audk/OvmfPkg/Library/QemuBootOrderLib/QemuBootOrderLib.c

2136 lines
67 KiB
C
Raw Normal View History

/** @file
Rewrite the BootOrder NvVar based on QEMU's "bootorder" fw_cfg file.
Copyright (C) 2012 - 2014, Red Hat, Inc.
Copyright (c) 2013 - 2016, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/QemuFwCfgLib.h>
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootManagerLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiRuntimeServicesTableLib.h>
#include <Library/BaseLib.h>
#include <Library/PrintLib.h>
#include <Library/DevicePathLib.h>
#include <Library/QemuBootOrderLib.h>
#include <Library/BaseMemoryLib.h>
#include <Guid/GlobalVariable.h>
#include <Guid/VirtioMmioTransport.h>
#include "ExtraRootBusMap.h"
/**
OpenFirmware to UEFI device path translation output buffer size in CHAR16's.
**/
#define TRANSLATION_OUTPUT_SIZE 0x100
/**
Output buffer size for OpenFirmware to UEFI device path fragment translation,
in CHAR16's, for a sequence of PCI bridges.
**/
#define BRIDGE_TRANSLATION_OUTPUT_SIZE 0x40
/**
Numbers of nodes in OpenFirmware device paths that are required and examined.
**/
#define REQUIRED_PCI_OFW_NODES 2
#define REQUIRED_MMIO_OFW_NODES 1
#define EXAMINED_OFW_NODES 6
/**
Simple character classification routines, corresponding to POSIX class names
and ASCII encoding.
**/
STATIC
BOOLEAN
IsAlnum (
IN CHAR8 Chr
)
{
return (('0' <= Chr && Chr <= '9') ||
('A' <= Chr && Chr <= 'Z') ||
('a' <= Chr && Chr <= 'z')
);
}
STATIC
BOOLEAN
IsDriverNamePunct (
IN CHAR8 Chr
)
{
return (Chr == ',' || Chr == '.' || Chr == '_' ||
Chr == '+' || Chr == '-'
);
}
STATIC
BOOLEAN
IsPrintNotDelim (
IN CHAR8 Chr
)
{
return (32 <= Chr && Chr <= 126 &&
Chr != '/' && Chr != '@' && Chr != ':');
}
/**
Utility types and functions.
**/
typedef struct {
CONST CHAR8 *Ptr; // not necessarily NUL-terminated
UINTN Len; // number of non-NUL characters
} SUBSTRING;
/**
Check if Substring and String have identical contents.
The function relies on the restriction that a SUBSTRING cannot have embedded
NULs either.
@param[in] Substring The SUBSTRING input to the comparison.
@param[in] String The ASCII string input to the comparison.
@return Whether the inputs have identical contents.
**/
STATIC
BOOLEAN
SubstringEq (
IN SUBSTRING Substring,
IN CONST CHAR8 *String
)
{
UINTN Pos;
CONST CHAR8 *Chr;
Pos = 0;
Chr = String;
while (Pos < Substring.Len && Substring.Ptr[Pos] == *Chr) {
++Pos;
++Chr;
}
return (BOOLEAN)(Pos == Substring.Len && *Chr == '\0');
}
/**
Parse a comma-separated list of hexadecimal integers into the elements of an
UINT64 array.
Whitespace, "0x" prefixes, leading or trailing commas, sequences of commas,
or an empty string are not allowed; they are rejected.
The function relies on ASCII encoding.
@param[in] UnitAddress The substring to parse.
@param[out] Result The array, allocated by the caller, to receive
the parsed values. This parameter may be NULL if
NumResults is zero on input.
@param[in out] NumResults On input, the number of elements allocated for
Result. On output, the number of elements it has
taken (or would have taken) to parse the string
fully.
@retval RETURN_SUCCESS UnitAddress has been fully parsed.
NumResults is set to the number of parsed
values; the corresponding elements have
been set in Result. The rest of Result's
elements are unchanged.
@retval RETURN_BUFFER_TOO_SMALL UnitAddress has been fully parsed.
NumResults is set to the number of parsed
values, but elements have been stored only
up to the input value of NumResults, which
is less than what has been parsed.
@retval RETURN_INVALID_PARAMETER Parse error. The contents of Results is
indeterminate. NumResults has not been
changed.
**/
STATIC
RETURN_STATUS
ParseUnitAddressHexList (
IN SUBSTRING UnitAddress,
OUT UINT64 *Result,
IN OUT UINTN *NumResults
)
{
UINTN Entry; // number of entry currently being parsed
UINT64 EntryVal; // value being constructed for current entry
CHAR8 PrevChr; // UnitAddress character previously checked
UINTN Pos; // current position within UnitAddress
RETURN_STATUS Status;
Entry = 0;
EntryVal = 0;
PrevChr = ',';
for (Pos = 0; Pos < UnitAddress.Len; ++Pos) {
CHAR8 Chr;
INT8 Val;
Chr = UnitAddress.Ptr[Pos];
Val = ('a' <= Chr && Chr <= 'f') ? (Chr - 'a' + 10) :
('A' <= Chr && Chr <= 'F') ? (Chr - 'A' + 10) :
('0' <= Chr && Chr <= '9') ? (Chr - '0' ) :
-1;
if (Val >= 0) {
if (EntryVal > 0xFFFFFFFFFFFFFFFull) {
return RETURN_INVALID_PARAMETER;
}
EntryVal = LShiftU64 (EntryVal, 4) | Val;
} else if (Chr == ',') {
if (PrevChr == ',') {
return RETURN_INVALID_PARAMETER;
}
if (Entry < *NumResults) {
Result[Entry] = EntryVal;
}
++Entry;
EntryVal = 0;
} else {
return RETURN_INVALID_PARAMETER;
}
PrevChr = Chr;
}
if (PrevChr == ',') {
return RETURN_INVALID_PARAMETER;
}
if (Entry < *NumResults) {
Result[Entry] = EntryVal;
Status = RETURN_SUCCESS;
} else {
Status = RETURN_BUFFER_TOO_SMALL;
}
++Entry;
*NumResults = Entry;
return Status;
}
/**
A simple array of Boot Option ID's.
**/
typedef struct {
UINT16 *Data;
UINTN Allocated;
UINTN Produced;
} BOOT_ORDER;
/**
Array element tracking an enumerated boot option that has the
LOAD_OPTION_ACTIVE attribute.
**/
typedef struct {
CONST EFI_BOOT_MANAGER_LOAD_OPTION *BootOption; // reference only, no
// ownership
BOOLEAN Appended; // has been added to a
// BOOT_ORDER?
} ACTIVE_OPTION;
/**
Append an active boot option to BootOrder, reallocating the latter if needed.
@param[in out] BootOrder The structure pointing to the array and holding
allocation and usage counters.
@param[in] ActiveOption The active boot option whose ID should be
appended to the array.
@retval RETURN_SUCCESS ID of ActiveOption appended.
@retval RETURN_OUT_OF_RESOURCES Memory reallocation failed.
**/
STATIC
RETURN_STATUS
BootOrderAppend (
IN OUT BOOT_ORDER *BootOrder,
IN OUT ACTIVE_OPTION *ActiveOption
)
{
if (BootOrder->Produced == BootOrder->Allocated) {
UINTN AllocatedNew;
UINT16 *DataNew;
ASSERT (BootOrder->Allocated > 0);
AllocatedNew = BootOrder->Allocated * 2;
DataNew = ReallocatePool (
BootOrder->Allocated * sizeof (*BootOrder->Data),
AllocatedNew * sizeof (*DataNew),
BootOrder->Data
);
if (DataNew == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
BootOrder->Allocated = AllocatedNew;
BootOrder->Data = DataNew;
}
BootOrder->Data[BootOrder->Produced++] =
(UINT16) ActiveOption->BootOption->OptionNumber;
ActiveOption->Appended = TRUE;
return RETURN_SUCCESS;
}
/**
Create an array of ACTIVE_OPTION elements for a boot option array.
@param[in] BootOptions A boot option array, created with
EfiBootManagerRefreshAllBootOption () and
EfiBootManagerGetLoadOptions ().
@param[in] BootOptionCount The number of elements in BootOptions.
@param[out] ActiveOption Pointer to the first element in the new array.
The caller is responsible for freeing the array
with FreePool() after use.
@param[out] Count Number of elements in the new array.
@retval RETURN_SUCCESS The ActiveOption array has been created.
@retval RETURN_NOT_FOUND No active entry has been found in
BootOptions.
@retval RETURN_OUT_OF_RESOURCES Memory allocation failed.
**/
STATIC
RETURN_STATUS
CollectActiveOptions (
IN CONST EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions,
IN UINTN BootOptionCount,
OUT ACTIVE_OPTION **ActiveOption,
OUT UINTN *Count
)
{
UINTN Index;
UINTN ScanMode;
*ActiveOption = NULL;
//
// Scan the list twice:
// - count active entries,
// - store links to active entries.
//
for (ScanMode = 0; ScanMode < 2; ++ScanMode) {
*Count = 0;
for (Index = 0; Index < BootOptionCount; Index++) {
if ((BootOptions[Index].Attributes & LOAD_OPTION_ACTIVE) != 0) {
if (ScanMode == 1) {
(*ActiveOption)[*Count].BootOption = &BootOptions[Index];
(*ActiveOption)[*Count].Appended = FALSE;
}
++*Count;
}
}
if (ScanMode == 0) {
if (*Count == 0) {
return RETURN_NOT_FOUND;
}
*ActiveOption = AllocatePool (*Count * sizeof **ActiveOption);
if (*ActiveOption == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
}
}
return RETURN_SUCCESS;
}
/**
OpenFirmware device path node
**/
typedef struct {
SUBSTRING DriverName;
SUBSTRING UnitAddress;
SUBSTRING DeviceArguments;
} OFW_NODE;
/**
Parse an OpenFirmware device path node into the caller-allocated OFW_NODE
structure, and advance in the input string.
The node format is mostly parsed after IEEE 1275-1994, 3.2.1.1 "Node names"
(a leading slash is expected and not returned):
/driver-name@unit-address[:device-arguments][<LF>]
A single trailing <LF> character is consumed but not returned. A trailing
<LF> or NUL character terminates the device path.
The function relies on ASCII encoding.
@param[in out] Ptr Address of the pointer pointing to the start of the
node string. After successful parsing *Ptr is set to
the byte immediately following the consumed
characters. On error it points to the byte that
caused the error. The input string is never modified.
@param[out] OfwNode The members of this structure point into the input
string, designating components of the node.
Separators are never included. If "device-arguments"
is missing, then DeviceArguments.Ptr is set to NULL.
All components that are present have nonzero length.
If the call doesn't succeed, the contents of this
structure is indeterminate.
@param[out] IsFinal In case of successful parsing, this parameter signals
whether the node just parsed is the final node in the
device path. The call after a final node will attempt
to start parsing the next path. If the call doesn't
succeed, then this parameter is not changed.
@retval RETURN_SUCCESS Parsing successful.
@retval RETURN_NOT_FOUND Parsing terminated. *Ptr was (and is)
pointing to an empty string.
@retval RETURN_INVALID_PARAMETER Parse error.
**/
STATIC
RETURN_STATUS
ParseOfwNode (
IN OUT CONST CHAR8 **Ptr,
OUT OFW_NODE *OfwNode,
OUT BOOLEAN *IsFinal
)
{
//
// A leading slash is expected. End of string is tolerated.
//
switch (**Ptr) {
case '\0':
return RETURN_NOT_FOUND;
case '/':
++*Ptr;
break;
default:
return RETURN_INVALID_PARAMETER;
}
//
// driver-name
//
OfwNode->DriverName.Ptr = *Ptr;
OfwNode->DriverName.Len = 0;
while (OfwNode->DriverName.Len < 32 &&
(IsAlnum (**Ptr) || IsDriverNamePunct (**Ptr))
) {
++*Ptr;
++OfwNode->DriverName.Len;
}
if (OfwNode->DriverName.Len == 0 || OfwNode->DriverName.Len == 32) {
return RETURN_INVALID_PARAMETER;
}
//
// unit-address
//
if (**Ptr != '@') {
return RETURN_INVALID_PARAMETER;
}
++*Ptr;
OfwNode->UnitAddress.Ptr = *Ptr;
OfwNode->UnitAddress.Len = 0;
while (IsPrintNotDelim (**Ptr)) {
++*Ptr;
++OfwNode->UnitAddress.Len;
}
if (OfwNode->UnitAddress.Len == 0) {
return RETURN_INVALID_PARAMETER;
}
//
// device-arguments, may be omitted
//
OfwNode->DeviceArguments.Len = 0;
if (**Ptr == ':') {
++*Ptr;
OfwNode->DeviceArguments.Ptr = *Ptr;
while (IsPrintNotDelim (**Ptr)) {
++*Ptr;
++OfwNode->DeviceArguments.Len;
}
if (OfwNode->DeviceArguments.Len == 0) {
return RETURN_INVALID_PARAMETER;
}
}
else {
OfwNode->DeviceArguments.Ptr = NULL;
}
switch (**Ptr) {
case '\n':
++*Ptr;
//
// fall through
//
case '\0':
*IsFinal = TRUE;
break;
case '/':
*IsFinal = FALSE;
break;
default:
return RETURN_INVALID_PARAMETER;
}
DEBUG ((
DEBUG_VERBOSE,
"%a: DriverName=\"%.*a\" UnitAddress=\"%.*a\" DeviceArguments=\"%.*a\"\n",
__FUNCTION__,
OfwNode->DriverName.Len, OfwNode->DriverName.Ptr,
OfwNode->UnitAddress.Len, OfwNode->UnitAddress.Ptr,
OfwNode->DeviceArguments.Len,
OfwNode->DeviceArguments.Ptr == NULL ? "" : OfwNode->DeviceArguments.Ptr
));
return RETURN_SUCCESS;
}
/**
Translate a PCI-like array of OpenFirmware device nodes to a UEFI device path
fragment.
@param[in] OfwNode Array of OpenFirmware device nodes to
translate, constituting the beginning of an
OpenFirmware device path.
@param[in] NumNodes Number of elements in OfwNode.
@param[in] ExtraPciRoots An EXTRA_ROOT_BUS_MAP object created with
CreateExtraRootBusMap(), to be used for
translating positions of extra root buses to
bus numbers.
@param[out] Translated Destination array receiving the UEFI path
fragment, allocated by the caller. If the
return value differs from RETURN_SUCCESS, its
contents is indeterminate.
@param[in out] TranslatedSize On input, the number of CHAR16's in
Translated. On RETURN_SUCCESS this parameter
is assigned the number of non-NUL CHAR16's
written to Translated. In case of other return
values, TranslatedSize is indeterminate.
@retval RETURN_SUCCESS Translation successful.
@retval RETURN_BUFFER_TOO_SMALL The translation does not fit into the number
of bytes provided.
@retval RETURN_UNSUPPORTED The array of OpenFirmware device nodes can't
be translated in the current implementation.
@retval RETURN_PROTOCOL_ERROR The initial OpenFirmware node refers to an
extra PCI root bus (by serial number) that
is invalid according to ExtraPciRoots.
**/
STATIC
RETURN_STATUS
TranslatePciOfwNodes (
IN CONST OFW_NODE *OfwNode,
IN UINTN NumNodes,
IN CONST EXTRA_ROOT_BUS_MAP *ExtraPciRoots,
OUT CHAR16 *Translated,
IN OUT UINTN *TranslatedSize
)
{
UINT32 PciRoot;
CHAR8 *Comma;
UINTN FirstNonBridge;
CHAR16 Bridges[BRIDGE_TRANSLATION_OUTPUT_SIZE];
UINTN BridgesLen;
UINT64 PciDevFun[2];
UINTN NumEntries;
UINTN Written;
//
// Resolve the PCI root bus number.
//
// The initial OFW node for the main root bus (ie. bus number 0) is:
//
// /pci@i0cf8
//
// For extra root buses, the initial OFW node is
//
// /pci@i0cf8,4
// ^
// root bus serial number (not PCI bus number)
//
if (NumNodes < REQUIRED_PCI_OFW_NODES ||
!SubstringEq (OfwNode[0].DriverName, "pci")
) {
return RETURN_UNSUPPORTED;
}
PciRoot = 0;
Comma = ScanMem8 (OfwNode[0].UnitAddress.Ptr, OfwNode[0].UnitAddress.Len,
',');
if (Comma != NULL) {
SUBSTRING PciRootSerialSubString;
UINT64 PciRootSerial;
//
// Parse the root bus serial number from the unit address after the comma.
//
PciRootSerialSubString.Ptr = Comma + 1;
PciRootSerialSubString.Len = OfwNode[0].UnitAddress.Len -
(PciRootSerialSubString.Ptr -
OfwNode[0].UnitAddress.Ptr);
NumEntries = 1;
if (RETURN_ERROR (ParseUnitAddressHexList (PciRootSerialSubString,
&PciRootSerial, &NumEntries))) {
return RETURN_UNSUPPORTED;
}
//
// Map the extra root bus's serial number to its actual bus number.
//
if (EFI_ERROR (MapRootBusPosToBusNr (ExtraPciRoots, PciRootSerial,
&PciRoot))) {
return RETURN_PROTOCOL_ERROR;
}
}
//
// Translate a sequence of PCI bridges. For each bridge, the OFW node is:
//
// pci-bridge@1e[,0]
// ^ ^
// PCI slot & function on the parent, holding the bridge
//
// and the UEFI device path node is:
//
// Pci(0x1E,0x0)
//
FirstNonBridge = 1;
Bridges[0] = L'\0';
BridgesLen = 0;
do {
UINT64 BridgeDevFun[2];
UINTN BridgesFreeBytes;
if (!SubstringEq (OfwNode[FirstNonBridge].DriverName, "pci-bridge")) {
break;
}
BridgeDevFun[1] = 0;
NumEntries = sizeof BridgeDevFun / sizeof BridgeDevFun[0];
if (ParseUnitAddressHexList (OfwNode[FirstNonBridge].UnitAddress,
BridgeDevFun, &NumEntries) != RETURN_SUCCESS) {
return RETURN_UNSUPPORTED;
}
BridgesFreeBytes = sizeof Bridges - BridgesLen * sizeof Bridges[0];
Written = UnicodeSPrintAsciiFormat (Bridges + BridgesLen, BridgesFreeBytes,
"/Pci(0x%Lx,0x%Lx)", BridgeDevFun[0], BridgeDevFun[1]);
BridgesLen += Written;
//
// There's no way to differentiate between "completely used up without
// truncation" and "truncated", so treat the former as the latter.
//
if (BridgesLen + 1 == BRIDGE_TRANSLATION_OUTPUT_SIZE) {
return RETURN_UNSUPPORTED;
}
++FirstNonBridge;
} while (FirstNonBridge < NumNodes);
if (FirstNonBridge == NumNodes) {
return RETURN_UNSUPPORTED;
}
//
// Parse the OFW nodes starting with the first non-bridge node.
//
PciDevFun[1] = 0;
NumEntries = ARRAY_SIZE (PciDevFun);
if (ParseUnitAddressHexList (
OfwNode[FirstNonBridge].UnitAddress,
PciDevFun,
&NumEntries
) != RETURN_SUCCESS
) {
return RETURN_UNSUPPORTED;
}
if (NumNodes >= FirstNonBridge + 3 &&
SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "ide") &&
SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "drive") &&
SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk")
) {
//
// OpenFirmware device path (IDE disk, IDE CD-ROM):
//
// /pci@i0cf8/ide@1,1/drive@0/disk@0
// ^ ^ ^ ^ ^
// | | | | master or slave
// | | | primary or secondary
// | PCI slot & function holding IDE controller
// PCI root at system bus port, PIO
//
// UEFI device path:
//
// PciRoot(0x0)/Pci(0x1,0x1)/Ata(Primary,Master,0x0)
// ^
// fixed LUN
//
UINT64 Secondary;
UINT64 Slave;
NumEntries = 1;
if (ParseUnitAddressHexList (
OfwNode[FirstNonBridge + 1].UnitAddress,
&Secondary,
&NumEntries
) != RETURN_SUCCESS ||
Secondary > 1 ||
ParseUnitAddressHexList (
OfwNode[FirstNonBridge + 2].UnitAddress,
&Slave,
&NumEntries // reuse after previous single-element call
) != RETURN_SUCCESS ||
Slave > 1
) {
return RETURN_UNSUPPORTED;
}
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
"PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Ata(%a,%a,0x0)",
PciRoot,
Bridges,
PciDevFun[0],
PciDevFun[1],
Secondary ? "Secondary" : "Primary",
Slave ? "Slave" : "Master"
);
} else if (NumNodes >= FirstNonBridge + 3 &&
SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "pci8086,2922") &&
SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "drive") &&
SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk")
) {
//
// OpenFirmware device path (Q35 SATA disk and CD-ROM):
//
// /pci@i0cf8/pci8086,2922@1f,2/drive@1/disk@0
// ^ ^ ^ ^ ^
// | | | | device number (fixed 0)
// | | | channel (port) number
// | PCI slot & function holding SATA HBA
// PCI root at system bus port, PIO
//
// UEFI device path:
//
// PciRoot(0x0)/Pci(0x1F,0x2)/Sata(0x1,0xFFFF,0x0)
// ^ ^ ^
// | | LUN (always 0 on Q35)
// | port multiplier port number,
// | always 0xFFFF on Q35
// channel (port) number
//
UINT64 Channel;
NumEntries = 1;
if (RETURN_ERROR (ParseUnitAddressHexList (
OfwNode[FirstNonBridge + 1].UnitAddress, &Channel,
&NumEntries))) {
return RETURN_UNSUPPORTED;
}
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
"PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Sata(0x%Lx,0xFFFF,0x0)",
PciRoot,
Bridges,
PciDevFun[0],
PciDevFun[1],
Channel
);
} else if (NumNodes >= FirstNonBridge + 3 &&
SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "isa") &&
SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "fdc") &&
SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "floppy")
) {
//
// OpenFirmware device path (floppy disk):
//
// /pci@i0cf8/isa@1/fdc@03f0/floppy@0
// ^ ^ ^ ^
// | | | A: or B:
// | | ISA controller io-port (hex)
// | PCI slot holding ISA controller
// PCI root at system bus port, PIO
//
// UEFI device path:
//
// PciRoot(0x0)/Pci(0x1,0x0)/Floppy(0x0)
// ^
// ACPI UID
//
UINT64 AcpiUid;
NumEntries = 1;
if (ParseUnitAddressHexList (
OfwNode[FirstNonBridge + 2].UnitAddress,
&AcpiUid,
&NumEntries
) != RETURN_SUCCESS ||
AcpiUid > 1
) {
return RETURN_UNSUPPORTED;
}
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
"PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Floppy(0x%Lx)",
PciRoot,
Bridges,
PciDevFun[0],
PciDevFun[1],
AcpiUid
);
} else if (NumNodes >= FirstNonBridge + 2 &&
SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "scsi") &&
SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "disk")
) {
//
// OpenFirmware device path (virtio-blk disk):
//
// /pci@i0cf8/scsi@6[,3]/disk@0,0
// ^ ^ ^ ^ ^
// | | | fixed
// | | PCI function corresponding to disk (optional)
// | PCI slot holding disk
// PCI root at system bus port, PIO
//
// UEFI device path prefix:
//
OvmfPkg/QemuBootOrderLib: drop too strict "/HD(" suffix from vblk prefix Translating QEMU's virtio-block OpenFirmware device path to a UEFI device path prefix was one of the earliest case handled in QemuBootOrderLib. At that time, I terminated the translation output (the UEFI devpath prefix) with a "/HD(" suffix. The intent was for the translation to prefix-match only boot options with HD() device path nodes in them, that is, no auto-generated "device level" boot options. This was motivated by prioritizing specific boot options created by OS installers over auto-generated "device level" options. However, practice has shown that: - OS installers place their installed boot options first in the boot order anyway, - other device types (SATA disks, virtio-scsi disks), where "/HD(" is not appended, work just fine, - requiring "/HD(" actually causes problems: after the OS-installed specific boot option has been lost (or purposely removed), the auto-generated "device level" boot option does the right thing (see the Default Boot Behavior under <http://blog.uncooperative.org/blog/2014/02/06/the-efi-system-partition/>). The "/HD(" requirement causes such boot options to be dropped, which prevents "fallback.efi" from running. Relax the matching by removing the "/HD(" suffix from the translated prefix. Cc: Jordan Justen <jordan.l.justen@intel.com> Fixes: e06a4cd134064590aa1a855ff4b973023279e805 Ref: https://bugzilla.redhat.com/show_bug.cgi?id=1373812 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-09-07 12:47:19 +02:00
// PciRoot(0x0)/Pci(0x6,0x0) -- if PCI function is 0 or absent
// PciRoot(0x0)/Pci(0x6,0x3) -- if PCI function is present and nonzero
//
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
OvmfPkg/QemuBootOrderLib: drop too strict "/HD(" suffix from vblk prefix Translating QEMU's virtio-block OpenFirmware device path to a UEFI device path prefix was one of the earliest case handled in QemuBootOrderLib. At that time, I terminated the translation output (the UEFI devpath prefix) with a "/HD(" suffix. The intent was for the translation to prefix-match only boot options with HD() device path nodes in them, that is, no auto-generated "device level" boot options. This was motivated by prioritizing specific boot options created by OS installers over auto-generated "device level" options. However, practice has shown that: - OS installers place their installed boot options first in the boot order anyway, - other device types (SATA disks, virtio-scsi disks), where "/HD(" is not appended, work just fine, - requiring "/HD(" actually causes problems: after the OS-installed specific boot option has been lost (or purposely removed), the auto-generated "device level" boot option does the right thing (see the Default Boot Behavior under <http://blog.uncooperative.org/blog/2014/02/06/the-efi-system-partition/>). The "/HD(" requirement causes such boot options to be dropped, which prevents "fallback.efi" from running. Relax the matching by removing the "/HD(" suffix from the translated prefix. Cc: Jordan Justen <jordan.l.justen@intel.com> Fixes: e06a4cd134064590aa1a855ff4b973023279e805 Ref: https://bugzilla.redhat.com/show_bug.cgi?id=1373812 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-09-07 12:47:19 +02:00
"PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)",
PciRoot,
Bridges,
PciDevFun[0],
PciDevFun[1]
);
} else if (NumNodes >= FirstNonBridge + 3 &&
SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "scsi") &&
SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "channel") &&
SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk")
) {
//
// OpenFirmware device path (virtio-scsi disk):
//
// /pci@i0cf8/scsi@7[,3]/channel@0/disk@2,3
// ^ ^ ^ ^ ^
// | | | | LUN
// | | | target
// | | channel (unused, fixed 0)
// | PCI slot[, function] holding SCSI controller
// PCI root at system bus port, PIO
//
// UEFI device path prefix:
//
// PciRoot(0x0)/Pci(0x7,0x0)/Scsi(0x2,0x3)
// -- if PCI function is 0 or absent
// PciRoot(0x0)/Pci(0x7,0x3)/Scsi(0x2,0x3)
// -- if PCI function is present and nonzero
//
UINT64 TargetLun[2];
TargetLun[1] = 0;
NumEntries = ARRAY_SIZE (TargetLun);
if (ParseUnitAddressHexList (
OfwNode[FirstNonBridge + 2].UnitAddress,
TargetLun,
&NumEntries
) != RETURN_SUCCESS
) {
return RETURN_UNSUPPORTED;
}
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
"PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Scsi(0x%Lx,0x%Lx)",
PciRoot,
Bridges,
PciDevFun[0],
PciDevFun[1],
TargetLun[0],
TargetLun[1]
);
} else if (NumNodes >= FirstNonBridge + 2 &&
SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "pci8086,5845") &&
SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "namespace")
) {
//
// OpenFirmware device path (NVMe device):
//
// /pci@i0cf8/pci8086,5845@6[,1]/namespace@1,0
// ^ ^ ^ ^ ^
// | | | | Extended Unique Identifier
// | | | | (EUI-64), big endian interp.
// | | | namespace ID
// | PCI slot & function holding NVMe controller
// PCI root at system bus port, PIO
//
// UEFI device path:
//
// PciRoot(0x0)/Pci(0x6,0x1)/NVMe(0x1,00-00-00-00-00-00-00-00)
// ^ ^
// | octets of the EUI-64
// | in address order
// namespace ID
//
UINT64 Namespace[2];
UINTN RequiredEntries;
UINT8 *Eui64;
RequiredEntries = ARRAY_SIZE (Namespace);
NumEntries = RequiredEntries;
if (ParseUnitAddressHexList (
OfwNode[FirstNonBridge + 1].UnitAddress,
Namespace,
&NumEntries
) != RETURN_SUCCESS ||
NumEntries != RequiredEntries ||
Namespace[0] == 0 ||
Namespace[0] >= MAX_UINT32
) {
return RETURN_UNSUPPORTED;
}
Eui64 = (UINT8 *)&Namespace[1];
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
"PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/"
"NVMe(0x%Lx,%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x)",
PciRoot,
Bridges,
PciDevFun[0],
PciDevFun[1],
Namespace[0],
Eui64[7], Eui64[6], Eui64[5], Eui64[4],
Eui64[3], Eui64[2], Eui64[1], Eui64[0]
);
OvmfPkg/QemuBootOrderLib: recognize "usb-storage" devices in XHCI ports The feature is primarily useful for modern AARCH64 guests that have no built-in virtio block / SCSI drivers; as on "qemu-system-aarch64 -M virt", there are no IDE or AHCI controllers that could be used as fallback. XHCI is available in "-M virt" however, and because XHCI predates AARCH64 by several years, said guests are expected to have built-in drivers for it. Other device models ("usb-uas", "usb-bot") are out of scope for now, similarly to USB1.x (UHCI) and USB2 (EHCI) host controllers, and similarly to USB hubs (which are USB1.1 only). In particular, port mapping between EHCI and companion UHCI controllers is very complex; it even leads to PCI slot/function differences between the OpenFirmware device paths exported by QEMU and the the UEFI device paths generated by edk2. The number of ports on the XHCI controller defaults to 4, but it can be raised via the "p3" property to 15. In addition, several XHCI controllers can be grouped into a single-slot, multi-function PCI device. These allow for a good number of usb-storage devices, while their desired boot order remains recognizable to this patch. In the example below, we create two XHCI controllers, grouped into PCI slot 00:02 as functions 0 and 1. Both controllers are given 15 ports. We attach a "usb-storage" device to controller 1 at port 3 (ports are 1-based in QEMU, 0-based in edk2), and attach another "usb-storage" device to controller 2 at port 9. QEMU command line options (NB. they apply equally to aarch64/virt and x86_64/{i440fx,q35}): -device qemu-xhci,id=xhci1,p3=15,addr=02.0,multifunction=on \ -device qemu-xhci,id=xhci2,p3=15,addr=02.1 \ \ -drive id=disk1,if=none,format=qcow2,$DISK1_OPTIONS \ -drive id=disk2,if=none,format=qcow2,$DISK2_OPTIONS \ \ -device usb-storage,drive=disk1,bus=xhci1.0,port=3,bootindex=1 \ -device usb-storage,drive=disk2,bus=xhci2.0,port=9,bootindex=2 \ Libvirt domain XML fragment: <controller type='usb' index='1' model='qemu-xhci' ports='15'> <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0' multifunction='on'/> </controller> <controller type='usb' index='2' model='qemu-xhci' ports='15'> <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x1'/> </controller> <disk type='file' device='disk'> <driver name='qemu' type='qcow2'/> <source file='...'/> <target dev='sda' bus='usb'/> <boot order='1'/> <address type='usb' bus='1' port='3'/> </disk> <disk type='file' device='disk'> <driver name='qemu' type='qcow2'/> <source file='...'/> <target dev='sdb' bus='usb'/> <boot order='2'/> <address type='usb' bus='2' port='9'/> </disk> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Gerd Hoffmann <kraxel@redhat.com> Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2017-09-14 13:08:10 +02:00
} else if (NumNodes >= FirstNonBridge + 2 &&
SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "usb") &&
SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "storage")) {
//
// OpenFirmware device path (usb-storage device in XHCI port):
//
// /pci@i0cf8/usb@3[,1]/storage@2/channel@0/disk@0,0
// ^ ^ ^ ^ ^ ^ ^
// | | | | fixed fixed
// | | | XHCI port number, 1-based
// | | PCI function corresponding to XHCI (optional)
// | PCI slot holding XHCI
// PCI root at system bus port, PIO
//
// UEFI device path prefix:
//
// PciRoot(0x0)/Pci(0x3,0x1)/USB(0x1,0x0)
// ^ ^
// | XHCI port number in 0-based notation
// 0x0 if PCI function is 0, or absent from OFW
//
RETURN_STATUS ParseStatus;
UINT64 OneBasedXhciPort;
NumEntries = 1;
ParseStatus = ParseUnitAddressHexList (
OfwNode[FirstNonBridge + 1].UnitAddress,
&OneBasedXhciPort,
&NumEntries
);
if (RETURN_ERROR (ParseStatus) || OneBasedXhciPort == 0) {
return RETURN_UNSUPPORTED;
}
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
"PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/USB(0x%Lx,0x0)",
PciRoot,
Bridges,
PciDevFun[0],
PciDevFun[1],
OneBasedXhciPort - 1
);
} else {
//
// Generic OpenFirmware device path for PCI devices:
//
// /pci@i0cf8/ethernet@3[,2]
// ^ ^
// | PCI slot[, function] holding Ethernet card
// PCI root at system bus port, PIO
//
// UEFI device path prefix (dependent on presence of nonzero PCI function):
//
// PciRoot(0x0)/Pci(0x3,0x0)
// PciRoot(0x0)/Pci(0x3,0x2)
//
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
"PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)",
PciRoot,
Bridges,
PciDevFun[0],
PciDevFun[1]
);
}
//
// There's no way to differentiate between "completely used up without
// truncation" and "truncated", so treat the former as the latter, and return
// success only for "some room left unused".
//
if (Written + 1 < *TranslatedSize) {
*TranslatedSize = Written;
return RETURN_SUCCESS;
}
return RETURN_BUFFER_TOO_SMALL;
}
//
// A type providing easy raw access to the base address of a virtio-mmio
// transport.
//
typedef union {
UINT64 Uint64;
UINT8 Raw[8];
} VIRTIO_MMIO_BASE_ADDRESS;
/**
Translate an MMIO-like array of OpenFirmware device nodes to a UEFI device
path fragment.
@param[in] OfwNode Array of OpenFirmware device nodes to
translate, constituting the beginning of an
OpenFirmware device path.
@param[in] NumNodes Number of elements in OfwNode.
@param[out] Translated Destination array receiving the UEFI path
fragment, allocated by the caller. If the
return value differs from RETURN_SUCCESS, its
contents is indeterminate.
@param[in out] TranslatedSize On input, the number of CHAR16's in
Translated. On RETURN_SUCCESS this parameter
is assigned the number of non-NUL CHAR16's
written to Translated. In case of other return
values, TranslatedSize is indeterminate.
@retval RETURN_SUCCESS Translation successful.
@retval RETURN_BUFFER_TOO_SMALL The translation does not fit into the number
of bytes provided.
@retval RETURN_UNSUPPORTED The array of OpenFirmware device nodes can't
be translated in the current implementation.
**/
STATIC
RETURN_STATUS
TranslateMmioOfwNodes (
IN CONST OFW_NODE *OfwNode,
IN UINTN NumNodes,
OUT CHAR16 *Translated,
IN OUT UINTN *TranslatedSize
)
{
VIRTIO_MMIO_BASE_ADDRESS VirtioMmioBase;
CHAR16 VenHwString[60 + 1];
UINTN NumEntries;
UINTN Written;
//
// Get the base address of the virtio-mmio transport.
//
if (NumNodes < REQUIRED_MMIO_OFW_NODES ||
!SubstringEq (OfwNode[0].DriverName, "virtio-mmio")
) {
return RETURN_UNSUPPORTED;
}
NumEntries = 1;
if (ParseUnitAddressHexList (
OfwNode[0].UnitAddress,
&VirtioMmioBase.Uint64,
&NumEntries
) != RETURN_SUCCESS
) {
return RETURN_UNSUPPORTED;
}
UnicodeSPrintAsciiFormat (VenHwString, sizeof VenHwString,
"VenHw(%g,%02X%02X%02X%02X%02X%02X%02X%02X)", &gVirtioMmioTransportGuid,
VirtioMmioBase.Raw[0], VirtioMmioBase.Raw[1], VirtioMmioBase.Raw[2],
VirtioMmioBase.Raw[3], VirtioMmioBase.Raw[4], VirtioMmioBase.Raw[5],
VirtioMmioBase.Raw[6], VirtioMmioBase.Raw[7]);
if (NumNodes >= 2 &&
SubstringEq (OfwNode[1].DriverName, "disk")) {
//
// OpenFirmware device path (virtio-blk disk):
//
// /virtio-mmio@000000000a003c00/disk@0,0
// ^ ^ ^
// | fixed
// base address of virtio-mmio register block
//
// UEFI device path prefix:
//
OvmfPkg/QemuBootOrderLib: drop too strict "/HD(" suffix from vblk prefix Translating QEMU's virtio-block OpenFirmware device path to a UEFI device path prefix was one of the earliest case handled in QemuBootOrderLib. At that time, I terminated the translation output (the UEFI devpath prefix) with a "/HD(" suffix. The intent was for the translation to prefix-match only boot options with HD() device path nodes in them, that is, no auto-generated "device level" boot options. This was motivated by prioritizing specific boot options created by OS installers over auto-generated "device level" options. However, practice has shown that: - OS installers place their installed boot options first in the boot order anyway, - other device types (SATA disks, virtio-scsi disks), where "/HD(" is not appended, work just fine, - requiring "/HD(" actually causes problems: after the OS-installed specific boot option has been lost (or purposely removed), the auto-generated "device level" boot option does the right thing (see the Default Boot Behavior under <http://blog.uncooperative.org/blog/2014/02/06/the-efi-system-partition/>). The "/HD(" requirement causes such boot options to be dropped, which prevents "fallback.efi" from running. Relax the matching by removing the "/HD(" suffix from the translated prefix. Cc: Jordan Justen <jordan.l.justen@intel.com> Fixes: e06a4cd134064590aa1a855ff4b973023279e805 Ref: https://bugzilla.redhat.com/show_bug.cgi?id=1373812 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-09-07 12:47:19 +02:00
// <VenHwString>
//
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
OvmfPkg/QemuBootOrderLib: drop too strict "/HD(" suffix from vblk prefix Translating QEMU's virtio-block OpenFirmware device path to a UEFI device path prefix was one of the earliest case handled in QemuBootOrderLib. At that time, I terminated the translation output (the UEFI devpath prefix) with a "/HD(" suffix. The intent was for the translation to prefix-match only boot options with HD() device path nodes in them, that is, no auto-generated "device level" boot options. This was motivated by prioritizing specific boot options created by OS installers over auto-generated "device level" options. However, practice has shown that: - OS installers place their installed boot options first in the boot order anyway, - other device types (SATA disks, virtio-scsi disks), where "/HD(" is not appended, work just fine, - requiring "/HD(" actually causes problems: after the OS-installed specific boot option has been lost (or purposely removed), the auto-generated "device level" boot option does the right thing (see the Default Boot Behavior under <http://blog.uncooperative.org/blog/2014/02/06/the-efi-system-partition/>). The "/HD(" requirement causes such boot options to be dropped, which prevents "fallback.efi" from running. Relax the matching by removing the "/HD(" suffix from the translated prefix. Cc: Jordan Justen <jordan.l.justen@intel.com> Fixes: e06a4cd134064590aa1a855ff4b973023279e805 Ref: https://bugzilla.redhat.com/show_bug.cgi?id=1373812 Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-09-07 12:47:19 +02:00
"%s",
VenHwString
);
} else if (NumNodes >= 3 &&
SubstringEq (OfwNode[1].DriverName, "channel") &&
SubstringEq (OfwNode[2].DriverName, "disk")) {
//
// OpenFirmware device path (virtio-scsi disk):
//
// /virtio-mmio@000000000a003a00/channel@0/disk@2,3
// ^ ^ ^ ^
// | | | LUN
// | | target
// | channel (unused, fixed 0)
// base address of virtio-mmio register block
//
// UEFI device path prefix:
//
// <VenHwString>/Scsi(0x2,0x3)
//
UINT64 TargetLun[2];
TargetLun[1] = 0;
NumEntries = ARRAY_SIZE (TargetLun);
if (ParseUnitAddressHexList (
OfwNode[2].UnitAddress,
TargetLun,
&NumEntries
) != RETURN_SUCCESS
) {
return RETURN_UNSUPPORTED;
}
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
"%s/Scsi(0x%Lx,0x%Lx)",
VenHwString,
TargetLun[0],
TargetLun[1]
);
} else if (NumNodes >= 2 &&
SubstringEq (OfwNode[1].DriverName, "ethernet-phy")) {
//
// OpenFirmware device path (virtio-net NIC):
//
// /virtio-mmio@000000000a003e00/ethernet-phy@0
// ^ ^
// | fixed
// base address of virtio-mmio register block
//
// UEFI device path prefix:
//
// <VenHwString>
//
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
"%s",
VenHwString
);
} else {
return RETURN_UNSUPPORTED;
}
//
// There's no way to differentiate between "completely used up without
// truncation" and "truncated", so treat the former as the latter, and return
// success only for "some room left unused".
//
if (Written + 1 < *TranslatedSize) {
*TranslatedSize = Written;
return RETURN_SUCCESS;
}
return RETURN_BUFFER_TOO_SMALL;
}
/**
Translate an array of OpenFirmware device nodes to a UEFI device path
fragment.
@param[in] OfwNode Array of OpenFirmware device nodes to
translate, constituting the beginning of an
OpenFirmware device path.
@param[in] NumNodes Number of elements in OfwNode.
@param[in] ExtraPciRoots An EXTRA_ROOT_BUS_MAP object created with
CreateExtraRootBusMap(), to be used for
translating positions of extra root buses to
bus numbers.
@param[out] Translated Destination array receiving the UEFI path
fragment, allocated by the caller. If the
return value differs from RETURN_SUCCESS, its
contents is indeterminate.
@param[in out] TranslatedSize On input, the number of CHAR16's in
Translated. On RETURN_SUCCESS this parameter
is assigned the number of non-NUL CHAR16's
written to Translated. In case of other return
values, TranslatedSize is indeterminate.
@retval RETURN_SUCCESS Translation successful.
@retval RETURN_BUFFER_TOO_SMALL The translation does not fit into the number
of bytes provided.
@retval RETURN_UNSUPPORTED The array of OpenFirmware device nodes can't
be translated in the current implementation.
@retval RETURN_PROTOCOL_ERROR The array of OpenFirmware device nodes has
been (partially) recognized, but it contains
a logic error / doesn't match system state.
**/
STATIC
RETURN_STATUS
TranslateOfwNodes (
IN CONST OFW_NODE *OfwNode,
IN UINTN NumNodes,
IN CONST EXTRA_ROOT_BUS_MAP *ExtraPciRoots,
OUT CHAR16 *Translated,
IN OUT UINTN *TranslatedSize
)
{
RETURN_STATUS Status;
Status = RETURN_UNSUPPORTED;
if (FeaturePcdGet (PcdQemuBootOrderPciTranslation)) {
Status = TranslatePciOfwNodes (OfwNode, NumNodes, ExtraPciRoots,
Translated, TranslatedSize);
}
if (Status == RETURN_UNSUPPORTED &&
FeaturePcdGet (PcdQemuBootOrderMmioTranslation)) {
Status = TranslateMmioOfwNodes (OfwNode, NumNodes, Translated,
TranslatedSize);
}
return Status;
}
/**
Translate an OpenFirmware device path fragment to a UEFI device path
fragment, and advance in the input string.
@param[in out] Ptr Address of the pointer pointing to the start
of the path string. After successful
translation (RETURN_SUCCESS) or at least
successful parsing (RETURN_UNSUPPORTED,
RETURN_BUFFER_TOO_SMALL), *Ptr is set to the
byte immediately following the consumed
characters. In other error cases, it points to
the byte that caused the error.
@param[in] ExtraPciRoots An EXTRA_ROOT_BUS_MAP object created with
CreateExtraRootBusMap(), to be used for
translating positions of extra root buses to
bus numbers.
@param[out] Translated Destination array receiving the UEFI path
fragment, allocated by the caller. If the
return value differs from RETURN_SUCCESS, its
contents is indeterminate.
@param[in out] TranslatedSize On input, the number of CHAR16's in
Translated. On RETURN_SUCCESS this parameter
is assigned the number of non-NUL CHAR16's
written to Translated. In case of other return
values, TranslatedSize is indeterminate.
@retval RETURN_SUCCESS Translation successful.
@retval RETURN_BUFFER_TOO_SMALL The OpenFirmware device path was parsed
successfully, but its translation did not
fit into the number of bytes provided.
Further calls to this function are
possible.
@retval RETURN_UNSUPPORTED The OpenFirmware device path was parsed
successfully, but it can't be translated in
the current implementation. Further calls
to this function are possible.
@retval RETURN_PROTOCOL_ERROR The OpenFirmware device path has been
(partially) recognized, but it contains a
logic error / doesn't match system state.
Further calls to this function are
possible.
@retval RETURN_NOT_FOUND Translation terminated. On input, *Ptr was
pointing to the empty string or "HALT". On
output, *Ptr points to the empty string
(ie. "HALT" is consumed transparently when
present).
@retval RETURN_INVALID_PARAMETER Parse error. This is a permanent error.
**/
STATIC
RETURN_STATUS
TranslateOfwPath (
IN OUT CONST CHAR8 **Ptr,
IN CONST EXTRA_ROOT_BUS_MAP *ExtraPciRoots,
OUT CHAR16 *Translated,
IN OUT UINTN *TranslatedSize
)
{
UINTN NumNodes;
RETURN_STATUS Status;
OFW_NODE Node[EXAMINED_OFW_NODES];
BOOLEAN IsFinal;
OFW_NODE Skip;
IsFinal = FALSE;
NumNodes = 0;
if (AsciiStrCmp (*Ptr, "HALT") == 0) {
*Ptr += 4;
Status = RETURN_NOT_FOUND;
} else {
Status = ParseOfwNode (Ptr, &Node[NumNodes], &IsFinal);
}
if (Status == RETURN_NOT_FOUND) {
DEBUG ((DEBUG_VERBOSE, "%a: no more nodes\n", __FUNCTION__));
return RETURN_NOT_FOUND;
}
while (Status == RETURN_SUCCESS && !IsFinal) {
++NumNodes;
Status = ParseOfwNode (
Ptr,
(NumNodes < EXAMINED_OFW_NODES) ? &Node[NumNodes] : &Skip,
&IsFinal
);
}
switch (Status) {
case RETURN_SUCCESS:
++NumNodes;
break;
case RETURN_INVALID_PARAMETER:
DEBUG ((DEBUG_VERBOSE, "%a: parse error\n", __FUNCTION__));
return RETURN_INVALID_PARAMETER;
default:
ASSERT (0);
}
Status = TranslateOfwNodes (
Node,
NumNodes < EXAMINED_OFW_NODES ? NumNodes : EXAMINED_OFW_NODES,
ExtraPciRoots,
Translated,
TranslatedSize);
switch (Status) {
case RETURN_SUCCESS:
DEBUG ((DEBUG_VERBOSE, "%a: success: \"%s\"\n", __FUNCTION__, Translated));
break;
case RETURN_BUFFER_TOO_SMALL:
DEBUG ((DEBUG_VERBOSE, "%a: buffer too small\n", __FUNCTION__));
break;
case RETURN_UNSUPPORTED:
DEBUG ((DEBUG_VERBOSE, "%a: unsupported\n", __FUNCTION__));
break;
case RETURN_PROTOCOL_ERROR:
DEBUG ((DEBUG_VERBOSE, "%a: logic error / system state mismatch\n",
__FUNCTION__));
break;
default:
ASSERT (0);
}
return Status;
}
OvmfPkg/QemuBootOrderLib: add ConnectDevicesFromQemu() QemuBootOrderLib expects PlatformBootManagerLib to call the following triplet: (1) EfiBootManagerConnectAll(), (2) EfiBootManagerRefreshAllBootOption(), (3) SetBootOrderFromQemu(). This leads to bad performance, when many devices exist such that the firmware can drive them, but they aren't marked for booting in the "bootorder" fw_cfg file. Namely, (1) EfiBootManagerConnectAll() talks to all hardware, which takes long. Plus some DriverBindingStart() functions write NV variables, which is also slow. (For example, the IP config policy for each NIC is stored in an NV var that is named after the MAC). (2) EfiBootManagerRefreshAllBootOption() generates boot options from the protocol instances produced by (1). Writing boot options is slow. (3) Under the above circumstances, SetBootOrderFromQemu() removes most of the boot options produced by (2). Erasing boot options is slow. Introduce ConnectDevicesFromQemu() as a replacement for (1): only connect devices that the QEMU user actually wants to boot off of. (There's a slight loss of compatibility when a platform switches from EfiBootManagerConnectAll() to ConnectDevicesFromQemu(). EfiBootManagerConnectAll() may produce UEFI device paths that are unknown to QemuBootOrderLib (that is, for neither PCI- nor virtio-mmio-based devices). The BootOrderComplete() function lets such unmatched boot options survive at the end of the boot order. With ConnectDevicesFromQemu(), these options will not be auto-generated in the first place. They may still be produced by other means. SetBootOrderFromQemu() is not modified in any way; reordering+filtering boot options remains a separate task.) Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Shannon Zhao <zhaoshenglong@huawei.com> Cc: Xiang Zheng <xiang.zheng@linaro.org> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> # ArmVirtQemu Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Xiang Zheng <xiang.zheng@linaro.org>
2018-03-13 18:37:17 +01:00
/**
Connect devices based on the boot order retrieved from QEMU.
Attempt to retrieve the "bootorder" fw_cfg file from QEMU. Translate the
OpenFirmware device paths therein to UEFI device path fragments. Connect the
devices identified by the UEFI devpath prefixes as narrowly as possible, then
connect all their child devices, recursively.
If this function fails, then platform BDS should fall back to
EfiBootManagerConnectAll(), or some other method for connecting any expected
boot devices.
@retval RETURN_SUCCESS The "bootorder" fw_cfg file has been
parsed, and the referenced device-subtrees
have been connected.
@retval RETURN_UNSUPPORTED QEMU's fw_cfg is not supported.
@retval RETURN_NOT_FOUND Empty or nonexistent "bootorder" fw_cfg
file.
@retval RETURN_INVALID_PARAMETER Parse error in the "bootorder" fw_cfg file.
@retval RETURN_OUT_OF_RESOURCES Memory allocation failed.
@return Error statuses propagated from underlying
functions.
**/
RETURN_STATUS
EFIAPI
ConnectDevicesFromQemu (
VOID
)
{
RETURN_STATUS Status;
FIRMWARE_CONFIG_ITEM FwCfgItem;
UINTN FwCfgSize;
CHAR8 *FwCfg;
EFI_STATUS EfiStatus;
EXTRA_ROOT_BUS_MAP *ExtraPciRoots;
CONST CHAR8 *FwCfgPtr;
UINTN NumConnected;
UINTN TranslatedSize;
CHAR16 Translated[TRANSLATION_OUTPUT_SIZE];
Status = QemuFwCfgFindFile ("bootorder", &FwCfgItem, &FwCfgSize);
if (RETURN_ERROR (Status)) {
return Status;
}
if (FwCfgSize == 0) {
return RETURN_NOT_FOUND;
}
FwCfg = AllocatePool (FwCfgSize);
if (FwCfg == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
QemuFwCfgSelectItem (FwCfgItem);
QemuFwCfgReadBytes (FwCfgSize, FwCfg);
if (FwCfg[FwCfgSize - 1] != '\0') {
Status = RETURN_INVALID_PARAMETER;
goto FreeFwCfg;
}
DEBUG ((DEBUG_VERBOSE, "%a: FwCfg:\n", __FUNCTION__));
DEBUG ((DEBUG_VERBOSE, "%a\n", FwCfg));
DEBUG ((DEBUG_VERBOSE, "%a: FwCfg: <end>\n", __FUNCTION__));
if (FeaturePcdGet (PcdQemuBootOrderPciTranslation)) {
EfiStatus = CreateExtraRootBusMap (&ExtraPciRoots);
if (EFI_ERROR (EfiStatus)) {
Status = (RETURN_STATUS)EfiStatus;
goto FreeFwCfg;
}
} else {
ExtraPciRoots = NULL;
}
//
// Translate each OpenFirmware path to a UEFI devpath prefix.
//
FwCfgPtr = FwCfg;
NumConnected = 0;
TranslatedSize = ARRAY_SIZE (Translated);
Status = TranslateOfwPath (&FwCfgPtr, ExtraPciRoots, Translated,
&TranslatedSize);
while (!RETURN_ERROR (Status)) {
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_HANDLE Controller;
//
// Convert the UEFI devpath prefix to binary representation.
//
ASSERT (Translated[TranslatedSize] == L'\0');
DevicePath = ConvertTextToDevicePath (Translated);
if (DevicePath == NULL) {
Status = RETURN_OUT_OF_RESOURCES;
goto FreeExtraPciRoots;
}
//
// Advance along DevicePath, connecting the nodes individually, and asking
// drivers not to produce sibling nodes. Retrieve the controller handle
// associated with the full DevicePath -- this is the device that QEMU's
// OFW devpath refers to.
//
EfiStatus = EfiBootManagerConnectDevicePath (DevicePath, &Controller);
FreePool (DevicePath);
if (EFI_ERROR (EfiStatus)) {
Status = (RETURN_STATUS)EfiStatus;
goto FreeExtraPciRoots;
}
//
// Because QEMU's OFW devpaths have lesser expressive power than UEFI
// devpaths (i.e., DevicePath is considered a prefix), connect the tree
// rooted at Controller, recursively. If no children are produced
// (EFI_NOT_FOUND), that's OK.
//
EfiStatus = gBS->ConnectController (Controller, NULL, NULL, TRUE);
if (EFI_ERROR (EfiStatus) && EfiStatus != EFI_NOT_FOUND) {
Status = (RETURN_STATUS)EfiStatus;
goto FreeExtraPciRoots;
}
++NumConnected;
//
// Move to the next OFW devpath.
//
TranslatedSize = ARRAY_SIZE (Translated);
Status = TranslateOfwPath (&FwCfgPtr, ExtraPciRoots, Translated,
&TranslatedSize);
}
if (Status == RETURN_NOT_FOUND && NumConnected > 0) {
DEBUG ((DEBUG_INFO, "%a: %Lu OpenFirmware device path(s) connected\n",
__FUNCTION__, (UINT64)NumConnected));
Status = RETURN_SUCCESS;
}
FreeExtraPciRoots:
if (ExtraPciRoots != NULL) {
DestroyExtraRootBusMap (ExtraPciRoots);
}
FreeFwCfg:
FreePool (FwCfg);
return Status;
}
/**
Convert the UEFI DevicePath to full text representation with DevPathToText,
then match the UEFI device path fragment in Translated against it.
@param[in] Translated UEFI device path fragment, translated from
OpenFirmware format, to search for.
@param[in] TranslatedLength The length of Translated in CHAR16's.
@param[in] DevicePath Boot option device path whose textual rendering
to search in.
@param[in] DevPathToText Binary-to-text conversion protocol for DevicePath.
@retval TRUE If Translated was found at the beginning of DevicePath after
converting the latter to text.
@retval FALSE If DevicePath was NULL, or it could not be converted, or there
was no match.
**/
STATIC
BOOLEAN
Match (
IN CONST CHAR16 *Translated,
IN UINTN TranslatedLength,
IN EFI_DEVICE_PATH_PROTOCOL *DevicePath
)
{
CHAR16 *Converted;
BOOLEAN Result;
VOID *FileBuffer;
UINTN FileSize;
EFI_DEVICE_PATH_PROTOCOL *AbsDevicePath;
CHAR16 *AbsConverted;
BOOLEAN Shortform;
EFI_DEVICE_PATH_PROTOCOL *Node;
Converted = ConvertDevicePathToText (
DevicePath,
FALSE, // DisplayOnly
FALSE // AllowShortcuts
);
if (Converted == NULL) {
return FALSE;
}
Result = FALSE;
Shortform = FALSE;
//
// Expand the short-form device path to full device path
//
if ((DevicePathType (DevicePath) == MEDIA_DEVICE_PATH) &&
(DevicePathSubType (DevicePath) == MEDIA_HARDDRIVE_DP)) {
//
// Harddrive shortform device path
//
Shortform = TRUE;
} else if ((DevicePathType (DevicePath) == MEDIA_DEVICE_PATH) &&
(DevicePathSubType (DevicePath) == MEDIA_FILEPATH_DP)) {
//
// File-path shortform device path
//
Shortform = TRUE;
} else if ((DevicePathType (DevicePath) == MESSAGING_DEVICE_PATH) &&
(DevicePathSubType (DevicePath) == MSG_URI_DP)) {
//
// URI shortform device path
//
Shortform = TRUE;
} else {
for ( Node = DevicePath
; !IsDevicePathEnd (Node)
; Node = NextDevicePathNode (Node)
) {
if ((DevicePathType (Node) == MESSAGING_DEVICE_PATH) &&
((DevicePathSubType (Node) == MSG_USB_CLASS_DP) ||
(DevicePathSubType (Node) == MSG_USB_WWID_DP))) {
Shortform = TRUE;
break;
}
}
}
//
// Attempt to expand any relative UEFI device path to
// an absolute device path first.
//
if (Shortform) {
FileBuffer = EfiBootManagerGetLoadOptionBuffer (
DevicePath, &AbsDevicePath, &FileSize
);
if (FileBuffer == NULL) {
goto Exit;
}
FreePool (FileBuffer);
AbsConverted = ConvertDevicePathToText (AbsDevicePath, FALSE, FALSE);
FreePool (AbsDevicePath);
if (AbsConverted == NULL) {
goto Exit;
}
DEBUG ((DEBUG_VERBOSE,
"%a: expanded relative device path \"%s\" for prefix matching\n",
__FUNCTION__, Converted));
FreePool (Converted);
Converted = AbsConverted;
}
//
// Is Translated a prefix of Converted?
//
Result = (BOOLEAN)(StrnCmp (Converted, Translated, TranslatedLength) == 0);
DEBUG ((
DEBUG_VERBOSE,
"%a: against \"%s\": %a\n",
__FUNCTION__,
Converted,
Result ? "match" : "no match"
));
Exit:
FreePool (Converted);
return Result;
}
/**
Append some of the unselected active boot options to the boot order.
This function should accommodate any further policy changes in "boot option
survival". Currently we're adding back everything that starts with neither
PciRoot() nor HD() nor a virtio-mmio VenHw() node.
@param[in,out] BootOrder The structure holding the boot order to
complete. The caller is responsible for
initializing (and potentially populating) it
before calling this function.
@param[in,out] ActiveOption The array of active boot options to scan.
Entries marked as Appended will be skipped.
Those of the rest that satisfy the survival
policy will be added to BootOrder with
BootOrderAppend().
@param[in] ActiveCount Number of elements in ActiveOption.
@retval RETURN_SUCCESS BootOrder has been extended with any eligible boot
options.
@return Error codes returned by BootOrderAppend().
**/
STATIC
RETURN_STATUS
BootOrderComplete (
IN OUT BOOT_ORDER *BootOrder,
IN OUT ACTIVE_OPTION *ActiveOption,
IN UINTN ActiveCount
)
{
RETURN_STATUS Status;
UINTN Idx;
Status = RETURN_SUCCESS;
Idx = 0;
while (!RETURN_ERROR (Status) && Idx < ActiveCount) {
if (!ActiveOption[Idx].Appended) {
CONST EFI_BOOT_MANAGER_LOAD_OPTION *Current;
CONST EFI_DEVICE_PATH_PROTOCOL *FirstNode;
Current = ActiveOption[Idx].BootOption;
FirstNode = Current->FilePath;
if (FirstNode != NULL) {
CHAR16 *Converted;
STATIC CHAR16 ConvFallBack[] = L"<unable to convert>";
BOOLEAN Keep;
Converted = ConvertDevicePathToText (FirstNode, FALSE, FALSE);
if (Converted == NULL) {
Converted = ConvFallBack;
}
Keep = TRUE;
if (DevicePathType(FirstNode) == MEDIA_DEVICE_PATH &&
DevicePathSubType(FirstNode) == MEDIA_HARDDRIVE_DP) {
//
// drop HD()
//
Keep = FALSE;
} else if (DevicePathType(FirstNode) == ACPI_DEVICE_PATH &&
DevicePathSubType(FirstNode) == ACPI_DP) {
ACPI_HID_DEVICE_PATH *Acpi;
Acpi = (ACPI_HID_DEVICE_PATH *) FirstNode;
if ((Acpi->HID & PNP_EISA_ID_MASK) == PNP_EISA_ID_CONST &&
EISA_ID_TO_NUM (Acpi->HID) == 0x0a03) {
//
// drop PciRoot() if we enabled the user to select PCI-like boot
// options, by providing translation for such OFW device path
// fragments
//
Keep = !FeaturePcdGet (PcdQemuBootOrderPciTranslation);
}
} else if (DevicePathType(FirstNode) == HARDWARE_DEVICE_PATH &&
DevicePathSubType(FirstNode) == HW_VENDOR_DP) {
VENDOR_DEVICE_PATH *VenHw;
VenHw = (VENDOR_DEVICE_PATH *)FirstNode;
if (CompareGuid (&VenHw->Guid, &gVirtioMmioTransportGuid)) {
//
// drop virtio-mmio if we enabled the user to select boot options
// referencing such device paths
//
Keep = !FeaturePcdGet (PcdQemuBootOrderMmioTranslation);
}
}
if (Keep) {
Status = BootOrderAppend (BootOrder, &ActiveOption[Idx]);
if (!RETURN_ERROR (Status)) {
DEBUG ((DEBUG_VERBOSE, "%a: keeping \"%s\"\n", __FUNCTION__,
Converted));
}
} else {
DEBUG ((DEBUG_VERBOSE, "%a: dropping \"%s\"\n", __FUNCTION__,
Converted));
}
if (Converted != ConvFallBack) {
FreePool (Converted);
}
}
}
++Idx;
}
return Status;
}
/**
Delete Boot#### variables that stand for such active boot options that have
been dropped (ie. have not been selected by either matching or "survival
policy").
@param[in] ActiveOption The array of active boot options to scan. Each
entry not marked as appended will trigger the
deletion of the matching Boot#### variable.
@param[in] ActiveCount Number of elements in ActiveOption.
**/
STATIC
VOID
PruneBootVariables (
IN CONST ACTIVE_OPTION *ActiveOption,
IN UINTN ActiveCount
)
{
UINTN Idx;
for (Idx = 0; Idx < ActiveCount; ++Idx) {
if (!ActiveOption[Idx].Appended) {
CHAR16 VariableName[9];
UnicodeSPrintAsciiFormat (VariableName, sizeof VariableName, "Boot%04x",
ActiveOption[Idx].BootOption->OptionNumber);
//
// "The space consumed by the deleted variable may not be available until
// the next power cycle", but that's good enough.
//
gRT->SetVariable (VariableName, &gEfiGlobalVariableGuid,
0, // Attributes, 0 means deletion
0, // DataSize, 0 means deletion
NULL // Data
);
}
}
}
/**
Set the boot order based on configuration retrieved from QEMU.
Attempt to retrieve the "bootorder" fw_cfg file from QEMU. Translate the
OpenFirmware device paths therein to UEFI device path fragments. Match the
translated fragments against the current list of boot options, and rewrite
the BootOrder NvVar so that it corresponds to the order described in fw_cfg.
OvmfPkg/QemuBootOrderLib: add ConnectDevicesFromQemu() QemuBootOrderLib expects PlatformBootManagerLib to call the following triplet: (1) EfiBootManagerConnectAll(), (2) EfiBootManagerRefreshAllBootOption(), (3) SetBootOrderFromQemu(). This leads to bad performance, when many devices exist such that the firmware can drive them, but they aren't marked for booting in the "bootorder" fw_cfg file. Namely, (1) EfiBootManagerConnectAll() talks to all hardware, which takes long. Plus some DriverBindingStart() functions write NV variables, which is also slow. (For example, the IP config policy for each NIC is stored in an NV var that is named after the MAC). (2) EfiBootManagerRefreshAllBootOption() generates boot options from the protocol instances produced by (1). Writing boot options is slow. (3) Under the above circumstances, SetBootOrderFromQemu() removes most of the boot options produced by (2). Erasing boot options is slow. Introduce ConnectDevicesFromQemu() as a replacement for (1): only connect devices that the QEMU user actually wants to boot off of. (There's a slight loss of compatibility when a platform switches from EfiBootManagerConnectAll() to ConnectDevicesFromQemu(). EfiBootManagerConnectAll() may produce UEFI device paths that are unknown to QemuBootOrderLib (that is, for neither PCI- nor virtio-mmio-based devices). The BootOrderComplete() function lets such unmatched boot options survive at the end of the boot order. With ConnectDevicesFromQemu(), these options will not be auto-generated in the first place. They may still be produced by other means. SetBootOrderFromQemu() is not modified in any way; reordering+filtering boot options remains a separate task.) Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Shannon Zhao <zhaoshenglong@huawei.com> Cc: Xiang Zheng <xiang.zheng@linaro.org> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> # ArmVirtQemu Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Xiang Zheng <xiang.zheng@linaro.org>
2018-03-13 18:37:17 +01:00
Platform BDS should call this function after connecting any expected boot
devices and calling EfiBootManagerRefreshAllBootOption ().
@retval RETURN_SUCCESS BootOrder NvVar rewritten.
@retval RETURN_UNSUPPORTED QEMU's fw_cfg is not supported.
@retval RETURN_NOT_FOUND Empty or nonexistent "bootorder" fw_cfg
file, or no match found between the
"bootorder" fw_cfg file and BootOptionList.
@retval RETURN_INVALID_PARAMETER Parse error in the "bootorder" fw_cfg file.
@retval RETURN_OUT_OF_RESOURCES Memory allocation failed.
@return Values returned by gBS->LocateProtocol ()
or gRT->SetVariable ().
**/
RETURN_STATUS
EFIAPI
SetBootOrderFromQemu (
VOID
)
{
RETURN_STATUS Status;
FIRMWARE_CONFIG_ITEM FwCfgItem;
UINTN FwCfgSize;
CHAR8 *FwCfg;
CONST CHAR8 *FwCfgPtr;
BOOT_ORDER BootOrder;
ACTIVE_OPTION *ActiveOption;
UINTN ActiveCount;
EXTRA_ROOT_BUS_MAP *ExtraPciRoots;
UINTN TranslatedSize;
CHAR16 Translated[TRANSLATION_OUTPUT_SIZE];
EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
UINTN BootOptionCount;
Status = QemuFwCfgFindFile ("bootorder", &FwCfgItem, &FwCfgSize);
if (Status != RETURN_SUCCESS) {
return Status;
}
if (FwCfgSize == 0) {
return RETURN_NOT_FOUND;
}
FwCfg = AllocatePool (FwCfgSize);
if (FwCfg == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
QemuFwCfgSelectItem (FwCfgItem);
QemuFwCfgReadBytes (FwCfgSize, FwCfg);
if (FwCfg[FwCfgSize - 1] != '\0') {
Status = RETURN_INVALID_PARAMETER;
goto ErrorFreeFwCfg;
}
DEBUG ((DEBUG_VERBOSE, "%a: FwCfg:\n", __FUNCTION__));
DEBUG ((DEBUG_VERBOSE, "%a\n", FwCfg));
DEBUG ((DEBUG_VERBOSE, "%a: FwCfg: <end>\n", __FUNCTION__));
FwCfgPtr = FwCfg;
BootOrder.Produced = 0;
BootOrder.Allocated = 1;
BootOrder.Data = AllocatePool (
BootOrder.Allocated * sizeof (*BootOrder.Data)
);
if (BootOrder.Data == NULL) {
Status = RETURN_OUT_OF_RESOURCES;
goto ErrorFreeFwCfg;
}
BootOptions = EfiBootManagerGetLoadOptions (
&BootOptionCount, LoadOptionTypeBoot
);
if (BootOptions == NULL) {
Status = RETURN_NOT_FOUND;
goto ErrorFreeBootOrder;
}
Status = CollectActiveOptions (
BootOptions, BootOptionCount, &ActiveOption, &ActiveCount
);
if (RETURN_ERROR (Status)) {
goto ErrorFreeBootOptions;
}
if (FeaturePcdGet (PcdQemuBootOrderPciTranslation)) {
Status = CreateExtraRootBusMap (&ExtraPciRoots);
if (EFI_ERROR (Status)) {
goto ErrorFreeActiveOption;
}
} else {
ExtraPciRoots = NULL;
}
//
// translate each OpenFirmware path
//
TranslatedSize = ARRAY_SIZE (Translated);
Status = TranslateOfwPath (&FwCfgPtr, ExtraPciRoots, Translated,
&TranslatedSize);
while (Status == RETURN_SUCCESS ||
Status == RETURN_UNSUPPORTED ||
Status == RETURN_PROTOCOL_ERROR ||
Status == RETURN_BUFFER_TOO_SMALL) {
if (Status == RETURN_SUCCESS) {
UINTN Idx;
//
// match translated OpenFirmware path against all active boot options
//
for (Idx = 0; Idx < ActiveCount; ++Idx) {
OvmfPkg/QemuBootOrderLib: skip already matched / appended UEFI boot opts The SetBootOrderFromQemu() function implements a nested loop where - the outer loop iterates over all OpenFirmware (OFW) device paths in the QEMU boot order, and translates each to a UEFI device path prefix; - the inner loop matches the current (translated) prefix against all active UEFI boot options in turn; - if the UEFI boot option is matched by the translated prefix, the UEFI boot option is appended to the "new" UEFI boot order, and marked as "has been appended". This patch adds a micro-optimization where already matched / appended UEFI boot options are skipped in the inner loop. This is not a functional change. A functional change would be if, as a consequence of the patch, some UEFI boot options would no longer be *doubly* matched. For a UEFI boot option to be matched by two translated prefixes, one of those prefixes would have to be a (proper, or equal) prefix of the other prefix. The PCI and MMIO OFW translation routines output such only in the following cases: - When the original OFW device paths are prefixes of each other. This is not possible from the QEMU side. (Only leaf devices are bootable.) - When the translation rules in the routines are incomplete, and don't look at the OFW device paths for sufficient length (i.e., at nodes where they would already differ, and the difference would show up in the translation output). This would be a shortcoming of the translation routines and should be fixed in TranslatePciOfwNodes() and TranslateMmioOfwNodes(), whenever identified. Even in the second case, this patch would replace the double appending of a single UEFI boot option (matched by two different OFW device paths) with a correct, or cross-, matching of two different UEFI boot options. Again, this is not expected, but arguably it would be more correct than duplicate boot option appending, should it occur due to any (unexpected, unknown) lack of detail in the translation routines. Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Jordan Justen <jordan.l.justen@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2017-11-27 18:16:27 +01:00
if (!ActiveOption[Idx].Appended &&
Match (
Translated,
TranslatedSize, // contains length, not size, in CHAR16's here
ActiveOption[Idx].BootOption->FilePath
)
) {
//
// match found, store ID and continue with next OpenFirmware path
//
Status = BootOrderAppend (&BootOrder, &ActiveOption[Idx]);
if (Status != RETURN_SUCCESS) {
goto ErrorFreeExtraPciRoots;
}
}
} // scanned all active boot options
} // translation successful
TranslatedSize = ARRAY_SIZE (Translated);
Status = TranslateOfwPath (&FwCfgPtr, ExtraPciRoots, Translated,
&TranslatedSize);
} // scanning of OpenFirmware paths done
if (Status == RETURN_NOT_FOUND && BootOrder.Produced > 0) {
//
// No more OpenFirmware paths, some matches found: rewrite BootOrder NvVar.
// Some of the active boot options that have not been selected over fw_cfg
// should be preserved at the end of the boot order.
//
Status = BootOrderComplete (&BootOrder, ActiveOption, ActiveCount);
if (RETURN_ERROR (Status)) {
goto ErrorFreeExtraPciRoots;
}
//
// See Table 10 in the UEFI Spec 2.3.1 with Errata C for the required
// attributes.
//
Status = gRT->SetVariable (
L"BootOrder",
&gEfiGlobalVariableGuid,
EFI_VARIABLE_NON_VOLATILE |
EFI_VARIABLE_BOOTSERVICE_ACCESS |
EFI_VARIABLE_RUNTIME_ACCESS,
BootOrder.Produced * sizeof (*BootOrder.Data),
BootOrder.Data
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: setting BootOrder: %r\n", __FUNCTION__,
Status));
goto ErrorFreeExtraPciRoots;
}
DEBUG ((DEBUG_INFO, "%a: setting BootOrder: success\n", __FUNCTION__));
PruneBootVariables (ActiveOption, ActiveCount);
}
ErrorFreeExtraPciRoots:
if (ExtraPciRoots != NULL) {
DestroyExtraRootBusMap (ExtraPciRoots);
}
ErrorFreeActiveOption:
FreePool (ActiveOption);
ErrorFreeBootOptions:
EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount);
ErrorFreeBootOrder:
FreePool (BootOrder.Data);
ErrorFreeFwCfg:
FreePool (FwCfg);
return Status;
}
/**
Calculate the number of seconds we should be showing the FrontPage progress
bar for.
@return The TimeoutDefault argument for PlatformBdsEnterFrontPage().
**/
UINT16
EFIAPI
GetFrontPageTimeoutFromQemu (
VOID
)
{
FIRMWARE_CONFIG_ITEM BootMenuWaitItem;
UINTN BootMenuWaitSize;
QemuFwCfgSelectItem (QemuFwCfgItemBootMenu);
if (QemuFwCfgRead16 () == 0) {
//
// The user specified "-boot menu=off", or didn't specify "-boot
// menu=(on|off)" at all. Return the platform default.
//
return PcdGet16 (PcdPlatformBootTimeOut);
}
if (RETURN_ERROR (QemuFwCfgFindFile ("etc/boot-menu-wait", &BootMenuWaitItem,
&BootMenuWaitSize)) ||
BootMenuWaitSize != sizeof (UINT16)) {
//
// "-boot menu=on" was specified without "splash-time=N". In this case,
// return three seconds if the platform default would cause us to skip the
// front page, and return the platform default otherwise.
//
UINT16 Timeout;
Timeout = PcdGet16 (PcdPlatformBootTimeOut);
if (Timeout == 0) {
Timeout = 3;
}
return Timeout;
}
//
// "-boot menu=on,splash-time=N" was specified, where N is in units of
// milliseconds. The Intel BDS Front Page progress bar only supports whole
// seconds, round N up.
//
QemuFwCfgSelectItem (BootMenuWaitItem);
return (UINT16)((QemuFwCfgRead16 () + 999) / 1000);
}