mirror of https://github.com/acidanthera/audk.git
433 lines
16 KiB
C
433 lines
16 KiB
C
|
/* NOLINT(build/header_guard) */
|
||
|
/* Copyright 2013 Google Inc. All Rights Reserved.
|
||
|
|
||
|
Distributed under MIT license.
|
||
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
||
|
*/
|
||
|
|
||
|
/* template parameters: FN, DataType */
|
||
|
|
||
|
#define HistogramType FN(Histogram)
|
||
|
|
||
|
static void FN(InitialEntropyCodes)(const DataType* data, size_t length,
|
||
|
size_t stride,
|
||
|
size_t num_histograms,
|
||
|
HistogramType* histograms) {
|
||
|
unsigned int seed = 7;
|
||
|
size_t block_length = length / num_histograms;
|
||
|
size_t i;
|
||
|
FN(ClearHistograms)(histograms, num_histograms);
|
||
|
for (i = 0; i < num_histograms; ++i) {
|
||
|
size_t pos = length * i / num_histograms;
|
||
|
if (i != 0) {
|
||
|
pos += MyRand(&seed) % block_length;
|
||
|
}
|
||
|
if (pos + stride >= length) {
|
||
|
pos = length - stride - 1;
|
||
|
}
|
||
|
FN(HistogramAddVector)(&histograms[i], data + pos, stride);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void FN(RandomSample)(unsigned int* seed,
|
||
|
const DataType* data,
|
||
|
size_t length,
|
||
|
size_t stride,
|
||
|
HistogramType* sample) {
|
||
|
size_t pos = 0;
|
||
|
if (stride >= length) {
|
||
|
pos = 0;
|
||
|
stride = length;
|
||
|
} else {
|
||
|
pos = MyRand(seed) % (length - stride + 1);
|
||
|
}
|
||
|
FN(HistogramAddVector)(sample, data + pos, stride);
|
||
|
}
|
||
|
|
||
|
static void FN(RefineEntropyCodes)(const DataType* data, size_t length,
|
||
|
size_t stride,
|
||
|
size_t num_histograms,
|
||
|
HistogramType* histograms) {
|
||
|
size_t iters =
|
||
|
kIterMulForRefining * length / stride + kMinItersForRefining;
|
||
|
unsigned int seed = 7;
|
||
|
size_t iter;
|
||
|
iters = ((iters + num_histograms - 1) / num_histograms) * num_histograms;
|
||
|
for (iter = 0; iter < iters; ++iter) {
|
||
|
HistogramType sample;
|
||
|
FN(HistogramClear)(&sample);
|
||
|
FN(RandomSample)(&seed, data, length, stride, &sample);
|
||
|
FN(HistogramAddHistogram)(&histograms[iter % num_histograms], &sample);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Assigns a block id from the range [0, vec.size()) to each data element
|
||
|
in data[0..length) and fills in block_id[0..length) with the assigned values.
|
||
|
Returns the number of blocks, i.e. one plus the number of block switches. */
|
||
|
static size_t FN(FindBlocks)(const DataType* data, const size_t length,
|
||
|
const double block_switch_bitcost,
|
||
|
const size_t num_histograms,
|
||
|
const HistogramType* histograms,
|
||
|
double* insert_cost,
|
||
|
double* cost,
|
||
|
uint8_t* switch_signal,
|
||
|
uint8_t *block_id) {
|
||
|
const size_t data_size = FN(HistogramDataSize)();
|
||
|
const size_t bitmaplen = (num_histograms + 7) >> 3;
|
||
|
size_t num_blocks = 1;
|
||
|
size_t i;
|
||
|
size_t j;
|
||
|
assert(num_histograms <= 256);
|
||
|
if (num_histograms <= 1) {
|
||
|
for (i = 0; i < length; ++i) {
|
||
|
block_id[i] = 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
memset(insert_cost, 0, sizeof(insert_cost[0]) * data_size * num_histograms);
|
||
|
for (i = 0; i < num_histograms; ++i) {
|
||
|
insert_cost[i] = FastLog2((uint32_t)histograms[i].total_count_);
|
||
|
}
|
||
|
for (i = data_size; i != 0;) {
|
||
|
--i;
|
||
|
for (j = 0; j < num_histograms; ++j) {
|
||
|
insert_cost[i * num_histograms + j] =
|
||
|
insert_cost[j] - BitCost(histograms[j].data_[i]);
|
||
|
}
|
||
|
}
|
||
|
memset(cost, 0, sizeof(cost[0]) * num_histograms);
|
||
|
memset(switch_signal, 0, sizeof(switch_signal[0]) * length * bitmaplen);
|
||
|
/* After each iteration of this loop, cost[k] will contain the difference
|
||
|
between the minimum cost of arriving at the current byte position using
|
||
|
entropy code k, and the minimum cost of arriving at the current byte
|
||
|
position. This difference is capped at the block switch cost, and if it
|
||
|
reaches block switch cost, it means that when we trace back from the last
|
||
|
position, we need to switch here. */
|
||
|
for (i = 0; i < length; ++i) {
|
||
|
const size_t byte_ix = i;
|
||
|
size_t ix = byte_ix * bitmaplen;
|
||
|
size_t insert_cost_ix = data[byte_ix] * num_histograms;
|
||
|
double min_cost = 1e99;
|
||
|
double block_switch_cost = block_switch_bitcost;
|
||
|
size_t k;
|
||
|
for (k = 0; k < num_histograms; ++k) {
|
||
|
/* We are coding the symbol in data[byte_ix] with entropy code k. */
|
||
|
cost[k] += insert_cost[insert_cost_ix + k];
|
||
|
if (cost[k] < min_cost) {
|
||
|
min_cost = cost[k];
|
||
|
block_id[byte_ix] = (uint8_t)k;
|
||
|
}
|
||
|
}
|
||
|
/* More blocks for the beginning. */
|
||
|
if (byte_ix < 2000) {
|
||
|
block_switch_cost *= 0.77 + 0.07 * (double)byte_ix / 2000;
|
||
|
}
|
||
|
for (k = 0; k < num_histograms; ++k) {
|
||
|
cost[k] -= min_cost;
|
||
|
if (cost[k] >= block_switch_cost) {
|
||
|
const uint8_t mask = (uint8_t)(1u << (k & 7));
|
||
|
cost[k] = block_switch_cost;
|
||
|
assert((k >> 3) < bitmaplen);
|
||
|
switch_signal[ix + (k >> 3)] |= mask;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{ /* Trace back from the last position and switch at the marked places. */
|
||
|
size_t byte_ix = length - 1;
|
||
|
size_t ix = byte_ix * bitmaplen;
|
||
|
uint8_t cur_id = block_id[byte_ix];
|
||
|
while (byte_ix > 0) {
|
||
|
const uint8_t mask = (uint8_t)(1u << (cur_id & 7));
|
||
|
assert(((size_t)cur_id >> 3) < bitmaplen);
|
||
|
--byte_ix;
|
||
|
ix -= bitmaplen;
|
||
|
if (switch_signal[ix + (cur_id >> 3)] & mask) {
|
||
|
if (cur_id != block_id[byte_ix]) {
|
||
|
cur_id = block_id[byte_ix];
|
||
|
++num_blocks;
|
||
|
}
|
||
|
}
|
||
|
block_id[byte_ix] = cur_id;
|
||
|
}
|
||
|
}
|
||
|
return num_blocks;
|
||
|
}
|
||
|
|
||
|
static size_t FN(RemapBlockIds)(uint8_t* block_ids, const size_t length,
|
||
|
uint16_t* new_id, const size_t num_histograms) {
|
||
|
static const uint16_t kInvalidId = 256;
|
||
|
uint16_t next_id = 0;
|
||
|
size_t i;
|
||
|
for (i = 0; i < num_histograms; ++i) {
|
||
|
new_id[i] = kInvalidId;
|
||
|
}
|
||
|
for (i = 0; i < length; ++i) {
|
||
|
assert(block_ids[i] < num_histograms);
|
||
|
if (new_id[block_ids[i]] == kInvalidId) {
|
||
|
new_id[block_ids[i]] = next_id++;
|
||
|
}
|
||
|
}
|
||
|
for (i = 0; i < length; ++i) {
|
||
|
block_ids[i] = (uint8_t)new_id[block_ids[i]];
|
||
|
assert(block_ids[i] < num_histograms);
|
||
|
}
|
||
|
assert(next_id <= num_histograms);
|
||
|
return next_id;
|
||
|
}
|
||
|
|
||
|
static void FN(BuildBlockHistograms)(const DataType* data, const size_t length,
|
||
|
const uint8_t* block_ids,
|
||
|
const size_t num_histograms,
|
||
|
HistogramType* histograms) {
|
||
|
size_t i;
|
||
|
FN(ClearHistograms)(histograms, num_histograms);
|
||
|
for (i = 0; i < length; ++i) {
|
||
|
FN(HistogramAdd)(&histograms[block_ids[i]], data[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void FN(ClusterBlocks)(MemoryManager* m,
|
||
|
const DataType* data, const size_t length,
|
||
|
const size_t num_blocks,
|
||
|
uint8_t* block_ids,
|
||
|
BlockSplit* split) {
|
||
|
uint32_t* histogram_symbols = BROTLI_ALLOC(m, uint32_t, num_blocks);
|
||
|
uint32_t* block_lengths = BROTLI_ALLOC(m, uint32_t, num_blocks);
|
||
|
const size_t expected_num_clusters = CLUSTERS_PER_BATCH *
|
||
|
(num_blocks + HISTOGRAMS_PER_BATCH - 1) / HISTOGRAMS_PER_BATCH;
|
||
|
size_t all_histograms_size = 0;
|
||
|
size_t all_histograms_capacity = expected_num_clusters;
|
||
|
HistogramType* all_histograms =
|
||
|
BROTLI_ALLOC(m, HistogramType, all_histograms_capacity);
|
||
|
size_t cluster_size_size = 0;
|
||
|
size_t cluster_size_capacity = expected_num_clusters;
|
||
|
uint32_t* cluster_size = BROTLI_ALLOC(m, uint32_t, cluster_size_capacity);
|
||
|
size_t num_clusters = 0;
|
||
|
HistogramType* histograms = BROTLI_ALLOC(m, HistogramType,
|
||
|
BROTLI_MIN(size_t, num_blocks, HISTOGRAMS_PER_BATCH));
|
||
|
size_t max_num_pairs =
|
||
|
HISTOGRAMS_PER_BATCH * HISTOGRAMS_PER_BATCH / 2;
|
||
|
size_t pairs_capacity = max_num_pairs + 1;
|
||
|
HistogramPair* pairs = BROTLI_ALLOC(m, HistogramPair, pairs_capacity);
|
||
|
size_t pos = 0;
|
||
|
uint32_t* clusters;
|
||
|
size_t num_final_clusters;
|
||
|
static const uint32_t kInvalidIndex = BROTLI_UINT32_MAX;
|
||
|
uint32_t* new_index;
|
||
|
uint8_t max_type = 0;
|
||
|
size_t i;
|
||
|
uint32_t sizes[HISTOGRAMS_PER_BATCH] = { 0 };
|
||
|
uint32_t new_clusters[HISTOGRAMS_PER_BATCH] = { 0 };
|
||
|
uint32_t symbols[HISTOGRAMS_PER_BATCH] = { 0 };
|
||
|
uint32_t remap[HISTOGRAMS_PER_BATCH] = { 0 };
|
||
|
|
||
|
if (BROTLI_IS_OOM(m)) return;
|
||
|
|
||
|
memset(block_lengths, 0, num_blocks * sizeof(uint32_t));
|
||
|
|
||
|
{
|
||
|
size_t block_idx = 0;
|
||
|
for (i = 0; i < length; ++i) {
|
||
|
assert(block_idx < num_blocks);
|
||
|
++block_lengths[block_idx];
|
||
|
if (i + 1 == length || block_ids[i] != block_ids[i + 1]) {
|
||
|
++block_idx;
|
||
|
}
|
||
|
}
|
||
|
assert(block_idx == num_blocks);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < num_blocks; i += HISTOGRAMS_PER_BATCH) {
|
||
|
const size_t num_to_combine =
|
||
|
BROTLI_MIN(size_t, num_blocks - i, HISTOGRAMS_PER_BATCH);
|
||
|
size_t num_new_clusters;
|
||
|
size_t j;
|
||
|
for (j = 0; j < num_to_combine; ++j) {
|
||
|
size_t k;
|
||
|
FN(HistogramClear)(&histograms[j]);
|
||
|
for (k = 0; k < block_lengths[i + j]; ++k) {
|
||
|
FN(HistogramAdd)(&histograms[j], data[pos++]);
|
||
|
}
|
||
|
histograms[j].bit_cost_ = FN(BrotliPopulationCost)(&histograms[j]);
|
||
|
new_clusters[j] = (uint32_t)j;
|
||
|
symbols[j] = (uint32_t)j;
|
||
|
sizes[j] = 1;
|
||
|
}
|
||
|
num_new_clusters = FN(BrotliHistogramCombine)(
|
||
|
histograms, sizes, symbols, new_clusters, pairs, num_to_combine,
|
||
|
num_to_combine, HISTOGRAMS_PER_BATCH, max_num_pairs);
|
||
|
BROTLI_ENSURE_CAPACITY(m, HistogramType, all_histograms,
|
||
|
all_histograms_capacity, all_histograms_size + num_new_clusters);
|
||
|
BROTLI_ENSURE_CAPACITY(m, uint32_t, cluster_size,
|
||
|
cluster_size_capacity, cluster_size_size + num_new_clusters);
|
||
|
if (BROTLI_IS_OOM(m)) return;
|
||
|
for (j = 0; j < num_new_clusters; ++j) {
|
||
|
all_histograms[all_histograms_size++] = histograms[new_clusters[j]];
|
||
|
cluster_size[cluster_size_size++] = sizes[new_clusters[j]];
|
||
|
remap[new_clusters[j]] = (uint32_t)j;
|
||
|
}
|
||
|
for (j = 0; j < num_to_combine; ++j) {
|
||
|
histogram_symbols[i + j] = (uint32_t)num_clusters + remap[symbols[j]];
|
||
|
}
|
||
|
num_clusters += num_new_clusters;
|
||
|
assert(num_clusters == cluster_size_size);
|
||
|
assert(num_clusters == all_histograms_size);
|
||
|
}
|
||
|
BROTLI_FREE(m, histograms);
|
||
|
|
||
|
max_num_pairs =
|
||
|
BROTLI_MIN(size_t, 64 * num_clusters, (num_clusters / 2) * num_clusters);
|
||
|
if (pairs_capacity < max_num_pairs + 1) {
|
||
|
BROTLI_FREE(m, pairs);
|
||
|
pairs = BROTLI_ALLOC(m, HistogramPair, max_num_pairs + 1);
|
||
|
if (BROTLI_IS_OOM(m)) return;
|
||
|
}
|
||
|
|
||
|
clusters = BROTLI_ALLOC(m, uint32_t, num_clusters);
|
||
|
if (BROTLI_IS_OOM(m)) return;
|
||
|
for (i = 0; i < num_clusters; ++i) {
|
||
|
clusters[i] = (uint32_t)i;
|
||
|
}
|
||
|
num_final_clusters = FN(BrotliHistogramCombine)(
|
||
|
all_histograms, cluster_size, histogram_symbols, clusters, pairs,
|
||
|
num_clusters, num_blocks, BROTLI_MAX_NUMBER_OF_BLOCK_TYPES,
|
||
|
max_num_pairs);
|
||
|
BROTLI_FREE(m, pairs);
|
||
|
BROTLI_FREE(m, cluster_size);
|
||
|
|
||
|
new_index = BROTLI_ALLOC(m, uint32_t, num_clusters);
|
||
|
if (BROTLI_IS_OOM(m)) return;
|
||
|
for (i = 0; i < num_clusters; ++i) new_index[i] = kInvalidIndex;
|
||
|
pos = 0;
|
||
|
{
|
||
|
uint32_t next_index = 0;
|
||
|
for (i = 0; i < num_blocks; ++i) {
|
||
|
HistogramType histo;
|
||
|
size_t j;
|
||
|
uint32_t best_out;
|
||
|
double best_bits;
|
||
|
FN(HistogramClear)(&histo);
|
||
|
for (j = 0; j < block_lengths[i]; ++j) {
|
||
|
FN(HistogramAdd)(&histo, data[pos++]);
|
||
|
}
|
||
|
best_out = (i == 0) ? histogram_symbols[0] : histogram_symbols[i - 1];
|
||
|
best_bits =
|
||
|
FN(BrotliHistogramBitCostDistance)(&histo, &all_histograms[best_out]);
|
||
|
for (j = 0; j < num_final_clusters; ++j) {
|
||
|
const double cur_bits = FN(BrotliHistogramBitCostDistance)(
|
||
|
&histo, &all_histograms[clusters[j]]);
|
||
|
if (cur_bits < best_bits) {
|
||
|
best_bits = cur_bits;
|
||
|
best_out = clusters[j];
|
||
|
}
|
||
|
}
|
||
|
histogram_symbols[i] = best_out;
|
||
|
if (new_index[best_out] == kInvalidIndex) {
|
||
|
new_index[best_out] = next_index++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
BROTLI_FREE(m, clusters);
|
||
|
BROTLI_FREE(m, all_histograms);
|
||
|
BROTLI_ENSURE_CAPACITY(
|
||
|
m, uint8_t, split->types, split->types_alloc_size, num_blocks);
|
||
|
BROTLI_ENSURE_CAPACITY(
|
||
|
m, uint32_t, split->lengths, split->lengths_alloc_size, num_blocks);
|
||
|
if (BROTLI_IS_OOM(m)) return;
|
||
|
{
|
||
|
uint32_t cur_length = 0;
|
||
|
size_t block_idx = 0;
|
||
|
for (i = 0; i < num_blocks; ++i) {
|
||
|
cur_length += block_lengths[i];
|
||
|
if (i + 1 == num_blocks ||
|
||
|
histogram_symbols[i] != histogram_symbols[i + 1]) {
|
||
|
const uint8_t id = (uint8_t)new_index[histogram_symbols[i]];
|
||
|
split->types[block_idx] = id;
|
||
|
split->lengths[block_idx] = cur_length;
|
||
|
max_type = BROTLI_MAX(uint8_t, max_type, id);
|
||
|
cur_length = 0;
|
||
|
++block_idx;
|
||
|
}
|
||
|
}
|
||
|
split->num_blocks = block_idx;
|
||
|
split->num_types = (size_t)max_type + 1;
|
||
|
}
|
||
|
BROTLI_FREE(m, new_index);
|
||
|
BROTLI_FREE(m, block_lengths);
|
||
|
BROTLI_FREE(m, histogram_symbols);
|
||
|
}
|
||
|
|
||
|
static void FN(SplitByteVector)(MemoryManager* m,
|
||
|
const DataType* data, const size_t length,
|
||
|
const size_t literals_per_histogram,
|
||
|
const size_t max_histograms,
|
||
|
const size_t sampling_stride_length,
|
||
|
const double block_switch_cost,
|
||
|
const BrotliEncoderParams* params,
|
||
|
BlockSplit* split) {
|
||
|
const size_t data_size = FN(HistogramDataSize)();
|
||
|
size_t num_histograms = length / literals_per_histogram + 1;
|
||
|
HistogramType* histograms;
|
||
|
if (num_histograms > max_histograms) {
|
||
|
num_histograms = max_histograms;
|
||
|
}
|
||
|
if (length == 0) {
|
||
|
split->num_types = 1;
|
||
|
return;
|
||
|
} else if (length < kMinLengthForBlockSplitting) {
|
||
|
BROTLI_ENSURE_CAPACITY(m, uint8_t,
|
||
|
split->types, split->types_alloc_size, split->num_blocks + 1);
|
||
|
BROTLI_ENSURE_CAPACITY(m, uint32_t,
|
||
|
split->lengths, split->lengths_alloc_size, split->num_blocks + 1);
|
||
|
if (BROTLI_IS_OOM(m)) return;
|
||
|
split->num_types = 1;
|
||
|
split->types[split->num_blocks] = 0;
|
||
|
split->lengths[split->num_blocks] = (uint32_t)length;
|
||
|
split->num_blocks++;
|
||
|
return;
|
||
|
}
|
||
|
histograms = BROTLI_ALLOC(m, HistogramType, num_histograms);
|
||
|
if (BROTLI_IS_OOM(m)) return;
|
||
|
/* Find good entropy codes. */
|
||
|
FN(InitialEntropyCodes)(data, length,
|
||
|
sampling_stride_length,
|
||
|
num_histograms, histograms);
|
||
|
FN(RefineEntropyCodes)(data, length,
|
||
|
sampling_stride_length,
|
||
|
num_histograms, histograms);
|
||
|
{
|
||
|
/* Find a good path through literals with the good entropy codes. */
|
||
|
uint8_t* block_ids = BROTLI_ALLOC(m, uint8_t, length);
|
||
|
size_t num_blocks;
|
||
|
const size_t bitmaplen = (num_histograms + 7) >> 3;
|
||
|
double* insert_cost = BROTLI_ALLOC(m, double, data_size * num_histograms);
|
||
|
double* cost = BROTLI_ALLOC(m, double, num_histograms);
|
||
|
uint8_t* switch_signal = BROTLI_ALLOC(m, uint8_t, length * bitmaplen);
|
||
|
uint16_t* new_id = BROTLI_ALLOC(m, uint16_t, num_histograms);
|
||
|
const size_t iters = params->quality < HQ_ZOPFLIFICATION_QUALITY ? 3 : 10;
|
||
|
size_t i;
|
||
|
if (BROTLI_IS_OOM(m)) return;
|
||
|
for (i = 0; i < iters; ++i) {
|
||
|
num_blocks = FN(FindBlocks)(data, length,
|
||
|
block_switch_cost,
|
||
|
num_histograms, histograms,
|
||
|
insert_cost, cost, switch_signal,
|
||
|
block_ids);
|
||
|
num_histograms = FN(RemapBlockIds)(block_ids, length,
|
||
|
new_id, num_histograms);
|
||
|
FN(BuildBlockHistograms)(data, length, block_ids,
|
||
|
num_histograms, histograms);
|
||
|
}
|
||
|
BROTLI_FREE(m, insert_cost);
|
||
|
BROTLI_FREE(m, cost);
|
||
|
BROTLI_FREE(m, switch_signal);
|
||
|
BROTLI_FREE(m, new_id);
|
||
|
BROTLI_FREE(m, histograms);
|
||
|
FN(ClusterBlocks)(m, data, length, num_blocks, block_ids, split);
|
||
|
if (BROTLI_IS_OOM(m)) return;
|
||
|
BROTLI_FREE(m, block_ids);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#undef HistogramType
|