audk/OvmfPkg/PlatformPei/PlatformPei.inf

91 lines
2.8 KiB
INI
Raw Normal View History

## @file
# Platform PEI driver
#
# This module provides platform specific function to detect boot mode.
# Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
#
# This program and the accompanying materials
# are licensed and made available under the terms and conditions of the BSD License
# which accompanies this distribution. The full text of the license may be found at
# http://opensource.org/licenses/bsd-license.php
#
# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#
##
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = PlatformPei
FILE_GUID = 222c386d-5abc-4fb4-b124-fbb82488acf4
MODULE_TYPE = PEIM
VERSION_STRING = 1.0
ENTRY_POINT = InitializePlatform
#
# The following information is for reference only and not required by the build tools.
#
# VALID_ARCHITECTURES = IA32 X64 IPF EBC
#
[Sources]
Cmos.c
Fv.c
MemDetect.c
Platform.c
Xen.c
[Packages]
IntelFrameworkModulePkg/IntelFrameworkModulePkg.dec
MdePkg/MdePkg.dec
MdeModulePkg/MdeModulePkg.dec
UefiCpuPkg/UefiCpuPkg.dec
OvmfPkg/OvmfPkg.dec
[Guids]
gEfiMemoryTypeInformationGuid
gEfiXenInfoGuid
[LibraryClasses]
DebugLib
HobLib
IoLib
PciLib
PeiResourcePublicationLib
PeiServicesLib
PeiServicesTablePointerLib
PeimEntryPoint
QemuFwCfgLib
MtrrLib
PcdLib
[Pcd]
OvmfPkg: Split MAINFV into a separate PEI and DXE FVs By splitting the PEI and DXE phases into separate FVs, we can only reserve the PEI FV for ACPI S3 support. This should save about 7MB. Unfortunately, this all has to happen in a single commit. DEC: * Remove PcdOvmfMemFv(Base|Size) * Add PcdOvmfPeiMemFv(Base|Size) * Add PcdOvmfDxeMemFv(Base|Size) FDF: * Add new PEIFV. Move PEI modules here. * Remove MAINFV * Add PEIFV and DXEFV into FVMAIN_COMPACT - They are added as 2 sections of a file, and compressed together so they should retain good compression * PcdOvmf(Pei|Dxe)MemFv(Base|Size) are set SEC: * Find both the PEI and DXE FVs after decompression. - Copy them separately to their memory locations. Platform PEI driver: * Fv.c: Publish both FVs as appropriate * MemDetect.c: PcdOvmfMemFv(Base|Size) => PcdOvmfDxeMemFv(Base|Size) OVMF.fd before: Non-volatile data storage FVMAIN_COMPACT uncompressed FV FFS file LZMA compressed MAINFV uncompressed individual PEI modules uncompressed FV FFS file compressed with PI_NONE DXEFV uncompressed individual DXE modules uncompressed SECFV uncompressed OVMF.fd after: Non-volatile data storage FVMAIN_COMPACT uncompressed FV FFS file LZMA compressed PEIFV uncompressed individual PEI modules uncompressed DXEFV uncompressed individual DXE modules uncompressed SECFV uncompressed Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Jordan Justen <jordan.l.justen@intel.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15151 6f19259b-4bc3-4df7-8a09-765794883524
2014-01-21 20:39:13 +01:00
gUefiOvmfPkgTokenSpaceGuid.PcdOvmfPeiMemFvBase
gUefiOvmfPkgTokenSpaceGuid.PcdOvmfPeiMemFvSize
gUefiOvmfPkgTokenSpaceGuid.PcdOvmfDxeMemFvBase
gUefiOvmfPkgTokenSpaceGuid.PcdOvmfDxeMemFvSize
OvmfPkg: enable PIIX4 IO space in the PEI phase I. There are at least three locations in OvmfPkg that manipulate the PMBA and related PIIX4 registers. 1. MiscInitialization() [OvmfPkg/PlatformPei/Platform.c] module type: PEIM -- Pre-EFI Initialization Module (a) currently sets the PMBA only: 00.01.3 / 0x40 bits [15:6] 2. AcpiTimerLibConstructor() [OvmfPkg/Library/AcpiTimerLib/AcpiTimerLib.c] module type: BASE -- probably callable anywhere after PEI (a) sets the PMBA if needed: 00.01.3 / 0x40 bits [15:6] (b) sets PCICMD/IOSE if needed: 00.01.3 / 0x04 bit 0 (c) sets PMREGMISC/PMIOSE: 00.01.3 / 0x80 bit 0 3. AcpiInitialization() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c] module type: DXE_DRIVER -- Driver eXecution Environment (a) sets SCI_EN, which depends on correct PMBA setting from earlier ( The relative order of #1 and #3 is dictated minimally by their module types. Said relative order can be verified with the boot log: 27 Loading PEIM at 0x00000822320 EntryPoint=0x00000822580 PlatformPei.efi 28 Platform PEIM Loaded 1259 PlatformBdsInit 1270 PlatformBdsPolicyBehavior Line 28 is printed by InitializePlatform() [OvmfPkg/PlatformPei/Platform.c] which is the entry point of that module. The other two lines are printed by the corresponding functions in "OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c". ) Currently #2 (AcpiTimerLibConstructor()) is called in a random spot (whenever it gets loaded from the firmware image) and masks the insufficient setup in #1. We shouldn't depend on that, PEI should finish with IO space being fully accessibe. In addition, PEI should program the same PMBA value as AcpiTimerLib. II. The PEI change notwithstanding, AcpiTimerLib should stay defensive and ensure proper PM configuration for itself (either by confirming or by doing). III. Considering a possible cleanup/unification of #2 and #3: timer functions relying on AcpiTimerLibConstructor(), - MicroSecondDelay() - NanoSecondDelay() - GetPerformanceCounter() - GetPerformanceCounterProperties() - GetTimeInNanoSecond() may be called before #3 is reached (in Boot Device Selection phase), so we should not move the initialization from #2 to #3. (Again, AcpiTimerLib should contain its own setup.) We should also not move #3 to an earlier phase -- SCI_EN is premature unless we're about to boot real soon ("enable generation of SCI upon assertion of PWRBTN_STS, LID_STS, THRM_STS, or GPI_STS bits"). Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13722 6f19259b-4bc3-4df7-8a09-765794883524
2012-09-12 09:19:16 +02:00
gUefiOvmfPkgTokenSpaceGuid.PcdAcpiPmBaseAddress
gUefiOvmfPkgTokenSpaceGuid.PcdS3AcpiReservedMemoryBase
gUefiOvmfPkgTokenSpaceGuid.PcdOvmfSecPeiTempRamBase
gUefiOvmfPkgTokenSpaceGuid.PcdOvmfSecPeiTempRamSize
gUefiOvmfPkgTokenSpaceGuid.PcdOvmfSecPageTablesBase
gUefiOvmfPkgTokenSpaceGuid.PcdOvmfSecPageTablesSize
gUefiOvmfPkgTokenSpaceGuid.PcdOvmfLockBoxStorageBase
gUefiOvmfPkgTokenSpaceGuid.PcdOvmfLockBoxStorageSize
OvmfPkg: PlatformPei: protect SEC's GUIDed section handler table thru S3 OVMF's SecMain is unique in the sense that it links against the following two libraries *in combination*: - IntelFrameworkModulePkg/Library/LzmaCustomDecompressLib/ LzmaCustomDecompressLib.inf - MdePkg/Library/BaseExtractGuidedSectionLib/ BaseExtractGuidedSectionLib.inf The ExtractGuidedSectionLib library class allows decompressor modules to register themselves (keyed by GUID) with it, and it allows clients to decompress file sections with a registered decompressor module that matches the section's GUID. BaseExtractGuidedSectionLib is a library instance (of type BASE) for this library class. It has no constructor function. LzmaCustomDecompressLib is a compatible decompressor module (of type BASE). Its section type GUID is gLzmaCustomDecompressGuid == EE4E5898-3914-4259-9D6E-DC7BD79403CF When OVMF's SecMain module starts, the LzmaCustomDecompressLib constructor function is executed, which registers its LZMA decompressor with the above GUID, by calling into BaseExtractGuidedSectionLib: LzmaDecompressLibConstructor() [GuidedSectionExtraction.c] ExtractGuidedSectionRegisterHandlers() [BaseExtractGuidedSectionLib.c] GetExtractGuidedSectionHandlerInfo() PcdGet64 (PcdGuidedExtractHandlerTableAddress) -- NOTE THIS Later, during a normal (non-S3) boot, SecMain utilizes this decompressor to get information about, and to decompress, sections of the OVMF firmware image: SecCoreStartupWithStack() [OvmfPkg/Sec/SecMain.c] SecStartupPhase2() FindAndReportEntryPoints() FindPeiCoreImageBase() DecompressMemFvs() ExtractGuidedSectionGetInfo() [BaseExtractGuidedSectionLib.c] ExtractGuidedSectionDecode() [BaseExtractGuidedSectionLib.c] Notably, only the extraction depends on full-config-boot; the registration of LzmaCustomDecompressLib occurs unconditionally in the SecMain EFI binary, triggered by the library constructor function. This is where the bug happens. BaseExtractGuidedSectionLib maintains the table of GUIDed decompressors (section handlers) at a fixed memory location; selected by PcdGuidedExtractHandlerTableAddress (declared in MdePkg.dec). The default value of this PCD is 0x1000000 (16 MB). This causes SecMain to corrupt guest OS memory during S3, leading to random crashes. Compare the following two memory dumps, the first taken right before suspending, the second taken right after resuming a RHEL-7 guest: crash> rd -8 -p 1000000 0x50 1000000: c0 00 08 00 02 00 00 00 00 00 00 00 00 00 00 00 ................ 1000010: d0 33 0c 00 00 c9 ff ff c0 10 00 01 00 88 ff ff .3.............. 1000020: 0a 6d 57 32 0f 00 00 00 38 00 00 01 00 88 ff ff .mW2....8....... 1000030: 00 00 00 00 00 00 00 00 73 69 67 6e 61 6c 6d 6f ........signalmo 1000040: 64 75 6c 65 2e 73 6f 00 00 00 00 00 00 00 00 00 dule.so......... vs. crash> rd -8 -p 1000000 0x50 1000000: 45 47 53 49 01 00 00 00 20 00 00 01 00 00 00 00 EGSI.... ....... 1000010: 20 01 00 01 00 00 00 00 a0 01 00 01 00 00 00 00 ............... 1000020: 98 58 4e ee 14 39 59 42 9d 6e dc 7b d7 94 03 cf .XN..9YB.n.{.... 1000030: 00 00 00 00 00 00 00 00 73 69 67 6e 61 6c 6d 6f ........signalmo 1000040: 64 75 6c 65 2e 73 6f 00 00 00 00 00 00 00 00 00 dule.so......... The "EGSI" signature corresponds to EXTRACT_HANDLER_INFO_SIGNATURE declared in MdePkg/Library/BaseExtractGuidedSectionLib/BaseExtractGuidedSectionLib.c. Additionally, the gLzmaCustomDecompressGuid (quoted above) is visible at guest-phys offset 0x1000020. Fix the problem as follows: - Carve out 4KB from the 36KB gap that we currently have between PcdOvmfLockBoxStorageBase + PcdOvmfLockBoxStorageSize == 8220 KB and PcdOvmfSecPeiTempRamBase == 8256 KB. - Point PcdGuidedExtractHandlerTableAddress to 8220 KB (0x00807000). - Cover the area with an EfiACPIMemoryNVS type memalloc HOB, if S3 is supported and we're not currently resuming. The 4KB size that we pick is an upper estimate for BaseExtractGuidedSectionLib's internal storage size. The latter is calculated as follows (see GetExtractGuidedSectionHandlerInfo()): sizeof(EXTRACT_GUIDED_SECTION_HANDLER_INFO) + // 32 PcdMaximumGuidedExtractHandler * ( sizeof(GUID) + // 16 sizeof(EXTRACT_GUIDED_SECTION_DECODE_HANDLER) + // 8 sizeof(EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER) // 8 ) OVMF sets PcdMaximumGuidedExtractHandler to 16 decimal (which is the MdePkg default too), yielding 32 + 16 * (16 + 8 + 8) == 544 bytes. Regarding the lifecycle of the new area: (a) when and how it is initialized after first boot of the VM The library linked into SecMain finds that the area lacks the signature. It initializes the signature, plus the rest of the structure. This is independent of S3 support. Consumption of the area is also limited to SEC (but consumption does depend on full-config-boot). (b) how it is protected from memory allocations during DXE It is not, in the general case; and we don't need to. Nothing else links against BaseExtractGuidedSectionLib; it's OK if DXE overwrites the area. (c) how it is protected from the OS When S3 is enabled, we cover it with AcpiNVS in InitializeRamRegions(). When S3 is not supported, the range is not protected. (d) how it is accessed on the S3 resume path Examined by the library linked into SecMain. Registrations update the table in-place (based on GUID matches). (e) how it is accessed on the warm reset path If S3 is enabled, then the OS won't damage the table (due to (c)), hence see (d). If S3 is unsupported, then the OS may or may not overwrite the signature. (It likely will.) This is identical to the pre-patch status. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15433 6f19259b-4bc3-4df7-8a09-765794883524
2014-04-05 23:26:09 +02:00
gUefiOvmfPkgTokenSpaceGuid.PcdGuidedExtractHandlerTableSize
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdS3AcpiReservedMemorySize
OvmfPkg: PlatformPei: protect SEC's GUIDed section handler table thru S3 OVMF's SecMain is unique in the sense that it links against the following two libraries *in combination*: - IntelFrameworkModulePkg/Library/LzmaCustomDecompressLib/ LzmaCustomDecompressLib.inf - MdePkg/Library/BaseExtractGuidedSectionLib/ BaseExtractGuidedSectionLib.inf The ExtractGuidedSectionLib library class allows decompressor modules to register themselves (keyed by GUID) with it, and it allows clients to decompress file sections with a registered decompressor module that matches the section's GUID. BaseExtractGuidedSectionLib is a library instance (of type BASE) for this library class. It has no constructor function. LzmaCustomDecompressLib is a compatible decompressor module (of type BASE). Its section type GUID is gLzmaCustomDecompressGuid == EE4E5898-3914-4259-9D6E-DC7BD79403CF When OVMF's SecMain module starts, the LzmaCustomDecompressLib constructor function is executed, which registers its LZMA decompressor with the above GUID, by calling into BaseExtractGuidedSectionLib: LzmaDecompressLibConstructor() [GuidedSectionExtraction.c] ExtractGuidedSectionRegisterHandlers() [BaseExtractGuidedSectionLib.c] GetExtractGuidedSectionHandlerInfo() PcdGet64 (PcdGuidedExtractHandlerTableAddress) -- NOTE THIS Later, during a normal (non-S3) boot, SecMain utilizes this decompressor to get information about, and to decompress, sections of the OVMF firmware image: SecCoreStartupWithStack() [OvmfPkg/Sec/SecMain.c] SecStartupPhase2() FindAndReportEntryPoints() FindPeiCoreImageBase() DecompressMemFvs() ExtractGuidedSectionGetInfo() [BaseExtractGuidedSectionLib.c] ExtractGuidedSectionDecode() [BaseExtractGuidedSectionLib.c] Notably, only the extraction depends on full-config-boot; the registration of LzmaCustomDecompressLib occurs unconditionally in the SecMain EFI binary, triggered by the library constructor function. This is where the bug happens. BaseExtractGuidedSectionLib maintains the table of GUIDed decompressors (section handlers) at a fixed memory location; selected by PcdGuidedExtractHandlerTableAddress (declared in MdePkg.dec). The default value of this PCD is 0x1000000 (16 MB). This causes SecMain to corrupt guest OS memory during S3, leading to random crashes. Compare the following two memory dumps, the first taken right before suspending, the second taken right after resuming a RHEL-7 guest: crash> rd -8 -p 1000000 0x50 1000000: c0 00 08 00 02 00 00 00 00 00 00 00 00 00 00 00 ................ 1000010: d0 33 0c 00 00 c9 ff ff c0 10 00 01 00 88 ff ff .3.............. 1000020: 0a 6d 57 32 0f 00 00 00 38 00 00 01 00 88 ff ff .mW2....8....... 1000030: 00 00 00 00 00 00 00 00 73 69 67 6e 61 6c 6d 6f ........signalmo 1000040: 64 75 6c 65 2e 73 6f 00 00 00 00 00 00 00 00 00 dule.so......... vs. crash> rd -8 -p 1000000 0x50 1000000: 45 47 53 49 01 00 00 00 20 00 00 01 00 00 00 00 EGSI.... ....... 1000010: 20 01 00 01 00 00 00 00 a0 01 00 01 00 00 00 00 ............... 1000020: 98 58 4e ee 14 39 59 42 9d 6e dc 7b d7 94 03 cf .XN..9YB.n.{.... 1000030: 00 00 00 00 00 00 00 00 73 69 67 6e 61 6c 6d 6f ........signalmo 1000040: 64 75 6c 65 2e 73 6f 00 00 00 00 00 00 00 00 00 dule.so......... The "EGSI" signature corresponds to EXTRACT_HANDLER_INFO_SIGNATURE declared in MdePkg/Library/BaseExtractGuidedSectionLib/BaseExtractGuidedSectionLib.c. Additionally, the gLzmaCustomDecompressGuid (quoted above) is visible at guest-phys offset 0x1000020. Fix the problem as follows: - Carve out 4KB from the 36KB gap that we currently have between PcdOvmfLockBoxStorageBase + PcdOvmfLockBoxStorageSize == 8220 KB and PcdOvmfSecPeiTempRamBase == 8256 KB. - Point PcdGuidedExtractHandlerTableAddress to 8220 KB (0x00807000). - Cover the area with an EfiACPIMemoryNVS type memalloc HOB, if S3 is supported and we're not currently resuming. The 4KB size that we pick is an upper estimate for BaseExtractGuidedSectionLib's internal storage size. The latter is calculated as follows (see GetExtractGuidedSectionHandlerInfo()): sizeof(EXTRACT_GUIDED_SECTION_HANDLER_INFO) + // 32 PcdMaximumGuidedExtractHandler * ( sizeof(GUID) + // 16 sizeof(EXTRACT_GUIDED_SECTION_DECODE_HANDLER) + // 8 sizeof(EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER) // 8 ) OVMF sets PcdMaximumGuidedExtractHandler to 16 decimal (which is the MdePkg default too), yielding 32 + 16 * (16 + 8 + 8) == 544 bytes. Regarding the lifecycle of the new area: (a) when and how it is initialized after first boot of the VM The library linked into SecMain finds that the area lacks the signature. It initializes the signature, plus the rest of the structure. This is independent of S3 support. Consumption of the area is also limited to SEC (but consumption does depend on full-config-boot). (b) how it is protected from memory allocations during DXE It is not, in the general case; and we don't need to. Nothing else links against BaseExtractGuidedSectionLib; it's OK if DXE overwrites the area. (c) how it is protected from the OS When S3 is enabled, we cover it with AcpiNVS in InitializeRamRegions(). When S3 is not supported, the range is not protected. (d) how it is accessed on the S3 resume path Examined by the library linked into SecMain. Registrations update the table in-place (based on GUID matches). (e) how it is accessed on the warm reset path If S3 is enabled, then the OS won't damage the table (due to (c)), hence see (d). If S3 is unsupported, then the OS may or may not overwrite the signature. (It likely will.) This is identical to the pre-patch status. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@15433 6f19259b-4bc3-4df7-8a09-765794883524
2014-04-05 23:26:09 +02:00
gEfiMdePkgTokenSpaceGuid.PcdGuidedExtractHandlerTableAddress
gEfiMdeModulePkgTokenSpaceGuid.PcdVariableStoreSize
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageFtwSpareSize
gEfiMdeModulePkgTokenSpaceGuid.PcdFlashNvStorageVariableSize
gEfiMdeModulePkgTokenSpaceGuid.PcdEmuVariableNvStoreReserved
gEfiMdeModulePkgTokenSpaceGuid.PcdPciDisableBusEnumeration
gUefiCpuPkgTokenSpaceGuid.PcdCpuLocalApicBaseAddress
[Ppis]
gEfiPeiMasterBootModePpiGuid
[Depex]
TRUE