audk/MdeModulePkg/Universal/Network/IScsiDxe/Md5.c

351 lines
9.0 KiB
C
Raw Normal View History

/** @file
Implementation of MD5 algorithm.
Copyright (c) 2004 - 2008, Intel Corporation.<BR>
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "Md5.h"
CONST UINT32 Md5_Data[][2] = {
{ 0, 1 },
{ 1, 5 },
{ 5, 3 },
{ 0, 7 }
};
CONST UINT32 Md5_S[][4] = {
{ 7, 22, 17, 12 },
{ 5, 20, 14, 9 },
{ 4, 23, 16 ,11 },
{ 6, 21, 15, 10 },
};
CONST UINT32 Md5_T[] = {
0xD76AA478, 0xE8C7B756, 0x242070DB, 0xC1BDCEEE,
0xF57C0FAF, 0x4787C62A, 0xA8304613, 0xFD469501,
0x698098D8, 0x8B44F7AF, 0xFFFF5BB1, 0x895CD7BE,
0x6B901122, 0xFD987193, 0xA679438E, 0x49B40821,
0xF61E2562, 0xC040B340, 0x265E5A51, 0xE9B6C7AA,
0xD62F105D, 0x02441453, 0xD8A1E681, 0xE7D3FBC8,
0x21E1CDE6, 0xC33707D6, 0xF4D50D87, 0x455A14ED,
0xA9E3E905, 0xFCEFA3F8, 0x676F02D9, 0x8D2A4C8A,
0xFFFA3942, 0x8771F681, 0x6D9D6122, 0xFDE5380C,
0xA4BEEA44, 0x4BDECFA9, 0xF6BB4B60, 0xBEBFBC70,
0x289B7EC6, 0xEAA127FA, 0xD4EF3085, 0x04881D05,
0xD9D4D039, 0xE6DB99E5, 0x1FA27CF8, 0xC4AC5665,
0xF4292244, 0x432AFF97, 0xAB9423A7, 0xFC93A039,
0x655B59C3, 0x8F0CCC92, 0xFFEFF47D, 0x85845DD1,
0x6FA87E4F, 0xFE2CE6E0, 0xA3014314, 0x4E0811A1,
0xF7537E82, 0xBD3AF235, 0x2AD7D2BB, 0xEB86D391
};
CONST UINT8 Md5HashPadding[] =
{
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
//
// ROTATE_LEFT rotates x left n bits.
//
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
#define SA MedStates[Index2 & 3]
#define SB MedStates[(Index2 + 1) & 3]
#define SC MedStates[(Index2 + 2) & 3]
#define SD MedStates[(Index2 + 3) & 3]
/**
Tf1 is one basic MD5 transform function.
@param[in] A A 32-bit quantity.
@param[in] B A 32-bit quantity.
@param[in] C A 32-bit quantity.
@return Output was produced as a 32-bit quantity based on the
three 32-bit input quantity.
**/
UINT32
Tf1 (
UINT32 A,
UINT32 B,
UINT32 C
)
{
return (A & B) | (~A & C);
}
/**
Tf2 is one basic MD5 transform function.
@param[in] A A 32-bit quantity.
@param[in] B A 32-bit quantity.
@param[in] C A 32-bit quantity.
@return Output was produced as a 32-bit quantity based on the
three 32-bit input quantity.
**/
UINT32
Tf2 (
UINT32 A,
UINT32 B,
UINT32 C
)
{
return (A & C) | (B & ~C);
}
/**
Tf3 is one basic MD5 transform function.
@param[in] A A 32-bit quantity.
@param[in] B A 32-bit quantity.
@param[in] C A 32-bit quantity.
@return Output was produced as a 32-bit quantity based on the
three 32-bit input quantity.
**/
UINT32
Tf3 (
UINT32 A,
UINT32 B,
UINT32 C
)
{
return A ^ B ^ C;
}
/**
Tf4 is one basic MD5 transform function.
@param[in] A A 32-bit quantity.
@param[in] B A 32-bit quantity.
@param[in] C A 32-bit quantity.
@return Output was produced as a 32-bit quantity based on the
three 32-bit input quantity.
**/
UINT32
Tf4 (
UINT32 A,
UINT32 B,
UINT32 C
)
{
return B ^ (A | ~C);
}
typedef
UINT32
(*MD5_TRANSFORM_FUNC) (
IN UINT32 A,
IN UINT32 B,
IN UINT32 C
);
CONST MD5_TRANSFORM_FUNC Md5_F[] = {
Tf1,
Tf2,
Tf3,
Tf4
};
/**
Perform the MD5 transform on 64 bytes data segment.
@param[in] Md5Ctx It includes the data segment for Md5 transform.
**/
VOID
MD5Transform (
IN MD5_CTX *Md5Ctx
)
{
UINT32 Index1;
UINT32 Index2;
UINT32 MedStates[MD5_HASHSIZE >> 2];
UINT32 *Data;
UINT32 IndexD;
UINT32 IndexT;
Data = (UINT32 *) Md5Ctx->M;
//
// Copy MD5 states to MedStates
//
CopyMem (MedStates, Md5Ctx->States, MD5_HASHSIZE);
IndexT = 0;
for (Index1 = 0; Index1 < 4; Index1++) {
IndexD = Md5_Data[Index1][0];
for (Index2 = 16; Index2 > 0; Index2--) {
SA += (*Md5_F[Index1]) (SB, SC, SD) + Data[IndexD] + Md5_T[IndexT];
SA = ROTATE_LEFT (SA, Md5_S[Index1][Index2 & 3]);
SA += SB;
IndexD += Md5_Data[Index1][1];
IndexD &= 15;
IndexT++;
}
}
for (Index1 = 0; Index1 < 4; Index1++) {
Md5Ctx->States[Index1] += MedStates[Index1];
}
}
/**
Copy data segment into the M field of MD5_CTX structure for later transform.
If the length of data segment is larger than 64 bytes, then does the transform
immediately and the generated Md5 code is stored in the States field of MD5_CTX
data struct for later accumulation.
All of Md5 code generated for the sequential 64-bytes data segaments are be
accumulated in MD5Final() function.
@param[in] Md5Ctx The data structure of storing the original data
segment and the final result.
@param[in] Data The data wanted to be transformed.
@param[in] DataLen The length of data.
**/
VOID
MD5UpdateBlock (
IN MD5_CTX *Md5Ctx,
IN CONST UINT8 *Data,
IN UINTN DataLen
)
{
UINTN Limit;
for (Limit = 64 - Md5Ctx->Count; DataLen >= 64 - Md5Ctx->Count; Limit = 64) {
CopyMem (Md5Ctx->M + Md5Ctx->Count, (VOID *)Data, Limit);
MD5Transform (Md5Ctx);
Md5Ctx->Count = 0;
Data += Limit;
DataLen -= Limit;
}
CopyMem (Md5Ctx->M + Md5Ctx->Count, (VOID *)Data, DataLen);
Md5Ctx->Count += DataLen;
}
/**
Initialize four 32-bits chaining variables and use them to do the Md5 transform.
@param[in] Md5Ctx The data structure of Md5.
@retval EFI_SUCCESS Initialization is ok.
**/
EFI_STATUS
MD5Init (
IN MD5_CTX *Md5Ctx
)
{
ZeroMem (Md5Ctx, sizeof (*Md5Ctx));
//
// Set magic initialization constants.
//
Md5Ctx->States[0] = 0x67452301;
Md5Ctx->States[1] = 0xefcdab89;
Md5Ctx->States[2] = 0x98badcfe;
Md5Ctx->States[3] = 0x10325476;
return EFI_SUCCESS;
}
/**
the external interface of Md5 algorithm
@param[in] Md5Ctx The data structure of storing the original data
segment and the final result.
@param[in] Data The data wanted to be transformed.
@param[in] DataLen The length of data.
@retval EFI_SUCCESS The transform is ok.
@retval Others Some unexpected errors happened.
**/
EFI_STATUS
MD5Update (
IN MD5_CTX *Md5Ctx,
IN VOID *Data,
IN UINTN DataLen
)
{
if (EFI_ERROR (Md5Ctx->Status)) {
return Md5Ctx->Status;
}
MD5UpdateBlock (Md5Ctx, (CONST UINT8 *) Data, DataLen);
Md5Ctx->Length += DataLen;
return EFI_SUCCESS;
}
/**
Accumulate the MD5 value of every data segment and generate the finial
result according to MD5 algorithm.
@param[in] Md5Ctx The data structure of storing the original data
segment and the final result.
@param[out] HashVal The final 128-bits output.
@retval EFI_SUCCESS The transform is ok.
@retval Others Some unexpected errors happened.
**/
EFI_STATUS
MD5Final (
IN MD5_CTX *Md5Ctx,
OUT UINT8 *HashVal
)
{
UINTN PadLength;
if (Md5Ctx->Status == EFI_ALREADY_STARTED) {
//
// Store Hashed value & Zeroize sensitive context information.
//
CopyMem (HashVal, (UINT8 *) Md5Ctx->States, MD5_HASHSIZE);
ZeroMem ((UINT8 *)Md5Ctx, sizeof (*Md5Ctx));
return EFI_SUCCESS;
}
if (EFI_ERROR (Md5Ctx->Status)) {
return Md5Ctx->Status;
}
PadLength = Md5Ctx->Count >= 56 ? 120 : 56;
PadLength -= Md5Ctx->Count;
MD5UpdateBlock (Md5Ctx, Md5HashPadding, PadLength);
Md5Ctx->Length = LShiftU64 (Md5Ctx->Length, 3);
MD5UpdateBlock (Md5Ctx, (CONST UINT8 *) &Md5Ctx->Length, 8);
ZeroMem (Md5Ctx->M, sizeof (Md5Ctx->M));
Md5Ctx->Length = 0;
Md5Ctx->Status = EFI_ALREADY_STARTED;
return MD5Final (Md5Ctx, HashVal);
}