audk/OvmfPkg/AcpiPlatformDxe/Qemu.c

512 lines
15 KiB
C
Raw Normal View History

/** @file
OVMF ACPI QEMU support
Copyright (c) 2008 - 2014, Intel Corporation. All rights reserved.<BR>
Copyright (C) 2012-2014, Red Hat, Inc.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "AcpiPlatform.h"
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/QemuFwCfgLib.h>
#include <Library/DxeServicesTableLib.h>
#include <Library/PcdLib.h>
OvmfPkg: AcpiPlatformDxe: implement QEMU's full ACPI table loader interface Recent changes in the QEMU ACPI table generator have shown that our limited client for that interface is insufficient and/or brittle. Implement the full interface utilizing OrderedCollectionLib for addressing fw_cfg blobs by name. In order to stay compatible with EFI_ACPI_TABLE_PROTOCOL, we don't try to identify QEMU's RSD PTR and link it into the UEFI system configuration table. Instead, once all linker/loader commands have been processed, we process the AddPointer commands for a second time. In the second pass, we look at the targets of these pointer commands. The key idea (by Michael Tsirkin) is that any ACPI interpreter will only be able to locate ACPI tables by following absolute pointers, hence QEMU's set of AddPointer commands will cover all of the ACPI tables (and more, see below). Some of QEMU's AddPointer commands (ie. some fields in ACPI tables) may point to areas in fw_cfg blobs that are not ACPI tables themselves. Examples are the BGRT.ImageAddress field, and the TCPA.LASA field. We tell these apart from ACPI tables by performing the following checks on pointer target "candidates": - length check against minimum ACPI table size, and remaining blob size - checksum verification. If a target area looks like an ACPI table, and is different from RSDT and DSDT (which EFI_ACPI_TABLE_PROTOCOL handles internally), we install the table (at which point EFI_ACPI_TABLE_PROTOCOL creates a deep copy of the relevant segment of the pointed-to fw_cfg blob). Simultaneously, we keep account if each fw_cfg blob has ever been referenced as the target of an AddPointer command without that AddPointer command actually identifying an ACPI table. In this case the containing fw_cfg file (of AcpiNVS memory type) must remain around forever, because we never install that area with EFI_ACPI_TABLE_PROTOCOL, but some field in some ACPI table that we *do* install still references it, by the absolute address that we've established during the first pass. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16158 6f19259b-4bc3-4df7-8a09-765794883524
2014-09-22 23:11:22 +02:00
#include <Library/OrderedCollectionLib.h>
#include <IndustryStandard/Acpi.h>
BOOLEAN
QemuDetected (
VOID
)
{
if (!QemuFwCfgIsAvailable ()) {
return FALSE;
}
return TRUE;
}
STATIC
UINTN
CountBits16 (
UINT16 Mask
)
{
//
// For all N >= 1, N bits are enough to represent the number of bits set
// among N bits. It's true for N == 1. When adding a new bit (N := N+1),
// the maximum number of possibly set bits increases by one, while the
// representable maximum doubles.
//
Mask = ((Mask & 0xAAAA) >> 1) + (Mask & 0x5555);
Mask = ((Mask & 0xCCCC) >> 2) + (Mask & 0x3333);
Mask = ((Mask & 0xF0F0) >> 4) + (Mask & 0x0F0F);
Mask = ((Mask & 0xFF00) >> 8) + (Mask & 0x00FF);
return Mask;
}
STATIC
EFI_STATUS
EFIAPI
QemuInstallAcpiMadtTable (
IN EFI_ACPI_TABLE_PROTOCOL *AcpiProtocol,
IN VOID *AcpiTableBuffer,
IN UINTN AcpiTableBufferSize,
OUT UINTN *TableKey
)
{
UINTN CpuCount;
UINTN PciLinkIsoCount;
UINTN NewBufferSize;
EFI_ACPI_1_0_MULTIPLE_APIC_DESCRIPTION_TABLE_HEADER *Madt;
EFI_ACPI_1_0_PROCESSOR_LOCAL_APIC_STRUCTURE *LocalApic;
EFI_ACPI_1_0_IO_APIC_STRUCTURE *IoApic;
EFI_ACPI_1_0_INTERRUPT_SOURCE_OVERRIDE_STRUCTURE *Iso;
EFI_ACPI_1_0_LOCAL_APIC_NMI_STRUCTURE *LocalApicNmi;
VOID *Ptr;
UINTN Loop;
EFI_STATUS Status;
ASSERT (AcpiTableBufferSize >= sizeof (EFI_ACPI_DESCRIPTION_HEADER));
QemuFwCfgSelectItem (QemuFwCfgItemSmpCpuCount);
CpuCount = QemuFwCfgRead16 ();
ASSERT (CpuCount >= 1);
//
// Set Level-tiggered, Active High for these identity mapped IRQs. The bitset
// corresponds to the union of all possible interrupt assignments for the LNKA,
// LNKB, LNKC, LNKD PCI interrupt lines. See the DSDT.
//
PciLinkIsoCount = CountBits16 (PcdGet16 (Pcd8259LegacyModeEdgeLevel));
NewBufferSize = 1 * sizeof (*Madt) +
CpuCount * sizeof (*LocalApic) +
1 * sizeof (*IoApic) +
(1 + PciLinkIsoCount) * sizeof (*Iso) +
1 * sizeof (*LocalApicNmi);
Madt = AllocatePool (NewBufferSize);
if (Madt == NULL) {
return EFI_OUT_OF_RESOURCES;
}
CopyMem (&(Madt->Header), AcpiTableBuffer, sizeof (EFI_ACPI_DESCRIPTION_HEADER));
Madt->Header.Length = (UINT32) NewBufferSize;
Madt->LocalApicAddress = PcdGet32 (PcdCpuLocalApicBaseAddress);
Madt->Flags = EFI_ACPI_1_0_PCAT_COMPAT;
Ptr = Madt + 1;
LocalApic = Ptr;
for (Loop = 0; Loop < CpuCount; ++Loop) {
LocalApic->Type = EFI_ACPI_1_0_PROCESSOR_LOCAL_APIC;
LocalApic->Length = sizeof (*LocalApic);
LocalApic->AcpiProcessorId = (UINT8) Loop;
LocalApic->ApicId = (UINT8) Loop;
LocalApic->Flags = 1; // enabled
++LocalApic;
}
Ptr = LocalApic;
IoApic = Ptr;
IoApic->Type = EFI_ACPI_1_0_IO_APIC;
IoApic->Length = sizeof (*IoApic);
IoApic->IoApicId = (UINT8) CpuCount;
IoApic->Reserved = EFI_ACPI_RESERVED_BYTE;
IoApic->IoApicAddress = 0xFEC00000;
IoApic->SystemVectorBase = 0x00000000;
Ptr = IoApic + 1;
//
// IRQ0 (8254 Timer) => IRQ2 (PIC) Interrupt Source Override Structure
//
Iso = Ptr;
Iso->Type = EFI_ACPI_1_0_INTERRUPT_SOURCE_OVERRIDE;
Iso->Length = sizeof (*Iso);
Iso->Bus = 0x00; // ISA
Iso->Source = 0x00; // IRQ0
Iso->GlobalSystemInterruptVector = 0x00000002;
Iso->Flags = 0x0000; // Conforms to specs of the bus
++Iso;
//
// Set Level-triggered, Active High for all possible PCI link targets.
//
for (Loop = 0; Loop < 16; ++Loop) {
if ((PcdGet16 (Pcd8259LegacyModeEdgeLevel) & (1 << Loop)) == 0) {
continue;
}
Iso->Type = EFI_ACPI_1_0_INTERRUPT_SOURCE_OVERRIDE;
Iso->Length = sizeof (*Iso);
Iso->Bus = 0x00; // ISA
Iso->Source = (UINT8) Loop;
Iso->GlobalSystemInterruptVector = (UINT32) Loop;
Iso->Flags = 0x000D; // Level-triggered, Active High
++Iso;
}
ASSERT (
(UINTN) (Iso - (EFI_ACPI_1_0_INTERRUPT_SOURCE_OVERRIDE_STRUCTURE *)Ptr) ==
1 + PciLinkIsoCount
);
Ptr = Iso;
LocalApicNmi = Ptr;
LocalApicNmi->Type = EFI_ACPI_1_0_LOCAL_APIC_NMI;
LocalApicNmi->Length = sizeof (*LocalApicNmi);
LocalApicNmi->AcpiProcessorId = 0xFF; // applies to all processors
//
// polarity and trigger mode of the APIC I/O input signals conform to the
// specifications of the bus
//
LocalApicNmi->Flags = 0x0000;
//
// Local APIC interrupt input LINTn to which NMI is connected.
//
LocalApicNmi->LocalApicInti = 0x01;
Ptr = LocalApicNmi + 1;
ASSERT ((UINTN) ((UINT8 *)Ptr - (UINT8 *)Madt) == NewBufferSize);
Status = InstallAcpiTable (AcpiProtocol, Madt, NewBufferSize, TableKey);
FreePool (Madt);
return Status;
}
#pragma pack(1)
typedef struct {
UINT64 Base;
UINT64 End;
UINT64 Length;
} PCI_WINDOW;
typedef struct {
PCI_WINDOW PciWindow32;
PCI_WINDOW PciWindow64;
} FIRMWARE_DATA;
typedef struct {
UINT8 BytePrefix;
UINT8 ByteValue;
} AML_BYTE;
typedef struct {
UINT8 NameOp;
UINT8 RootChar;
UINT8 NameChar[4];
UINT8 PackageOp;
UINT8 PkgLength;
UINT8 NumElements;
AML_BYTE Pm1aCntSlpTyp;
AML_BYTE Pm1bCntSlpTyp;
AML_BYTE Reserved[2];
} SYSTEM_STATE_PACKAGE;
#pragma pack()
STATIC
EFI_STATUS
EFIAPI
PopulateFwData(
OUT FIRMWARE_DATA *FwData
)
{
EFI_STATUS Status;
UINTN NumDesc;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR *AllDesc;
Status = gDS->GetMemorySpaceMap (&NumDesc, &AllDesc);
if (Status == EFI_SUCCESS) {
UINT64 NonMmio32MaxExclTop;
UINT64 Mmio32MinBase;
UINT64 Mmio32MaxExclTop;
UINTN CurDesc;
Status = EFI_UNSUPPORTED;
NonMmio32MaxExclTop = 0;
Mmio32MinBase = BASE_4GB;
Mmio32MaxExclTop = 0;
for (CurDesc = 0; CurDesc < NumDesc; ++CurDesc) {
CONST EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Desc;
UINT64 ExclTop;
Desc = &AllDesc[CurDesc];
ExclTop = Desc->BaseAddress + Desc->Length;
if (ExclTop <= (UINT64) PcdGet32 (PcdOvmfFdBaseAddress)) {
switch (Desc->GcdMemoryType) {
case EfiGcdMemoryTypeNonExistent:
break;
case EfiGcdMemoryTypeReserved:
case EfiGcdMemoryTypeSystemMemory:
if (NonMmio32MaxExclTop < ExclTop) {
NonMmio32MaxExclTop = ExclTop;
}
break;
case EfiGcdMemoryTypeMemoryMappedIo:
if (Mmio32MinBase > Desc->BaseAddress) {
Mmio32MinBase = Desc->BaseAddress;
}
if (Mmio32MaxExclTop < ExclTop) {
Mmio32MaxExclTop = ExclTop;
}
break;
default:
ASSERT(0);
}
}
}
if (Mmio32MinBase < NonMmio32MaxExclTop) {
Mmio32MinBase = NonMmio32MaxExclTop;
}
if (Mmio32MinBase < Mmio32MaxExclTop) {
FwData->PciWindow32.Base = Mmio32MinBase;
FwData->PciWindow32.End = Mmio32MaxExclTop - 1;
FwData->PciWindow32.Length = Mmio32MaxExclTop - Mmio32MinBase;
FwData->PciWindow64.Base = 0;
FwData->PciWindow64.End = 0;
FwData->PciWindow64.Length = 0;
Status = EFI_SUCCESS;
}
FreePool (AllDesc);
}
DEBUG ((
DEBUG_INFO,
"ACPI PciWindow32: Base=0x%08lx End=0x%08lx Length=0x%08lx\n",
FwData->PciWindow32.Base,
FwData->PciWindow32.End,
FwData->PciWindow32.Length
));
DEBUG ((
DEBUG_INFO,
"ACPI PciWindow64: Base=0x%08lx End=0x%08lx Length=0x%08lx\n",
FwData->PciWindow64.Base,
FwData->PciWindow64.End,
FwData->PciWindow64.Length
));
return Status;
}
STATIC
VOID
EFIAPI
GetSuspendStates (
UINTN *SuspendToRamSize,
SYSTEM_STATE_PACKAGE *SuspendToRam,
UINTN *SuspendToDiskSize,
SYSTEM_STATE_PACKAGE *SuspendToDisk
)
{
STATIC CONST SYSTEM_STATE_PACKAGE Template = {
0x08, // NameOp
'\\', // RootChar
{ '_', 'S', 'x', '_' }, // NameChar[4]
0x12, // PackageOp
0x0A, // PkgLength
0x04, // NumElements
{ 0x0A, 0x00 }, // Pm1aCntSlpTyp
{ 0x0A, 0x00 }, // Pm1bCntSlpTyp -- we don't support it
{ // Reserved[2]
{ 0x0A, 0x00 },
{ 0x0A, 0x00 }
}
};
RETURN_STATUS Status;
FIRMWARE_CONFIG_ITEM FwCfgItem;
UINTN FwCfgSize;
UINT8 SystemStates[6];
//
// configure defaults
//
*SuspendToRamSize = sizeof Template;
CopyMem (SuspendToRam, &Template, sizeof Template);
SuspendToRam->NameChar[2] = '3'; // S3
SuspendToRam->Pm1aCntSlpTyp.ByteValue = 1; // PIIX4: STR
*SuspendToDiskSize = sizeof Template;
CopyMem (SuspendToDisk, &Template, sizeof Template);
SuspendToDisk->NameChar[2] = '4'; // S4
SuspendToDisk->Pm1aCntSlpTyp.ByteValue = 2; // PIIX4: POSCL
//
// check for overrides
//
Status = QemuFwCfgFindFile ("etc/system-states", &FwCfgItem, &FwCfgSize);
if (Status != RETURN_SUCCESS || FwCfgSize != sizeof SystemStates) {
DEBUG ((DEBUG_INFO, "ACPI using S3/S4 defaults\n"));
return;
}
QemuFwCfgSelectItem (FwCfgItem);
QemuFwCfgReadBytes (sizeof SystemStates, SystemStates);
//
// Each byte corresponds to a system state. In each byte, the MSB tells us
// whether the given state is enabled. If so, the three LSBs specify the
// value to be written to the PM control register's SUS_TYP bits.
//
if (SystemStates[3] & BIT7) {
SuspendToRam->Pm1aCntSlpTyp.ByteValue =
SystemStates[3] & (BIT2 | BIT1 | BIT0);
DEBUG ((DEBUG_INFO, "ACPI S3 value: %d\n",
SuspendToRam->Pm1aCntSlpTyp.ByteValue));
} else {
*SuspendToRamSize = 0;
DEBUG ((DEBUG_INFO, "ACPI S3 disabled\n"));
}
if (SystemStates[4] & BIT7) {
SuspendToDisk->Pm1aCntSlpTyp.ByteValue =
SystemStates[4] & (BIT2 | BIT1 | BIT0);
DEBUG ((DEBUG_INFO, "ACPI S4 value: %d\n",
SuspendToDisk->Pm1aCntSlpTyp.ByteValue));
} else {
*SuspendToDiskSize = 0;
DEBUG ((DEBUG_INFO, "ACPI S4 disabled\n"));
}
}
STATIC
EFI_STATUS
EFIAPI
QemuInstallAcpiSsdtTable (
IN EFI_ACPI_TABLE_PROTOCOL *AcpiProtocol,
IN VOID *AcpiTableBuffer,
IN UINTN AcpiTableBufferSize,
OUT UINTN *TableKey
)
{
EFI_STATUS Status;
FIRMWARE_DATA *FwData;
Status = EFI_OUT_OF_RESOURCES;
FwData = AllocateReservedPool (sizeof (*FwData));
if (FwData != NULL) {
UINTN SuspendToRamSize;
SYSTEM_STATE_PACKAGE SuspendToRam;
UINTN SuspendToDiskSize;
SYSTEM_STATE_PACKAGE SuspendToDisk;
UINTN SsdtSize;
UINT8 *Ssdt;
GetSuspendStates (&SuspendToRamSize, &SuspendToRam,
&SuspendToDiskSize, &SuspendToDisk);
SsdtSize = AcpiTableBufferSize + 17 + SuspendToRamSize + SuspendToDiskSize;
Ssdt = AllocatePool (SsdtSize);
if (Ssdt != NULL) {
Status = PopulateFwData (FwData);
if (Status == EFI_SUCCESS) {
UINT8 *SsdtPtr;
SsdtPtr = Ssdt;
CopyMem (SsdtPtr, AcpiTableBuffer, AcpiTableBufferSize);
SsdtPtr += AcpiTableBufferSize;
//
// build "OperationRegion(FWDT, SystemMemory, 0x12345678, 0x87654321)"
//
*(SsdtPtr++) = 0x5B; // ExtOpPrefix
*(SsdtPtr++) = 0x80; // OpRegionOp
*(SsdtPtr++) = 'F';
*(SsdtPtr++) = 'W';
*(SsdtPtr++) = 'D';
*(SsdtPtr++) = 'T';
*(SsdtPtr++) = 0x00; // SystemMemory
*(SsdtPtr++) = 0x0C; // DWordPrefix
//
// no virtual addressing yet, take the four least significant bytes
//
CopyMem(SsdtPtr, &FwData, 4);
SsdtPtr += 4;
*(SsdtPtr++) = 0x0C; // DWordPrefix
*(UINT32*) SsdtPtr = sizeof (*FwData);
SsdtPtr += 4;
//
// add suspend system states
//
CopyMem (SsdtPtr, &SuspendToRam, SuspendToRamSize);
SsdtPtr += SuspendToRamSize;
CopyMem (SsdtPtr, &SuspendToDisk, SuspendToDiskSize);
SsdtPtr += SuspendToDiskSize;
ASSERT((UINTN) (SsdtPtr - Ssdt) == SsdtSize);
((EFI_ACPI_DESCRIPTION_HEADER *) Ssdt)->Length = (UINT32) SsdtSize;
Status = InstallAcpiTable (AcpiProtocol, Ssdt, SsdtSize, TableKey);
}
FreePool(Ssdt);
}
if (Status != EFI_SUCCESS) {
FreePool(FwData);
}
}
return Status;
}
EFI_STATUS
EFIAPI
QemuInstallAcpiTable (
IN EFI_ACPI_TABLE_PROTOCOL *AcpiProtocol,
IN VOID *AcpiTableBuffer,
IN UINTN AcpiTableBufferSize,
OUT UINTN *TableKey
)
{
EFI_ACPI_DESCRIPTION_HEADER *Hdr;
EFI_ACPI_TABLE_INSTALL_ACPI_TABLE TableInstallFunction;
Hdr = (EFI_ACPI_DESCRIPTION_HEADER*) AcpiTableBuffer;
switch (Hdr->Signature) {
case EFI_ACPI_1_0_APIC_SIGNATURE:
TableInstallFunction = QemuInstallAcpiMadtTable;
break;
case EFI_ACPI_1_0_SECONDARY_SYSTEM_DESCRIPTION_TABLE_SIGNATURE:
TableInstallFunction = QemuInstallAcpiSsdtTable;
break;
default:
TableInstallFunction = InstallAcpiTable;
}
return TableInstallFunction (
AcpiProtocol,
AcpiTableBuffer,
AcpiTableBufferSize,
TableKey
);
}