audk/ArmPlatformPkg/Documentation/ArmVExpressInstructions.txt

177 lines
8.7 KiB
Plaintext
Raw Normal View History

=======================================
= ARM Versatile Express Documentation =
=======================================
Status
------
Build and Run on EDK2 Subversion revision 11251
Requirements
- RVCTv3 (untested) or RVCTv4 or ARMGCC (Code Sourcery q201009)
- Using Ubuntu: gcc, make, uuid-dev
- Using Cygwin: gcc, make, e2fsprogs (needed for uuid.h)
Serial Terminal settings
- Baud Rates: 38400
- Data: 8 bit
- Parity: None
- Flow Control: None
Use ICE debugger with Versatile Express
---------------------------------------
Prior to use ICE debugger with Versatile Express, you will need to update the version of the ICE's firmware.
If you have not installed RealView 4.0 SP3, do it.
Open "RealView ICE Update" and "Install Firmware Update ...". Install "[ARM_INSTALL_PATH]\RVI\Firmware\3.4\11\ARM-RVI-3.4.0-25-base.rvi" and "[ARM_INSTALL_PATH]\RVI\Firmware\3.4\22\ARM-RVI-3.4.59-59-patch.rvi".
Howto build UEFI Versatile Express
----------------------------------
For Cygwin
----------
For the first time
******************
1. Get EDK2 from Tianocore Subversion repository
svn co https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2 edk2 --username guest
2. Get FatPkg from EDK2 SVN repository:
cd edk2
svn co https://edk2-fatdriver2.svn.sourceforge.net/svnroot/edk2-fatdriver2/trunk/FatPkg FatPkg --username guest
3. Set up the environment. And build the EDK2<4B>s tools
export EDK_TOOLS_PATH=`pwd`/BaseTools
. edksetup.sh `pwd`/BaseTools/
make -C $EDK_TOOLS_PATH
4. Build the ARM Versatile Express UEFI Firmware
build -a ARM -p ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-CTA9x4.dsc -t RVCTCYGWIN
5. Edit the ARM Versatile Express configuration file config.txt to declare the location of the UEFI firmware in NOR Flash
TOTALIMAGES: 5 ;Number of Images (Max : 32)
NOR0UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
NOR0ADDRESS: BOOT ;Image Flash Address
NOR0FILE: \SOFTWARE\bm_v209.axf ;Image File Name
NOR1UPDATE: AUTO ;IMAGE UPDATE:NONE/AUTO/FORCE
NOR1ADDRESS: 44000000 ;Image Flash Address
NOR1FILE: \SOFTWARE\sec_uefi.bin ;Image File Name
NOR1LOAD: 0 ;Image Load Address
NOR1ENTRY: 0 ;Image Entry Point
NOR2UPDATE: AUTO ;IMAGE UPDATE:NONE/AUTO/FORCE
NOR2ADDRESS: 45000000 ;Image Flash Address
NOR2FILE: \SOFTWARE\uefi.bin ;Image File Name
NOR2LOAD: 45000000 ;Image Load Address
NOR2ENTRY: 45000000 ;Image Entry Point
NOR3UPDATE: AUTO ;IMAGE UPDATE:NONE/AUTO/FORCE
NOR3ADDRESS: 46000000 ;Image Flash Address
NOR3FILE: \SOFTWARE\kernel.bin ;Image File Name
NOR3LOAD: 46000000 ;Image Load Address
NOR3ENTRY: 46000000 ;Image Entry Point
NOR4UPDATE: AUTO ;IMAGE UPDATE:NONE/AUTO/FORCE
NOR4ADDRESS: 40000000 ;Image Flash Address
NOR4NAME: BOOTSCRIPT ;Image Name
NOR4FILE: \SOFTWARE\bootscr.txt ;Image File Name
6. To select second NOR Flash as a booting device, replace in the ARM Versatile Express file \SITE1\HBI0191B\board.txt:
SCC: 0x004 0x00001F09
By:
SCC: 0x004 0x10001F09
7. Copy Build/ArmVExpress-CTA9x4/DEBUG_RVCTCYGWIN/FV/SEC_ARMVEXPRESS_EFI.fd to the ARM Versatile Express mass storage (available when the board is connected through USB to your host machine) under the folder SOTWARE and name sec_uefi.bin. Example for cygwin:
cp Build/ArmVExpress-CTA9x4/DEBUG_RVCTCYGWIN/FV/SEC_ARMVEXPRESS_EFI.fd /cygdrive/e/SOFTWARE/sec_uefi.bin
8. Start the ARM Versatile Express board. You should read <20>Waiting for firmware at 0x80000000 ...<2E> on the serial port.
9. Copy ARMVEXPRESS_EFI.fd at 0x80000000 with RealView Debugger
readfile,raw,nowarn "[EDK2_PATH]\Build\ArmVExpress-CTA9x4\DEBUG_RVCTCYGWIN\FV\ARMVEXPRESS_EFI.fd"=0x80000000
10. Resume the execution from RealView Debugger
For all subsequent times
************************
1. Build ARM Versatile Express UEFI Firmware
build -a ARM -p ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-CTA9x4.dsc -t RVCTCYGWIN
2. Start the ARM Versatile Express board. You should read <20>Waiting for firmware at 0x80000000 ...<2E> on the serial port.
3. Copy ARMVEXPRESS_EFI.fd at 0x80000000 with RealView Debugger
readfile,raw,nowarn "[EDK2_PATH]\Build\ArmVExpress-CTA9x4\DEBUG_RVCTCYGWIN\FV\ARMVEXPRESS_EFI.fd"=0x80000000
4. Resume the execution
For RealView Compiler Toolchain on Windows
------------------------------------------
The command line window needs to be the one from Visual Studio to get the environment variables required to get some development tools (the windows compiler for BaseTools and `nmake`).
The EDK2 toolchain name for ARM RealView Compiler Toolchain under a Windows environment is `RVCT`. The EDK2 build system will automatically pick up the RVCT toolchain defined in your PATH. If you want to use a specific version, set the environment variable 'RVCT_TOOLS_PATH':
set RVCT_TOOLS_PATH=[YOUR_TOOLCHAIN_PATH]
For RealView Compiler Toolchain on Linux
----------------------------------------
The EDK2 toolchain name for ARM RealView under a Linux environment is `RVCTLINUX`. The EDK2 build system will automatically pick up the RVCT toolchain defined in your PATH. If you want to use a specific version, set the environment variable 'RVCT_TOOLS_PATH':
export RVCT_TOOLS_PATH=[YOUR_TOOLCHAIN_PATH]
For ARM GNU GCC on Linux
------------------------
The EDK2 toolchain name for ARM RealView under a Linux environment is `ARMGCC`. EDK2 requires Bash Shell to be built on Linux.
The ARMGCC toolchain is expected to be found in your PATH. ARM Edk2 has been tested with 'CodeSourcery G++ Lite 2010.09-51 - EABI Version'.
If you decide to use a specific version, set the environment variable 'ARMGCC_TOOLS_PATH':
export ARMGCC_TOOLS_PATH=[YOUR_CODESOURCERY_TOOLCHAIN_PATH]
Example:
export ARMGCC_TOOLS_PATH=/Work/arm-2010.09/bin/
Compiling UEFI ArmVE as a standalone firmware
The full ArmVe UEFI firmware can be written into NOR Flash to allow the entire boot sequence to be done after a cold boot.
To support the standalone mode:
-------------------------------
build -a ARM -p ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-CTA9x4.dsc -t RVCTCYGWIN -D EDK2_ARMVE_STANDALONE=1
ARMVEXPRESS_EFI.fd is required to be copied into the ARM Versatile Express board:
cp Build/ArmVExpress-CTA9x4-Standalone/DEBUG_RVCTCYGWIN/FV/SEC_ARMVEXPRESS_EFI.fd /cygdrive/e/SOFTWARE/sec_uefi.bin
cp Build/ArmVExpress-CTA9x4-Standalone/DEBUG_RVCTCYGWIN/FV/ARMVEXPRESS_EFI.fd /cygdrive/e/SOFTWARE/uefi.bin
Trustzone Support
-----------------
ArmVE's UEFI supports booting Trustzone (two worlds: Secure and Normal Worlds) and No Trustzone (one world: the CPU remains in Secure World) supports. Trustzone support is enabled by Enabling SMC TZASC in the Test Chip SCC Register 1. This register can only be changed by editing the configuration file of your Versatile Express board: E:\SITE1\HBI0191B\board.txt Changing:
SCC: 0x004 0x10001F09
For:
SCC: 0x004 0x10003F09
Booting Linux
-------------
ArmVe's BDS expects a Linux kernel at 0x46000000 (2nd NOR Flash). This location is also defined in the config.txt file of the motherboard (same file as the one that defines UEFI firmwares location). The Linux kernel at this location is a copy of \SOFTWARE\kernel.bin as refered in config.txt.
To boot on a different kernel, you will need to edit [EDK2_ROOT]\ArmVePkg\Bds\BdsEntry.c
#define LINUX_KERNEL L"VenHw(02118005-9DA7-443a-92D5-781F022AEDBB)/MemoryMapped(0,0x46000000,0x462F0000)"
#define FDT 0
#define LINUX_ATAG "rdinit=/bin/ash debug earlyprintk console=ttyAMA0,38400 mem=1G"
The macros LINUX_KERNEL and FDT expect a UEFI Device Path.
Example of UEFI Device Path:
// Load FDT binary from the Firmware Volume (mapped at 0x80000000)
#define LINUX_KERNEL L"MemoryMapped(11,0x80000000,0x6FEFFFFF)\\zImage.fdt"
// Linux Kernel from a SD Card
#define LINUX_KERNEL L"VenHw(621B6FA5-4DC1-476F-B9D8-52C557D81070)/HD(1,MBR,0x00000000,0xF9,0x3C8907)\\boot\\zImage.fdt"
// Kernel from SATA HD - Partition 2
#define LINUX_KERNEL L"Acpi(PNP0A03,0)/Pci(0|0)/Pci(0|0)/Pci(5|0)/Pci(0|0)/Sata(0,0,0)/HD(2,MBR,0x00076730,0x1F21BF,0x1F21BF)\\boot\\zImage.fdt"
// Kernel from NOR Flash
#define LINUX_KERNEL L"VenHw(02118005-9DA7-443a-92D5-781F022AEDBB)/MemoryMapped(0,0x46000000,0x462F0000)"
UEFI Memory Maps for ARM Versatile Express
------------------------------------------
Figure 1: EFI Memory Map in the Temporary Memory
See ArmVExpressMemoryMaps_TemporaryMemoryMap.png
Figure 2: CPU Core stack in the Temporary Memory
See ArmVExpressMemoryMaps_TemporaryStack.png
Figure 3: EFI Memory Map in the Permanent Memory
See ArmVExpressMemoryMaps_PermanentMemoryMap.png