN OUT EFI_PHYSICAL_ADDRESS *Image,
OUT UINTN *ImageSize
)
{
EFI_STATUS Status;
EFI_HANDLE Dhcp4ChildHandle;
EFI_DHCP4_PROTOCOL *Dhcp4;
BOOLEAN Dhcp4ToStop;
EFI_HANDLE Mtftp4ChildHandle;
EFI_MTFTP4_PROTOCOL *Mtftp4;
DHCP4_OPTION ParaList;
EFI_DHCP4_PACKET_OPTION *OptionList[2];
EFI_DHCP4_CONFIG_DATA Dhcp4CfgData;
EFI_DHCP4_MODE_DATA Dhcp4Mode;
EFI_MTFTP4_CONFIG_DATA Mtftp4CfgData;
IPv4_DEVICE_PATH *IPv4DevicePathNode;
CHAR16 *PathName;
CHAR8 *AsciiFilePath;
EFI_MTFTP4_TOKEN Mtftp4Token;
UINT64 FileSize;
UINT64 TftpBufferSize;
BDS_TFTP_CONTEXT *TftpContext;
ASSERT(IS_DEVICE_PATH_NODE (RemainingDevicePath, MESSAGING_DEVICE_PATH, MSG_IPv4_DP));
IPv4DevicePathNode = (IPv4_DEVICE_PATH*)RemainingDevicePath;
Dhcp4ChildHandle = NULL;
Dhcp4 = NULL;
Dhcp4ToStop = FALSE;
Mtftp4ChildHandle = NULL;
Mtftp4 = NULL;
AsciiFilePath = NULL;
TftpContext = NULL;
if (!IPv4DevicePathNode->StaticIpAddress) {
//
// Using the DHCP4 Service Binding Protocol, create a child handle of the DHCP4 service and
// install the DHCP4 protocol on it. Then, open the DHCP protocol.
//
Status = NetLibCreateServiceChild (
ControllerHandle,
gImageHandle,
&gEfiDhcp4ServiceBindingProtocolGuid,
&Dhcp4ChildHandle
);
if (!EFI_ERROR (Status)) {
Status = gBS->OpenProtocol (
Dhcp4ChildHandle,
&gEfiDhcp4ProtocolGuid,
(VOID **) &Dhcp4,
gImageHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
}
if (EFI_ERROR (Status)) {
Print (L"Unable to open DHCP4 protocol\n");
goto Error;
}
}
//
// Using the MTFTP4 Service Binding Protocol, create a child handle of the MTFTP4 service and
// install the MTFTP4 protocol on it. Then, open the MTFTP4 protocol.
//
Status = NetLibCreateServiceChild (
ControllerHandle,
gImageHandle,
&gEfiMtftp4ServiceBindingProtocolGuid,
&Mtftp4ChildHandle
);
if (!EFI_ERROR (Status)) {
Status = gBS->OpenProtocol (
Mtftp4ChildHandle,
&gEfiMtftp4ProtocolGuid,
(VOID **) &Mtftp4,
gImageHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
}
if (EFI_ERROR (Status)) {
Print (L"Unable to open MTFTP4 protocol\n");
goto Error;
}
if (!IPv4DevicePathNode->StaticIpAddress) {
//
// Configure the DHCP4, all default settings. It is acceptable for the configuration to
// fail if the return code is equal to EFI_ACCESS_DENIED which means that the configuration
// has been done by another instance of the DHCP4 protocol or that the DHCP configuration
// process has been started but is not completed yet.
//
ZeroMem (&Dhcp4CfgData, sizeof (EFI_DHCP4_CONFIG_DATA));
ParaList.Head.OpCode = DHCP_TAG_PARA_LIST;
ParaList.Head.Length = 2;
ParaList.Head.Data[0] = DHCP_TAG_NETMASK;
ParaList.Route = DHCP_TAG_ROUTER;
OptionList[0] = &ParaList.Head;
Dhcp4CfgData.OptionCount = 1;
Dhcp4CfgData.OptionList = OptionList;
Status = Dhcp4->Configure (Dhcp4, &Dhcp4CfgData);
if (EFI_ERROR (Status)) {
if (Status != EFI_ACCESS_DENIED) {
Print (L"Error while configuring the DHCP4 protocol\n");
goto Error;
}
}
//
// Start the DHCP configuration. This may have already been done thus do not leave in error
// if the return code is EFI_ALREADY_STARTED.
//
Status = Dhcp4->Start (Dhcp4, NULL);
if (EFI_ERROR (Status)) {
if (Status != EFI_ALREADY_STARTED) {
Print (L"DHCP configuration failed\n");
goto Error;
}
} else {
Dhcp4ToStop = TRUE;
}
Status = Dhcp4->GetModeData (Dhcp4, &Dhcp4Mode);
if (EFI_ERROR (Status)) {
goto Error;
}
if (Dhcp4Mode.State != Dhcp4Bound) {
Status = EFI_TIMEOUT;
Print (L"DHCP configuration failed\n");
goto Error;
}
}
//
// Configure the TFTP4 protocol
//
ZeroMem (&Mtftp4CfgData, sizeof (EFI_MTFTP4_CONFIG_DATA));
Mtftp4CfgData.UseDefaultSetting = FALSE;
Mtftp4CfgData.TimeoutValue = 4;
Mtftp4CfgData.TryCount = 6;
if (IPv4DevicePathNode->StaticIpAddress) {
CopyMem (&Mtftp4CfgData.StationIp , &IPv4DevicePathNode->LocalIpAddress, sizeof (EFI_IPv4_ADDRESS));
CopyMem (&Mtftp4CfgData.SubnetMask, &IPv4DevicePathNode->SubnetMask, sizeof (EFI_IPv4_ADDRESS));
CopyMem (&Mtftp4CfgData.GatewayIp , &IPv4DevicePathNode->GatewayIpAddress, sizeof (EFI_IPv4_ADDRESS));
} else {
CopyMem (&Mtftp4CfgData.StationIp , &Dhcp4Mode.ClientAddress, sizeof (EFI_IPv4_ADDRESS));
CopyMem (&Mtftp4CfgData.SubnetMask, &Dhcp4Mode.SubnetMask , sizeof (EFI_IPv4_ADDRESS));
CopyMem (&Mtftp4CfgData.GatewayIp , &Dhcp4Mode.RouterAddress, sizeof (EFI_IPv4_ADDRESS));
}
CopyMem (&Mtftp4CfgData.ServerIp , &IPv4DevicePathNode->RemoteIpAddress, sizeof (EFI_IPv4_ADDRESS));
Status = Mtftp4->Configure (Mtftp4, &Mtftp4CfgData);
if (EFI_ERROR (Status)) {
Print (L"Error while configuring the MTFTP4 protocol\n");
goto Error;
}
// The Device Path might contain multiple FilePath nodes
PathName = ConvertDevicePathToText ((EFI_DEVICE_PATH_PROTOCOL*)(IPv4DevicePathNode + 1), FALSE, FALSE);
AsciiFilePath = AllocatePool (StrLen (PathName) + 1);
UnicodeStrToAsciiStr (PathName, AsciiFilePath);
//
// Try to get the size of the file in bytes from the server. If it fails,
// start with a 8MB buffer to download the file.
//
FileSize = 0;
if (Mtftp4GetFileSize (Mtftp4, AsciiFilePath, &FileSize) == EFI_SUCCESS) {
TftpBufferSize = FileSize;
} else {
TftpBufferSize = SIZE_16MB;
}
TftpContext = AllocatePool (sizeof (BDS_TFTP_CONTEXT));
if (TftpContext == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
TftpContext->FileSize = FileSize;
for (; TftpBufferSize <= FixedPcdGet32 (PcdMaxTftpFileSize);
TftpBufferSize = (TftpBufferSize + SIZE_16MB) & (~(SIZE_16MB-1))) {
//
// Allocate a buffer to hold the whole file.
//
Status = gBS->AllocatePages (
Type,
EfiBootServicesCode,
EFI_SIZE_TO_PAGES (TftpBufferSize),
Image
);
if (EFI_ERROR (Status)) {
Print (L"Failed to allocate space for image\n");
goto Error;
}
TftpContext->DownloadedNbOfBytes = 0;
TftpContext->LastReportedNbOfBytes = 0;
ZeroMem (&Mtftp4Token, sizeof (EFI_MTFTP4_TOKEN));
Mtftp4Token.Filename = (UINT8*)AsciiFilePath;
Mtftp4Token.BufferSize = TftpBufferSize;
Mtftp4Token.Buffer = (VOID *)(UINTN)*Image;
Mtftp4Token.CheckPacket = Mtftp4CheckPacket;
Mtftp4Token.Context = (VOID*)TftpContext;
Print (L"Downloading the file <%a> from the TFTP server\n", AsciiFilePath);
Status = Mtftp4->ReadFile (Mtftp4, &Mtftp4Token);
Print (L"\n");
if (EFI_ERROR (Status)) {
gBS->FreePages (*Image, EFI_SIZE_TO_PAGES (TftpBufferSize));
if (Status == EFI_BUFFER_TOO_SMALL) {
Print (L"Downloading failed, file larger than expected.\n");
continue;
} else {
goto Error;
}
}
*ImageSize = Mtftp4Token.BufferSize;
break;
}
Error:
if (Dhcp4ChildHandle != NULL) {
if (Dhcp4 != NULL) {
if (Dhcp4ToStop) {
Dhcp4->Stop (Dhcp4);
}
gBS->CloseProtocol (
Dhcp4ChildHandle,
&gEfiDhcp4ProtocolGuid,
gImageHandle,
ControllerHandle
);
}
NetLibDestroyServiceChild (
ControllerHandle,
gImageHandle,
&gEfiDhcp4ServiceBindingProtocolGuid,
Dhcp4ChildHandle
);
}
if (Mtftp4ChildHandle != NULL) {
if (Mtftp4 != NULL) {
if (AsciiFilePath != NULL) {
FreePool (AsciiFilePath);
}
if (TftpContext != NULL) {
FreePool (TftpContext);
}
gBS->CloseProtocol (
Mtftp4ChildHandle,
&gEfiMtftp4ProtocolGuid,
gImageHandle,
ControllerHandle
);
}
NetLibDestroyServiceChild (
ControllerHandle,
gImageHandle,
&gEfiMtftp4ServiceBindingProtocolGuid,
Mtftp4ChildHandle
);
}
if (EFI_ERROR (Status)) {
*Image = 0;
Print (L"Failed to download the file - Error=%r\n", Status);
}
return Status;
}
BDS_FILE_LOADER FileLoaders[] = {
{ BdsFileSystemSupport, BdsFileSystemLoadImage },
{ BdsFirmwareVolumeSupport, BdsFirmwareVolumeLoadImage },
//{ BdsLoadFileSupport, BdsLoadFileLoadImage },
{ BdsMemoryMapSupport, BdsMemoryMapLoadImage },
{ BdsPxeSupport, BdsPxeLoadImage },
{ BdsTftpSupport, BdsTftpLoadImage },
{ NULL, NULL }
};
EFI_STATUS
BdsLoadImageAndUpdateDevicePath (
IN OUT EFI_DEVICE_PATH **DevicePath,
IN EFI_ALLOCATE_TYPE Type,
IN OUT EFI_PHYSICAL_ADDRESS* Image,
OUT UINTN *FileSize
)
{
EFI_STATUS Status;
EFI_HANDLE Handle;
EFI_DEVICE_PATH *RemainingDevicePath;
BDS_FILE_LOADER* FileLoader;
Status = BdsConnectAndUpdateDevicePath (DevicePath, &Handle, &RemainingDevicePath);
if (EFI_ERROR (Status)) {
return Status;
}
FileLoader = FileLoaders;
while (FileLoader->Support != NULL) {
if (FileLoader->Support (*DevicePath, Handle, RemainingDevicePath)) {
return FileLoader->LoadImage (DevicePath, Handle, RemainingDevicePath, Type, Image, FileSize);
}
FileLoader++;
}
return EFI_UNSUPPORTED;
}
EFI_STATUS
BdsLoadImage (
IN EFI_DEVICE_PATH *DevicePath,
IN EFI_ALLOCATE_TYPE Type,
IN OUT EFI_PHYSICAL_ADDRESS* Image,
OUT UINTN *FileSize
)
{
return BdsLoadImageAndUpdateDevicePath (&DevicePath, Type, Image, FileSize);
}
/**
Start an EFI Application from a Device Path
@param ParentImageHandle Handle of the calling image
@param DevicePath Location of the EFI Application
@retval EFI_SUCCESS All drivers have been connected
@retval EFI_NOT_FOUND The Linux kernel Device Path has not been found
@retval EFI_OUT_OF_RESOURCES There is not enough resource memory to store the matching results.
**/
EFI_STATUS
BdsStartEfiApplication (
IN EFI_HANDLE ParentImageHandle,
IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,
IN UINTN LoadOptionsSize,
IN VOID* LoadOptions
)
{
EFI_STATUS Status;
EFI_HANDLE ImageHandle;
EFI_PHYSICAL_ADDRESS BinaryBuffer;
UINTN BinarySize;
EFI_LOADED_IMAGE_PROTOCOL* LoadedImage;
// Find the nearest supported file loader
Status = BdsLoadImageAndUpdateDevicePath (&DevicePath, AllocateAnyPages, &BinaryBuffer, &BinarySize);
if (EFI_ERROR (Status)) {
return Status;
}
// Load the image from the Buffer with Boot Services function
Status = gBS->LoadImage (TRUE, ParentImageHandle, DevicePath, (VOID*)(UINTN)BinaryBuffer, BinarySize, &ImageHandle);
if (EFI_ERROR (Status)) {
return Status;
}
// Passed LoadOptions to the EFI Application
if (LoadOptionsSize != 0) {
Status = gBS->HandleProtocol (ImageHandle, &gEfiLoadedImageProtocolGuid, (VOID **) &LoadedImage);
if (EFI_ERROR (Status)) {
return Status;
}
LoadedImage->LoadOptionsSize = LoadOptionsSize;
LoadedImage->LoadOptions = LoadOptions;
}
// Before calling the image, enable the Watchdog Timer for the 5 Minute period
gBS->SetWatchdogTimer (5 * 60, 0x0000, 0x00, NULL);
// Start the image
Status = gBS->StartImage (ImageHandle, NULL, NULL);
// Clear the Watchdog Timer after the image returns
gBS->SetWatchdogTimer (0x0000, 0x0000, 0x0000, NULL);
return Status;
}