audk/QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei/prememinit.c

194 lines
5.9 KiB
C
Raw Normal View History

/************************************************************************
*
* Copyright (c) 2013-2015 Intel Corporation.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
************************************************************************/
#include "mrc.h"
#include "memory_options.h"
#include "meminit_utils.h"
#include "prememinit.h"
#include "io.h"
// Read character from serial console
uint8_t mgetc(void);
extern uint32_t DpfPrintMask;
// Adjust configuration parameters before initialisation
// sequence.
void PreMemInit(
MRCParams_t *mrc_params)
{
const DRAMParams_t *dram_params;
uint8_t dram_width;
uint32_t dram_cfg_index;
uint32_t channel_i;
ENTERFN();
#ifdef MRC_SV
{
uint8_t ch;
myloop:
DPF(D_INFO, "- c - continue\n");
DPF(D_INFO, "- f - boot mode [%d]\n", mrc_params->boot_mode);
DPF(D_INFO, "- r - rank enable [%d]\n", mrc_params->rank_enables);
DPF(D_INFO, "- e - ecc switch [%d]\n", mrc_params->ecc_enables);
DPF(D_INFO, "- b - scrambling switch [%d]\n", mrc_params->scrambling_enables);
DPF(D_INFO, "- a - adr mode [%d]\n", mrc_params->address_mode);
DPF(D_INFO, "- m - menu after mrc [%d]\n", mrc_params->menu_after_mrc);
DPF(D_INFO, "- t - tune to rcvn [%d]\n", mrc_params->tune_rcvn);
DPF(D_INFO, "- o - odt switch [%d]\n", mrc_params->rd_odt_value);
DPF(D_INFO, "- d - dram density [%d]\n", mrc_params->params.DENSITY);
DPF(D_INFO, "- p - power down disable [%d]\n", mrc_params->power_down_disable);
DPF(D_INFO, "- l - log switch 0x%x\n", DpfPrintMask);
ch = mgetc();
switch (ch)
{
case 'f':
mrc_params->boot_mode >>= 1;
if(mrc_params->boot_mode == bmUnknown)
{
mrc_params->boot_mode = bmWarm;
}
DPF(D_INFO, "Boot mode %d\n", mrc_params->boot_mode);
break;
case 'p':
mrc_params->power_down_disable ^= 1;
DPF(D_INFO, "Power down disable %d\n", mrc_params->power_down_disable);
break;
case 'r':
mrc_params->rank_enables ^= 2;
DPF(D_INFO, "Rank enable %d\n", mrc_params->rank_enables);
break;
case 'e':
mrc_params->ecc_enables ^= 1;
DPF(D_INFO, "Ecc enable %d\n", mrc_params->ecc_enables);
break;
case 'b':
mrc_params->scrambling_enables ^= 1;
DPF(D_INFO, "Scrambler enable %d\n", mrc_params->scrambling_enables);
break;
case 'a':
mrc_params->address_mode = (mrc_params->address_mode + 1) % 3;
DPF(D_INFO, "Adr mode %d\n", mrc_params->address_mode);
break;
case 'm':
mrc_params->menu_after_mrc ^= 1;
DPF(D_INFO, "Menu after mrc %d\n", mrc_params->menu_after_mrc);
break;
case 't':
mrc_params->tune_rcvn ^= 1;
DPF(D_INFO, "Tune to rcvn %d\n", mrc_params->tune_rcvn);
break;
case 'o':
mrc_params->rd_odt_value = (mrc_params->rd_odt_value + 1) % 4;
DPF(D_INFO, "Rd_odt_value %d\n", mrc_params->rd_odt_value);
break;
case 'd':
mrc_params->params.DENSITY = (mrc_params->params.DENSITY + 1) % 4;
DPF(D_INFO, "Dram density %d\n", mrc_params->params.DENSITY);
break;
case 'l':
DpfPrintMask ^= 0x30;
DPF(D_INFO, "Log mask %x\n", DpfPrintMask);
break;
default:
break;
}
if (ch != 'c')
goto myloop;
}
#endif
// initially expect success
mrc_params->status = MRC_SUCCESS;
// todo!!! Setup board layout (must be reviewed as is selecting static timings)
// 0 == R0 (DDR3 x16), 1 == R1 (DDR3 x16), 2 == DV (DDR3 x8), 3 == SV (DDR3 x8)
if (mrc_params->dram_width == x8)
{
mrc_params->board_id = 2; // select x8 layout
}
else
{
mrc_params->board_id = 0; // select x16 layout
}
// initially no memory
mrc_params->mem_size = 0;
channel_i = 0;
// begin of channel settings
dram_width = mrc_params->dram_width;
dram_params = &mrc_params->params;
dram_cfg_index = 0;
// Determine Column & Row Bits:
// Column:
// 11 for 8Gbx8, else 10
mrc_params->column_bits[channel_i] = ((dram_params[dram_cfg_index].DENSITY == 4) && (dram_width == x8)) ? (11) : (10);
// Row:
// 512Mbx16=12 512Mbx8=13
// 1Gbx16=13 1Gbx8=14
// 2Gbx16=14 2Gbx8=15
// 4Gbx16=15 4Gbx8=16
// 8Gbx16=16 8Gbx8=16
mrc_params->row_bits[channel_i] = 12 + (dram_params[dram_cfg_index].DENSITY)
+ (((dram_params[dram_cfg_index].DENSITY < 4) && (dram_width == x8)) ? (1) : (0));
// Determine Per Channel Memory Size:
// (For 2 RANKs, multiply by 2)
// (For 16 bit data bus, divide by 2)
// DENSITY WIDTH MEM_AVAILABLE
// 512Mb x16 0x008000000 ( 128MB)
// 512Mb x8 0x010000000 ( 256MB)
// 1Gb x16 0x010000000 ( 256MB)
// 1Gb x8 0x020000000 ( 512MB)
// 2Gb x16 0x020000000 ( 512MB)
// 2Gb x8 0x040000000 (1024MB)
// 4Gb x16 0x040000000 (1024MB)
// 4Gb x8 0x080000000 (2048MB)
mrc_params->channel_size[channel_i] = (1 << dram_params[dram_cfg_index].DENSITY);
mrc_params->channel_size[channel_i] *= ((dram_width == x8) ? (2) : (1));
mrc_params->channel_size[channel_i] *= (mrc_params->rank_enables == 0x3) ? (2) : (1);
mrc_params->channel_size[channel_i] *= (mrc_params->channel_width == x16) ? (1) : (2);
// Determine memory size (convert number of 64MB/512Mb units)
mrc_params->mem_size += mrc_params->channel_size[channel_i] << 26;
// end of channel settings
LEAVEFN();
return;
}