mirror of https://github.com/acidanthera/audk.git
200 lines
5.2 KiB
C
200 lines
5.2 KiB
C
|
/** @file
|
||
|
RISC-V instance of Timer Library.
|
||
|
|
||
|
Copyright (c) 2016 - 2022, Hewlett Packard Enterprise Development LP. All rights reserved.<BR>
|
||
|
|
||
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
||
|
|
||
|
**/
|
||
|
|
||
|
#include <Uefi.h>
|
||
|
#include <Library/BaseLib.h>
|
||
|
#include <Library/DebugLib.h>
|
||
|
#include <Library/PcdLib.h>
|
||
|
#include <Register/RiscV64/RiscVImpl.h>
|
||
|
|
||
|
/**
|
||
|
Stalls the CPU for at least the given number of ticks.
|
||
|
|
||
|
Stalls the CPU for at least the given number of ticks. It's invoked by
|
||
|
MicroSecondDelay() and NanoSecondDelay().
|
||
|
|
||
|
@param Delay A period of time to delay in ticks.
|
||
|
|
||
|
**/
|
||
|
VOID
|
||
|
InternalRiscVTimerDelay (
|
||
|
IN UINT32 Delay
|
||
|
)
|
||
|
{
|
||
|
UINT32 Ticks;
|
||
|
UINT32 Times;
|
||
|
|
||
|
Times = Delay >> (RISCV_TIMER_COMPARE_BITS - 2);
|
||
|
Delay &= ((1 << (RISCV_TIMER_COMPARE_BITS - 2)) - 1);
|
||
|
do {
|
||
|
//
|
||
|
// The target timer count is calculated here
|
||
|
//
|
||
|
Ticks = RiscVReadTimer () + Delay;
|
||
|
Delay = 1 << (RISCV_TIMER_COMPARE_BITS - 2);
|
||
|
while (((Ticks - RiscVReadTimer ()) & (1 << (RISCV_TIMER_COMPARE_BITS - 1))) == 0) {
|
||
|
CpuPause ();
|
||
|
}
|
||
|
} while (Times-- > 0);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Stalls the CPU for at least the given number of microseconds.
|
||
|
|
||
|
Stalls the CPU for the number of microseconds specified by MicroSeconds.
|
||
|
|
||
|
@param MicroSeconds The minimum number of microseconds to delay.
|
||
|
|
||
|
@return MicroSeconds
|
||
|
|
||
|
**/
|
||
|
UINTN
|
||
|
EFIAPI
|
||
|
MicroSecondDelay (
|
||
|
IN UINTN MicroSeconds
|
||
|
)
|
||
|
{
|
||
|
InternalRiscVTimerDelay (
|
||
|
(UINT32)DivU64x32 (
|
||
|
MultU64x32 (
|
||
|
MicroSeconds,
|
||
|
PcdGet64 (PcdCpuCoreCrystalClockFrequency)
|
||
|
),
|
||
|
1000000u
|
||
|
)
|
||
|
);
|
||
|
return MicroSeconds;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Stalls the CPU for at least the given number of nanoseconds.
|
||
|
|
||
|
Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
|
||
|
|
||
|
@param NanoSeconds The minimum number of nanoseconds to delay.
|
||
|
|
||
|
@return NanoSeconds
|
||
|
|
||
|
**/
|
||
|
UINTN
|
||
|
EFIAPI
|
||
|
NanoSecondDelay (
|
||
|
IN UINTN NanoSeconds
|
||
|
)
|
||
|
{
|
||
|
InternalRiscVTimerDelay (
|
||
|
(UINT32)DivU64x32 (
|
||
|
MultU64x32 (
|
||
|
NanoSeconds,
|
||
|
PcdGet64 (PcdCpuCoreCrystalClockFrequency)
|
||
|
),
|
||
|
1000000000u
|
||
|
)
|
||
|
);
|
||
|
return NanoSeconds;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Retrieves the current value of a 64-bit free running performance counter.
|
||
|
|
||
|
Retrieves the current value of a 64-bit free running performance counter. The
|
||
|
counter can either count up by 1 or count down by 1. If the physical
|
||
|
performance counter counts by a larger increment, then the counter values
|
||
|
must be translated. The properties of the counter can be retrieved from
|
||
|
GetPerformanceCounterProperties().
|
||
|
|
||
|
@return The current value of the free running performance counter.
|
||
|
|
||
|
**/
|
||
|
UINT64
|
||
|
EFIAPI
|
||
|
GetPerformanceCounter (
|
||
|
VOID
|
||
|
)
|
||
|
{
|
||
|
return (UINT64)RiscVReadTimer ();
|
||
|
}
|
||
|
|
||
|
/**return
|
||
|
Retrieves the 64-bit frequency in Hz and the range of performance counter
|
||
|
values.
|
||
|
|
||
|
If StartValue is not NULL, then the value that the performance counter starts
|
||
|
with immediately after is it rolls over is returned in StartValue. If
|
||
|
EndValue is not NULL, then the value that the performance counter end with
|
||
|
immediately before it rolls over is returned in EndValue. The 64-bit
|
||
|
frequency of the performance counter in Hz is always returned. If StartValue
|
||
|
is less than EndValue, then the performance counter counts up. If StartValue
|
||
|
is greater than EndValue, then the performance counter counts down. For
|
||
|
example, a 64-bit free running counter that counts up would have a StartValue
|
||
|
of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter
|
||
|
that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.
|
||
|
|
||
|
@param StartValue The value the performance counter starts with when it
|
||
|
rolls over.
|
||
|
@param EndValue The value that the performance counter ends with before
|
||
|
it rolls over.
|
||
|
|
||
|
@return The frequency in Hz.
|
||
|
|
||
|
**/
|
||
|
UINT64
|
||
|
EFIAPI
|
||
|
GetPerformanceCounterProperties (
|
||
|
OUT UINT64 *StartValue, OPTIONAL
|
||
|
OUT UINT64 *EndValue OPTIONAL
|
||
|
)
|
||
|
{
|
||
|
if (StartValue != NULL) {
|
||
|
*StartValue = 0;
|
||
|
}
|
||
|
|
||
|
if (EndValue != NULL) {
|
||
|
*EndValue = 32 - 1;
|
||
|
}
|
||
|
|
||
|
return PcdGet64 (PcdCpuCoreCrystalClockFrequency);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Converts elapsed ticks of performance counter to time in nanoseconds.
|
||
|
|
||
|
This function converts the elapsed ticks of running performance counter to
|
||
|
time value in unit of nanoseconds.
|
||
|
|
||
|
@param Ticks The number of elapsed ticks of running performance counter.
|
||
|
|
||
|
@return The elapsed time in nanoseconds.
|
||
|
|
||
|
**/
|
||
|
UINT64
|
||
|
EFIAPI
|
||
|
GetTimeInNanoSecond (
|
||
|
IN UINT64 Ticks
|
||
|
)
|
||
|
{
|
||
|
UINT64 NanoSeconds;
|
||
|
UINT32 Remainder;
|
||
|
|
||
|
//
|
||
|
// Ticks
|
||
|
// Time = --------- x 1,000,000,000
|
||
|
// Frequency
|
||
|
//
|
||
|
NanoSeconds = MultU64x32 (DivU64x32Remainder (Ticks, PcdGet64 (PcdCpuCoreCrystalClockFrequency), &Remainder), 1000000000u);
|
||
|
|
||
|
//
|
||
|
// Frequency < 0x100000000, so Remainder < 0x100000000, then (Remainder * 1,000,000,000)
|
||
|
// will not overflow 64-bit.
|
||
|
//
|
||
|
NanoSeconds += DivU64x32 (MultU64x32 ((UINT64)Remainder, 1000000000u), PcdGet64 (PcdCpuCoreCrystalClockFrequency));
|
||
|
|
||
|
return NanoSeconds;
|
||
|
}
|