audk/UefiCpuPkg/Library/CpuExceptionHandlerLib/Ia32/ArchExceptionHandler.c

428 lines
14 KiB
C
Raw Normal View History

/** @file
IA32 CPU Exception Handler functons.
Copyright (c) 2012 - 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "CpuExceptionCommon.h"
/**
Return address map of exception handler template so that C code can generate
exception tables.
@param IdtEntry Pointer to IDT entry to be updated.
@param InterruptHandler IDT handler value.
**/
VOID
ArchUpdateIdtEntry (
IN IA32_IDT_GATE_DESCRIPTOR *IdtEntry,
IN UINTN InterruptHandler
)
{
IdtEntry->Bits.OffsetLow = (UINT16)(UINTN)InterruptHandler;
IdtEntry->Bits.OffsetHigh = (UINT16)((UINTN)InterruptHandler >> 16);
IdtEntry->Bits.GateType = IA32_IDT_GATE_TYPE_INTERRUPT_32;
}
/**
Read IDT handler value from IDT entry.
@param IdtEntry Pointer to IDT entry to be read.
**/
UINTN
ArchGetIdtHandler (
IN IA32_IDT_GATE_DESCRIPTOR *IdtEntry
)
{
return (UINTN)IdtEntry->Bits.OffsetLow + (((UINTN)IdtEntry->Bits.OffsetHigh) << 16);
}
/**
Save CPU exception context when handling EFI_VECTOR_HANDOFF_HOOK_AFTER case.
@param[in] ExceptionType Exception type.
@param[in] SystemContext Pointer to EFI_SYSTEM_CONTEXT.
@param[in] ExceptionHandlerData Pointer to exception handler data.
**/
VOID
ArchSaveExceptionContext (
IN UINTN ExceptionType,
IN EFI_SYSTEM_CONTEXT SystemContext,
IN EXCEPTION_HANDLER_DATA *ExceptionHandlerData
)
{
IA32_EFLAGS32 Eflags;
RESERVED_VECTORS_DATA *ReservedVectors;
ReservedVectors = ExceptionHandlerData->ReservedVectors;
//
// Save Exception context in global variable
//
ReservedVectors[ExceptionType].OldFlags = SystemContext.SystemContextIa32->Eflags;
ReservedVectors[ExceptionType].OldCs = SystemContext.SystemContextIa32->Cs;
ReservedVectors[ExceptionType].OldIp = SystemContext.SystemContextIa32->Eip;
ReservedVectors[ExceptionType].ExceptionData = SystemContext.SystemContextIa32->ExceptionData;
//
// Clear IF flag to avoid old IDT handler enable interrupt by IRET
//
Eflags.UintN = SystemContext.SystemContextIa32->Eflags;
Eflags.Bits.IF = 0;
SystemContext.SystemContextIa32->Eflags = Eflags.UintN;
//
// Modify the EIP in stack, then old IDT handler will return to the stub code
//
SystemContext.SystemContextIa32->Eip = (UINTN) ReservedVectors[ExceptionType].HookAfterStubHeaderCode;
}
/**
Restore CPU exception context when handling EFI_VECTOR_HANDOFF_HOOK_AFTER case.
@param[in] ExceptionType Exception type.
@param[in] SystemContext Pointer to EFI_SYSTEM_CONTEXT.
@param[in] ExceptionHandlerData Pointer to exception handler data.
**/
VOID
ArchRestoreExceptionContext (
IN UINTN ExceptionType,
IN EFI_SYSTEM_CONTEXT SystemContext,
IN EXCEPTION_HANDLER_DATA *ExceptionHandlerData
)
{
RESERVED_VECTORS_DATA *ReservedVectors;
ReservedVectors = ExceptionHandlerData->ReservedVectors;
SystemContext.SystemContextIa32->Eflags = ReservedVectors[ExceptionType].OldFlags;
SystemContext.SystemContextIa32->Cs = ReservedVectors[ExceptionType].OldCs;
SystemContext.SystemContextIa32->Eip = ReservedVectors[ExceptionType].OldIp;
SystemContext.SystemContextIa32->ExceptionData = ReservedVectors[ExceptionType].ExceptionData;
}
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
/**
Setup separate stack for given exceptions.
@param[in] StackSwitchData Pointer to data required for setuping up
stack switch.
@retval EFI_SUCCESS The exceptions have been successfully
initialized with new stack.
@retval EFI_INVALID_PARAMETER StackSwitchData contains invalid content.
**/
EFI_STATUS
ArchSetupExcpetionStack (
IN CPU_EXCEPTION_INIT_DATA *StackSwitchData
)
{
IA32_DESCRIPTOR Gdtr;
IA32_DESCRIPTOR Idtr;
IA32_IDT_GATE_DESCRIPTOR *IdtTable;
IA32_TSS_DESCRIPTOR *TssDesc;
IA32_TASK_STATE_SEGMENT *Tss;
UINTN StackTop;
UINTN Index;
UINTN Vector;
UINTN TssBase;
UINTN GdtSize;
EXCEPTION_HANDLER_TEMPLATE_MAP TemplateMap;
if (StackSwitchData == NULL ||
StackSwitchData->Ia32.Revision != CPU_EXCEPTION_INIT_DATA_REV ||
StackSwitchData->Ia32.KnownGoodStackTop == 0 ||
StackSwitchData->Ia32.KnownGoodStackSize == 0 ||
StackSwitchData->Ia32.StackSwitchExceptions == NULL ||
StackSwitchData->Ia32.StackSwitchExceptionNumber == 0 ||
StackSwitchData->Ia32.StackSwitchExceptionNumber > CPU_EXCEPTION_NUM ||
StackSwitchData->Ia32.GdtTable == NULL ||
StackSwitchData->Ia32.IdtTable == NULL ||
StackSwitchData->Ia32.ExceptionTssDesc == NULL ||
StackSwitchData->Ia32.ExceptionTss == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// The caller is responsible for that the GDT table, no matter the existing
// one or newly allocated, has enough space to hold descriptors for exception
// task-state segments.
//
if (((UINTN)StackSwitchData->Ia32.GdtTable & (IA32_GDT_ALIGNMENT - 1)) != 0) {
return EFI_INVALID_PARAMETER;
}
if ((UINTN)StackSwitchData->Ia32.ExceptionTssDesc < (UINTN)(StackSwitchData->Ia32.GdtTable)) {
return EFI_INVALID_PARAMETER;
}
if ((UINTN)StackSwitchData->Ia32.ExceptionTssDesc + StackSwitchData->Ia32.ExceptionTssDescSize >
((UINTN)(StackSwitchData->Ia32.GdtTable) + StackSwitchData->Ia32.GdtTableSize)) {
return EFI_INVALID_PARAMETER;
}
//
// We need one descriptor and one TSS for current task and every exception
// specified.
//
if (StackSwitchData->Ia32.ExceptionTssDescSize <
sizeof (IA32_TSS_DESCRIPTOR) * (StackSwitchData->Ia32.StackSwitchExceptionNumber + 1)) {
return EFI_INVALID_PARAMETER;
}
if (StackSwitchData->Ia32.ExceptionTssSize <
sizeof (IA32_TASK_STATE_SEGMENT) * (StackSwitchData->Ia32.StackSwitchExceptionNumber + 1)) {
return EFI_INVALID_PARAMETER;
}
TssDesc = StackSwitchData->Ia32.ExceptionTssDesc;
Tss = StackSwitchData->Ia32.ExceptionTss;
//
// Initialize new GDT table and/or IDT table, if any
//
AsmReadIdtr (&Idtr);
AsmReadGdtr (&Gdtr);
GdtSize = (UINTN)TssDesc +
sizeof (IA32_TSS_DESCRIPTOR) *
(StackSwitchData->Ia32.StackSwitchExceptionNumber + 1) -
(UINTN)(StackSwitchData->Ia32.GdtTable);
if ((UINTN)StackSwitchData->Ia32.GdtTable != Gdtr.Base) {
CopyMem (StackSwitchData->Ia32.GdtTable, (VOID *)Gdtr.Base, Gdtr.Limit + 1);
Gdtr.Base = (UINTN)StackSwitchData->Ia32.GdtTable;
Gdtr.Limit = (UINT16)GdtSize - 1;
}
if ((UINTN)StackSwitchData->Ia32.IdtTable != Idtr.Base) {
Idtr.Base = (UINTN)StackSwitchData->Ia32.IdtTable;
}
if (StackSwitchData->Ia32.IdtTableSize > 0) {
Idtr.Limit = (UINT16)(StackSwitchData->Ia32.IdtTableSize - 1);
}
//
// Fixup current task descriptor. Task-state segment for current task will
// be filled by processor during task switching.
//
TssBase = (UINTN)Tss;
TssDesc->Bits.LimitLow = sizeof(IA32_TASK_STATE_SEGMENT) - 1;
TssDesc->Bits.BaseLow = (UINT16)TssBase;
TssDesc->Bits.BaseMid = (UINT8)(TssBase >> 16);
TssDesc->Bits.Type = IA32_GDT_TYPE_TSS;
TssDesc->Bits.P = 1;
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
TssDesc->Bits.LimitHigh = 0;
TssDesc->Bits.BaseHigh = (UINT8)(TssBase >> 24);
//
// Fixup exception task descriptor and task-state segment
//
AsmGetTssTemplateMap (&TemplateMap);
StackTop = StackSwitchData->Ia32.KnownGoodStackTop - CPU_STACK_ALIGNMENT;
StackTop = (UINTN)ALIGN_POINTER (StackTop, CPU_STACK_ALIGNMENT);
IdtTable = StackSwitchData->Ia32.IdtTable;
for (Index = 0; Index < StackSwitchData->Ia32.StackSwitchExceptionNumber; ++Index) {
TssDesc += 1;
Tss += 1;
//
// Fixup TSS descriptor
//
TssBase = (UINTN)Tss;
TssDesc->Bits.LimitLow = sizeof(IA32_TASK_STATE_SEGMENT) - 1;
TssDesc->Bits.BaseLow = (UINT16)TssBase;
TssDesc->Bits.BaseMid = (UINT8)(TssBase >> 16);
TssDesc->Bits.Type = IA32_GDT_TYPE_TSS;
TssDesc->Bits.P = 1;
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
TssDesc->Bits.LimitHigh = 0;
TssDesc->Bits.BaseHigh = (UINT8)(TssBase >> 24);
//
// Fixup TSS
//
Vector = StackSwitchData->Ia32.StackSwitchExceptions[Index];
if (Vector >= CPU_EXCEPTION_NUM ||
Vector >= (Idtr.Limit + 1) / sizeof (IA32_IDT_GATE_DESCRIPTOR)) {
continue;
}
Tss->EIP = (UINT32)(TemplateMap.ExceptionStart
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
+ Vector * TemplateMap.ExceptionStubHeaderSize);
Tss->EFLAGS = 0x2;
Tss->ESP = StackTop;
Tss->CR3 = AsmReadCr3 ();
Tss->ES = AsmReadEs ();
Tss->CS = AsmReadCs ();
Tss->SS = AsmReadSs ();
Tss->DS = AsmReadDs ();
Tss->FS = AsmReadFs ();
Tss->GS = AsmReadGs ();
UefiCpuPkg/CpuExceptionHandlerLib: Add stack switch support If Stack Guard is enabled and there's really a stack overflow happened during boot, a Page Fault exception will be triggered. Because the stack is out of usage, the exception handler, which shares the stack with normal UEFI driver, cannot be executed and cannot dump the processor information. Without those information, it's very difficult for the BIOS developers locate the root cause of stack overflow. And without a workable stack, the developer cannot event use single step to debug the UEFI driver with JTAG debugger. In order to make sure the exception handler to execute normally after stack overflow. We need separate stacks for exception handlers in case of unusable stack. IA processor allows to switch to a new stack during handling interrupt and exception. But X64 and IA32 provides different ways to make it. X64 provides interrupt stack table (IST) to allow maximum 7 different exceptions to have new stack for its handler. IA32 doesn't have IST mechanism and can only use task gate to do it since task switch allows to load a new stack through its task-state segment (TSS). The new API, InitializeCpuExceptionHandlersEx, is implemented to complete extra initialization for stack switch of exception handler. Since setting up stack switch needs allocating new memory for new stack, new GDT table and task-state segment but the initialization method will be called in different phases which have no consistent way to reserve those memory, this new API is allowed to pass the reserved resources to complete the extra works. This is cannot be done by original InitializeCpuExceptionHandlers. Considering exception handler initialization for MP situation, this new API is also necessary, because AP is not supposed to allocate memory. So the memory needed for stack switch have to be reserved in BSP before waking up AP and then pass them to InitializeCpuExceptionHandlersEx afterwards. Since Stack Guard feature is available only for DXE phase at this time, the new API is fully implemented for DXE only. Other phases implement a dummy one which just calls InitializeCpuExceptionHandlers(). Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Michael Kinney <michael.d.kinney@intel.com> Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com> Reviewed-by: Jiewen.yao@intel.com
2017-12-07 13:15:12 +01:00
StackTop -= StackSwitchData->Ia32.KnownGoodStackSize;
//
// Update IDT to use Task Gate for given exception
//
IdtTable[Vector].Bits.OffsetLow = 0;
IdtTable[Vector].Bits.Selector = (UINT16)((UINTN)TssDesc - Gdtr.Base);
IdtTable[Vector].Bits.Reserved_0 = 0;
IdtTable[Vector].Bits.GateType = IA32_IDT_GATE_TYPE_TASK;
IdtTable[Vector].Bits.OffsetHigh = 0;
}
//
// Publish GDT
//
AsmWriteGdtr (&Gdtr);
//
// Load current task
//
AsmWriteTr ((UINT16)((UINTN)StackSwitchData->Ia32.ExceptionTssDesc - Gdtr.Base));
//
// Publish IDT
//
AsmWriteIdtr (&Idtr);
return EFI_SUCCESS;
}
/**
Display processor context.
@param[in] ExceptionType Exception type.
@param[in] SystemContext Processor context to be display.
**/
VOID
EFIAPI
DumpCpuContext (
IN EFI_EXCEPTION_TYPE ExceptionType,
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
InternalPrintMessage (
"!!!! IA32 Exception Type - %02x(%a) CPU Apic ID - %08x !!!!\n",
ExceptionType,
GetExceptionNameStr (ExceptionType),
GetApicId ()
);
if ((mErrorCodeFlag & (1 << ExceptionType)) != 0) {
InternalPrintMessage (
"ExceptionData - %08x",
SystemContext.SystemContextIa32->ExceptionData
);
if (ExceptionType == EXCEPT_IA32_PAGE_FAULT) {
InternalPrintMessage (
" I:%x R:%x U:%x W:%x P:%x PK:%x S:%x",
(SystemContext.SystemContextIa32->ExceptionData & IA32_PF_EC_ID) != 0,
(SystemContext.SystemContextIa32->ExceptionData & IA32_PF_EC_RSVD) != 0,
(SystemContext.SystemContextIa32->ExceptionData & IA32_PF_EC_US) != 0,
(SystemContext.SystemContextIa32->ExceptionData & IA32_PF_EC_WR) != 0,
(SystemContext.SystemContextIa32->ExceptionData & IA32_PF_EC_P) != 0,
(SystemContext.SystemContextIa32->ExceptionData & IA32_PF_EC_PK) != 0,
(SystemContext.SystemContextIa32->ExceptionData & IA32_PF_EC_SGX) != 0
);
}
InternalPrintMessage ("\n");
}
InternalPrintMessage (
"EIP - %08x, CS - %08x, EFLAGS - %08x\n",
SystemContext.SystemContextIa32->Eip,
SystemContext.SystemContextIa32->Cs,
SystemContext.SystemContextIa32->Eflags
);
InternalPrintMessage (
"EAX - %08x, ECX - %08x, EDX - %08x, EBX - %08x\n",
SystemContext.SystemContextIa32->Eax,
SystemContext.SystemContextIa32->Ecx,
SystemContext.SystemContextIa32->Edx,
SystemContext.SystemContextIa32->Ebx
);
InternalPrintMessage (
"ESP - %08x, EBP - %08x, ESI - %08x, EDI - %08x\n",
SystemContext.SystemContextIa32->Esp,
SystemContext.SystemContextIa32->Ebp,
SystemContext.SystemContextIa32->Esi,
SystemContext.SystemContextIa32->Edi
);
InternalPrintMessage (
"DS - %08x, ES - %08x, FS - %08x, GS - %08x, SS - %08x\n",
SystemContext.SystemContextIa32->Ds,
SystemContext.SystemContextIa32->Es,
SystemContext.SystemContextIa32->Fs,
SystemContext.SystemContextIa32->Gs,
SystemContext.SystemContextIa32->Ss
);
InternalPrintMessage (
"CR0 - %08x, CR2 - %08x, CR3 - %08x, CR4 - %08x\n",
SystemContext.SystemContextIa32->Cr0,
SystemContext.SystemContextIa32->Cr2,
SystemContext.SystemContextIa32->Cr3,
SystemContext.SystemContextIa32->Cr4
);
InternalPrintMessage (
"DR0 - %08x, DR1 - %08x, DR2 - %08x, DR3 - %08x\n",
SystemContext.SystemContextIa32->Dr0,
SystemContext.SystemContextIa32->Dr1,
SystemContext.SystemContextIa32->Dr2,
SystemContext.SystemContextIa32->Dr3
);
InternalPrintMessage (
"DR6 - %08x, DR7 - %08x\n",
SystemContext.SystemContextIa32->Dr6,
SystemContext.SystemContextIa32->Dr7
);
InternalPrintMessage (
"GDTR - %08x %08x, IDTR - %08x %08x\n",
SystemContext.SystemContextIa32->Gdtr[0],
SystemContext.SystemContextIa32->Gdtr[1],
SystemContext.SystemContextIa32->Idtr[0],
SystemContext.SystemContextIa32->Idtr[1]
);
InternalPrintMessage (
"LDTR - %08x, TR - %08x\n",
SystemContext.SystemContextIa32->Ldtr,
SystemContext.SystemContextIa32->Tr
);
InternalPrintMessage (
"FXSAVE_STATE - %08x\n",
&SystemContext.SystemContextIa32->FxSaveState
);
}
/**
Display CPU information.
@param ExceptionType Exception type.
@param SystemContext Pointer to EFI_SYSTEM_CONTEXT.
**/
VOID
DumpImageAndCpuContent (
IN EFI_EXCEPTION_TYPE ExceptionType,
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
DumpCpuContext (ExceptionType, SystemContext);
//
// Dump module image base and module entry point by EIP
//
if ((ExceptionType == EXCEPT_IA32_PAGE_FAULT) &&
((SystemContext.SystemContextIa32->ExceptionData & IA32_PF_EC_ID) != 0)) {
//
// The EIP in SystemContext could not be used
// if it is page fault with I/D set.
//
DumpModuleImageInfo ((*(UINTN *)(UINTN)SystemContext.SystemContextIa32->Esp));
} else {
DumpModuleImageInfo (SystemContext.SystemContextIa32->Eip);
}
}