audk/MdeModulePkg/Bus/Pci/PciBusDxe/PciEnumerator.c

2252 lines
65 KiB
C
Raw Normal View History

/** @file
PCI eunmeration implementation on entire PCI bus system for PCI Bus module.
Copyright (c) 2006 - 2013, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "PciBus.h"
/**
This routine is used to enumerate entire pci bus system
in a given platform.
@param Controller Parent controller handle.
@retval EFI_SUCCESS PCI enumeration finished successfully.
@retval other Some error occurred when enumerating the pci bus system.
**/
EFI_STATUS
PciEnumerator (
IN EFI_HANDLE Controller
)
{
EFI_HANDLE HostBridgeHandle;
EFI_STATUS Status;
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *PciResAlloc;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *PciRootBridgeIo;
//
// If PCI bus has already done the full enumeration, never do it again
//
if (!gFullEnumeration) {
return PciEnumeratorLight (Controller);
}
//
// Get the rootbridge Io protocol to find the host bridge handle
//
Status = gBS->OpenProtocol (
Controller,
&gEfiPciRootBridgeIoProtocolGuid,
(VOID **) &PciRootBridgeIo,
gPciBusDriverBinding.DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Get the host bridge handle
//
HostBridgeHandle = PciRootBridgeIo->ParentHandle;
//
// Get the pci host bridge resource allocation protocol
//
Status = gBS->OpenProtocol (
HostBridgeHandle,
&gEfiPciHostBridgeResourceAllocationProtocolGuid,
(VOID **) &PciResAlloc,
gPciBusDriverBinding.DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Notify the pci bus enumeration is about to begin
//
Status = NotifyPhase (PciResAlloc, EfiPciHostBridgeBeginEnumeration);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Start the bus allocation phase
//
Status = PciHostBridgeEnumerator (PciResAlloc);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Submit the resource request
//
Status = PciHostBridgeResourceAllocator (PciResAlloc);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Notify the pci bus enumeration is about to complete
//
Status = NotifyPhase (PciResAlloc, EfiPciHostBridgeEndEnumeration);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Process P2C
//
Status = PciHostBridgeP2CProcess (PciResAlloc);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Process attributes for devices on this host bridge
//
Status = PciHostBridgeDeviceAttribute (PciResAlloc);
if (EFI_ERROR (Status)) {
return Status;
}
gFullEnumeration = FALSE;
Status = gBS->InstallProtocolInterface (
&HostBridgeHandle,
&gEfiPciEnumerationCompleteProtocolGuid,
EFI_NATIVE_INTERFACE,
NULL
);
if (EFI_ERROR (Status)) {
return Status;
}
return EFI_SUCCESS;
}
/**
Enumerate PCI root bridge.
@param PciResAlloc Pointer to protocol instance of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.
@param RootBridgeDev Instance of root bridge device.
@retval EFI_SUCCESS Successfully enumerated root bridge.
@retval other Failed to enumerate root bridge.
**/
EFI_STATUS
PciRootBridgeEnumerator (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *PciResAlloc,
IN PCI_IO_DEVICE *RootBridgeDev
)
{
EFI_STATUS Status;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Configuration;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Configuration1;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Configuration2;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Configuration3;
UINT8 SubBusNumber;
UINT8 StartBusNumber;
UINT8 PaddedBusRange;
EFI_HANDLE RootBridgeHandle;
UINT8 Desc;
UINT64 AddrLen;
UINT64 AddrRangeMin;
SubBusNumber = 0;
StartBusNumber = 0;
PaddedBusRange = 0;
//
// Get the root bridge handle
//
RootBridgeHandle = RootBridgeDev->Handle;
REPORT_STATUS_CODE_WITH_DEVICE_PATH (
EFI_PROGRESS_CODE,
EFI_IO_BUS_PCI | EFI_IOB_PCI_BUS_ENUM,
RootBridgeDev->DevicePath
);
//
// Get the Bus information
//
Status = PciResAlloc->StartBusEnumeration (
PciResAlloc,
RootBridgeHandle,
(VOID **) &Configuration
);
if (EFI_ERROR (Status)) {
return Status;
}
if (Configuration == NULL || Configuration->Desc == ACPI_END_TAG_DESCRIPTOR) {
return EFI_INVALID_PARAMETER;
}
RootBridgeDev->BusNumberRanges = Configuration;
//
// Sort the descriptors in ascending order
//
for (Configuration1 = Configuration; Configuration1->Desc != ACPI_END_TAG_DESCRIPTOR; Configuration1++) {
Configuration2 = Configuration1;
for (Configuration3 = Configuration1 + 1; Configuration3->Desc != ACPI_END_TAG_DESCRIPTOR; Configuration3++) {
if (Configuration2->AddrRangeMin > Configuration3->AddrRangeMin) {
Configuration2 = Configuration3;
}
}
//
// All other fields other than AddrRangeMin and AddrLen are ignored in a descriptor,
// so only need to swap these two fields.
//
if (Configuration2 != Configuration1) {
AddrRangeMin = Configuration1->AddrRangeMin;
Configuration1->AddrRangeMin = Configuration2->AddrRangeMin;
Configuration2->AddrRangeMin = AddrRangeMin;
AddrLen = Configuration1->AddrLen;
Configuration1->AddrLen = Configuration2->AddrLen;
Configuration2->AddrLen = AddrLen;
}
}
//
// Get the bus number to start with
//
StartBusNumber = (UINT8) (Configuration->AddrRangeMin);
//
// Initialize the subordinate bus number
//
SubBusNumber = StartBusNumber;
//
// Reset all assigned PCI bus number
//
ResetAllPpbBusNumber (
RootBridgeDev,
StartBusNumber
);
//
// Assign bus number
//
Status = PciScanBus (
RootBridgeDev,
StartBusNumber,
&SubBusNumber,
&PaddedBusRange
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Assign max bus number scanned
//
Status = PciAllocateBusNumber (RootBridgeDev, SubBusNumber, PaddedBusRange, &SubBusNumber);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Find the bus range which contains the higest bus number, then returns the number of buses
// that should be decoded.
//
while (Configuration->AddrRangeMin + Configuration->AddrLen - 1 < SubBusNumber) {
Configuration++;
}
AddrLen = Configuration->AddrLen;
Configuration->AddrLen = SubBusNumber - Configuration->AddrRangeMin + 1;
//
// Save the Desc field of the next descriptor. Mark the next descriptor as an END descriptor.
//
Configuration++;
Desc = Configuration->Desc;
Configuration->Desc = ACPI_END_TAG_DESCRIPTOR;
//
// Set bus number
//
Status = PciResAlloc->SetBusNumbers (
PciResAlloc,
RootBridgeHandle,
RootBridgeDev->BusNumberRanges
);
//
// Restore changed fields
//
Configuration->Desc = Desc;
(Configuration - 1)->AddrLen = AddrLen;
return Status;
}
/**
This routine is used to process all PCI devices' Option Rom
on a certain root bridge.
@param Bridge Given parent's root bridge.
@param RomBase Base address of ROM driver loaded from.
@param MaxLength Maximum rom size.
**/
VOID
ProcessOptionRom (
IN PCI_IO_DEVICE *Bridge,
IN UINT64 RomBase,
IN UINT64 MaxLength
)
{
LIST_ENTRY *CurrentLink;
PCI_IO_DEVICE *Temp;
//
// Go through bridges to reach all devices
//
CurrentLink = Bridge->ChildList.ForwardLink;
while (CurrentLink != NULL && CurrentLink != &Bridge->ChildList) {
Temp = PCI_IO_DEVICE_FROM_LINK (CurrentLink);
if (!IsListEmpty (&Temp->ChildList)) {
//
// Go further to process the option rom under this bridge
//
ProcessOptionRom (Temp, RomBase, MaxLength);
}
if (Temp->RomSize != 0 && Temp->RomSize <= MaxLength) {
//
// Load and process the option rom
//
LoadOpRomImage (Temp, RomBase);
}
CurrentLink = CurrentLink->ForwardLink;
}
}
/**
This routine is used to assign bus number to the given PCI bus system
@param Bridge Parent root bridge instance.
@param StartBusNumber Number of beginning.
@param SubBusNumber The number of sub bus.
@retval EFI_SUCCESS Successfully assigned bus number.
@retval EFI_DEVICE_ERROR Failed to assign bus number.
**/
EFI_STATUS
PciAssignBusNumber (
IN PCI_IO_DEVICE *Bridge,
IN UINT8 StartBusNumber,
OUT UINT8 *SubBusNumber
)
{
EFI_STATUS Status;
PCI_TYPE00 Pci;
UINT8 Device;
UINT8 Func;
UINT64 Address;
UINTN SecondBus;
UINT16 Register;
UINT8 Register8;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *PciRootBridgeIo;
PciRootBridgeIo = Bridge->PciRootBridgeIo;
SecondBus = 0;
Register = 0;
*SubBusNumber = StartBusNumber;
//
// First check to see whether the parent is ppb
//
for (Device = 0; Device <= PCI_MAX_DEVICE; Device++) {
for (Func = 0; Func <= PCI_MAX_FUNC; Func++) {
//
// Check to see whether a pci device is present
//
Status = PciDevicePresent (
PciRootBridgeIo,
&Pci,
StartBusNumber,
Device,
Func
);
if (!EFI_ERROR (Status) &&
(IS_PCI_BRIDGE (&Pci) || IS_CARDBUS_BRIDGE (&Pci))) {
//
// Reserved one bus for cardbus bridge
//
Status = PciAllocateBusNumber (Bridge, *SubBusNumber, 1, SubBusNumber);
if (EFI_ERROR (Status)) {
return Status;
}
SecondBus = *SubBusNumber;
Register = (UINT16) ((SecondBus << 8) | (UINT16) StartBusNumber);
Address = EFI_PCI_ADDRESS (StartBusNumber, Device, Func, 0x18);
Status = PciRootBridgeIo->Pci.Write (
PciRootBridgeIo,
EfiPciWidthUint16,
Address,
1,
&Register
);
//
// Initialize SubBusNumber to SecondBus
//
Address = EFI_PCI_ADDRESS (StartBusNumber, Device, Func, 0x1A);
Status = PciRootBridgeIo->Pci.Write (
PciRootBridgeIo,
EfiPciWidthUint8,
Address,
1,
SubBusNumber
);
//
// If it is PPB, resursively search down this bridge
//
if (IS_PCI_BRIDGE (&Pci)) {
Register8 = 0xFF;
Status = PciRootBridgeIo->Pci.Write (
PciRootBridgeIo,
EfiPciWidthUint8,
Address,
1,
&Register8
);
Status = PciAssignBusNumber (
Bridge,
(UINT8) (SecondBus),
SubBusNumber
);
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
}
//
// Set the current maximum bus number under the PPB
//
Address = EFI_PCI_ADDRESS (StartBusNumber, Device, Func, 0x1A);
Status = PciRootBridgeIo->Pci.Write (
PciRootBridgeIo,
EfiPciWidthUint8,
Address,
1,
SubBusNumber
);
}
if (Func == 0 && !IS_PCI_MULTI_FUNC (&Pci)) {
//
// Skip sub functions, this is not a multi function device
//
Func = PCI_MAX_FUNC;
}
}
}
return EFI_SUCCESS;
}
/**
This routine is used to determine the root bridge attribute by interfacing
the host bridge resource allocation protocol.
@param PciResAlloc Protocol instance of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
@param RootBridgeDev Root bridge instance
@retval EFI_SUCCESS Successfully got root bridge's attribute.
@retval other Failed to get attribute.
**/
EFI_STATUS
DetermineRootBridgeAttributes (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *PciResAlloc,
IN PCI_IO_DEVICE *RootBridgeDev
)
{
UINT64 Attributes;
EFI_STATUS Status;
EFI_HANDLE RootBridgeHandle;
Attributes = 0;
RootBridgeHandle = RootBridgeDev->Handle;
//
// Get root bridge attribute by calling into pci host bridge resource allocation protocol
//
Status = PciResAlloc->GetAllocAttributes (
PciResAlloc,
RootBridgeHandle,
&Attributes
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Here is the point where PCI bus driver calls HOST bridge allocation protocol
// Currently we hardcoded for ea815
//
if ((Attributes & EFI_PCI_HOST_BRIDGE_COMBINE_MEM_PMEM) != 0) {
RootBridgeDev->Decodes |= EFI_BRIDGE_PMEM_MEM_COMBINE_SUPPORTED;
}
if ((Attributes & EFI_PCI_HOST_BRIDGE_MEM64_DECODE) != 0) {
RootBridgeDev->Decodes |= EFI_BRIDGE_MEM64_DECODE_SUPPORTED;
RootBridgeDev->Decodes |= EFI_BRIDGE_PMEM64_DECODE_SUPPORTED;
}
RootBridgeDev->Decodes |= EFI_BRIDGE_MEM32_DECODE_SUPPORTED;
RootBridgeDev->Decodes |= EFI_BRIDGE_PMEM32_DECODE_SUPPORTED;
RootBridgeDev->Decodes |= EFI_BRIDGE_IO16_DECODE_SUPPORTED;
return EFI_SUCCESS;
}
/**
Get Max Option Rom size on specified bridge.
@param Bridge Given bridge device instance.
@return Max size of option rom needed.
**/
UINT64
GetMaxOptionRomSize (
IN PCI_IO_DEVICE *Bridge
)
{
LIST_ENTRY *CurrentLink;
PCI_IO_DEVICE *Temp;
UINT64 MaxOptionRomSize;
UINT64 TempOptionRomSize;
MaxOptionRomSize = 0;
//
// Go through bridges to reach all devices
//
CurrentLink = Bridge->ChildList.ForwardLink;
while (CurrentLink != NULL && CurrentLink != &Bridge->ChildList) {
Temp = PCI_IO_DEVICE_FROM_LINK (CurrentLink);
if (!IsListEmpty (&Temp->ChildList)) {
//
// Get max option rom size under this bridge
//
TempOptionRomSize = GetMaxOptionRomSize (Temp);
//
// Compare with the option rom size of the bridge
// Get the larger one
//
if (Temp->RomSize > TempOptionRomSize) {
TempOptionRomSize = Temp->RomSize;
}
} else {
//
// For devices get the rom size directly
//
TempOptionRomSize = Temp->RomSize;
}
//
// Get the largest rom size on this bridge
//
if (TempOptionRomSize > MaxOptionRomSize) {
MaxOptionRomSize = TempOptionRomSize;
}
CurrentLink = CurrentLink->ForwardLink;
}
return MaxOptionRomSize;
}
/**
Process attributes of devices on this host bridge
@param PciResAlloc Protocol instance of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.
@retval EFI_SUCCESS Successfully process attribute.
@retval EFI_NOT_FOUND Can not find the specific root bridge device.
@retval other Failed to determine the root bridge device's attribute.
**/
EFI_STATUS
PciHostBridgeDeviceAttribute (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *PciResAlloc
)
{
EFI_HANDLE RootBridgeHandle;
PCI_IO_DEVICE *RootBridgeDev;
EFI_STATUS Status;
RootBridgeHandle = NULL;
while (PciResAlloc->GetNextRootBridge (PciResAlloc, &RootBridgeHandle) == EFI_SUCCESS) {
//
// Get RootBridg Device by handle
//
RootBridgeDev = GetRootBridgeByHandle (RootBridgeHandle);
if (RootBridgeDev == NULL) {
return EFI_NOT_FOUND;
}
//
// Set the attributes for devcies behind the Root Bridge
//
Status = DetermineDeviceAttribute (RootBridgeDev);
if (EFI_ERROR (Status)) {
return Status;
}
}
return EFI_SUCCESS;
}
/**
Get resource allocation status from the ACPI resource descriptor.
@param AcpiConfig Point to Acpi configuration table.
@param IoResStatus Return the status of I/O resource.
@param Mem32ResStatus Return the status of 32-bit Memory resource.
@param PMem32ResStatus Return the status of 32-bit Prefetchable Memory resource.
@param Mem64ResStatus Return the status of 64-bit Memory resource.
@param PMem64ResStatus Return the status of 64-bit Prefetchable Memory resource.
**/
VOID
GetResourceAllocationStatus (
VOID *AcpiConfig,
OUT UINT64 *IoResStatus,
OUT UINT64 *Mem32ResStatus,
OUT UINT64 *PMem32ResStatus,
OUT UINT64 *Mem64ResStatus,
OUT UINT64 *PMem64ResStatus
)
{
UINT8 *Temp;
UINT64 ResStatus;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *ACPIAddressDesc;
Temp = (UINT8 *) AcpiConfig;
while (*Temp == ACPI_ADDRESS_SPACE_DESCRIPTOR) {
ACPIAddressDesc = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *) Temp;
ResStatus = ACPIAddressDesc->AddrTranslationOffset;
switch (ACPIAddressDesc->ResType) {
case 0:
if (ACPIAddressDesc->AddrSpaceGranularity == 32) {
if (ACPIAddressDesc->SpecificFlag == 0x06) {
//
// Pmem32
//
*PMem32ResStatus = ResStatus;
} else {
//
// Mem32
//
*Mem32ResStatus = ResStatus;
}
}
if (ACPIAddressDesc->AddrSpaceGranularity == 64) {
if (ACPIAddressDesc->SpecificFlag == 0x06) {
//
// PMem64
//
*PMem64ResStatus = ResStatus;
} else {
//
// Mem64
//
*Mem64ResStatus = ResStatus;
}
}
break;
case 1:
//
// Io
//
*IoResStatus = ResStatus;
break;
default:
break;
}
Temp += sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR);
}
}
/**
Remove a PCI device from device pool and mark its bar.
@param PciDevice Instance of Pci device.
@retval EFI_SUCCESS Successfully remove the PCI device.
@retval EFI_ABORTED Pci device is a root bridge or a PCI-PCI bridge.
**/
EFI_STATUS
RejectPciDevice (
IN PCI_IO_DEVICE *PciDevice
)
{
PCI_IO_DEVICE *Bridge;
PCI_IO_DEVICE *Temp;
LIST_ENTRY *CurrentLink;
//
// Remove the padding resource from a bridge
//
if ( IS_PCI_BRIDGE(&PciDevice->Pci) &&
PciDevice->ResourcePaddingDescriptors != NULL ) {
FreePool (PciDevice->ResourcePaddingDescriptors);
PciDevice->ResourcePaddingDescriptors = NULL;
return EFI_SUCCESS;
}
//
// Skip RB and PPB
//
if (IS_PCI_BRIDGE (&PciDevice->Pci) || (PciDevice->Parent == NULL)) {
return EFI_ABORTED;
}
if (IS_CARDBUS_BRIDGE (&PciDevice->Pci)) {
//
// Get the root bridge device
//
Bridge = PciDevice;
while (Bridge->Parent != NULL) {
Bridge = Bridge->Parent;
}
RemoveAllPciDeviceOnBridge (Bridge->Handle, PciDevice);
//
// Mark its bar
//
InitializeP2C (PciDevice);
}
//
// Remove the device
//
Bridge = PciDevice->Parent;
CurrentLink = Bridge->ChildList.ForwardLink;
while (CurrentLink != NULL && CurrentLink != &Bridge->ChildList) {
Temp = PCI_IO_DEVICE_FROM_LINK (CurrentLink);
if (Temp == PciDevice) {
InitializePciDevice (Temp);
RemoveEntryList (CurrentLink);
return EFI_SUCCESS;
}
CurrentLink = CurrentLink->ForwardLink;
}
return EFI_ABORTED;
}
/**
Determine whethter a PCI device can be rejected.
@param PciResNode Pointer to Pci resource node instance.
@retval TRUE The PCI device can be rejected.
@retval TRUE The PCI device cannot be rejected.
**/
BOOLEAN
IsRejectiveDevice (
IN PCI_RESOURCE_NODE *PciResNode
)
{
PCI_IO_DEVICE *Temp;
Temp = PciResNode->PciDev;
//
// Ensure the device is present
//
if (Temp == NULL) {
return FALSE;
}
//
// PPB and RB should go ahead
//
if (IS_PCI_BRIDGE (&Temp->Pci) || (Temp->Parent == NULL)) {
return TRUE;
}
//
// Skip device on Bus0
//
if ((Temp->Parent != NULL) && (Temp->BusNumber == 0)) {
return FALSE;
}
//
// Skip VGA
//
if (IS_PCI_VGA (&Temp->Pci)) {
return FALSE;
}
return TRUE;
}
/**
Compare two resource nodes and get the larger resource consumer.
@param PciResNode1 resource node 1 want to be compared
@param PciResNode2 resource node 2 want to be compared
@return Larger resource node.
**/
PCI_RESOURCE_NODE *
GetLargerConsumerDevice (
IN PCI_RESOURCE_NODE *PciResNode1,
IN PCI_RESOURCE_NODE *PciResNode2
)
{
if (PciResNode2 == NULL) {
return PciResNode1;
}
if ((IS_PCI_BRIDGE(&(PciResNode2->PciDev->Pci)) || (PciResNode2->PciDev->Parent == NULL)) \
&& (PciResNode2->ResourceUsage != PciResUsagePadding) )
{
return PciResNode1;
}
if (PciResNode1 == NULL) {
return PciResNode2;
}
if ((PciResNode1->Length) > (PciResNode2->Length)) {
return PciResNode1;
}
return PciResNode2;
}
/**
Get the max resource consumer in the host resource pool.
@param ResPool Pointer to resource pool node.
@return The max resource consumer in the host resource pool.
**/
PCI_RESOURCE_NODE *
GetMaxResourceConsumerDevice (
IN PCI_RESOURCE_NODE *ResPool
)
{
PCI_RESOURCE_NODE *Temp;
LIST_ENTRY *CurrentLink;
PCI_RESOURCE_NODE *PciResNode;
PCI_RESOURCE_NODE *PPBResNode;
PciResNode = NULL;
CurrentLink = ResPool->ChildList.ForwardLink;
while (CurrentLink != NULL && CurrentLink != &ResPool->ChildList) {
Temp = RESOURCE_NODE_FROM_LINK (CurrentLink);
if (!IsRejectiveDevice (Temp)) {
CurrentLink = CurrentLink->ForwardLink;
continue;
}
if ((IS_PCI_BRIDGE (&(Temp->PciDev->Pci)) || (Temp->PciDev->Parent == NULL)) \
&& (Temp->ResourceUsage != PciResUsagePadding))
{
PPBResNode = GetMaxResourceConsumerDevice (Temp);
PciResNode = GetLargerConsumerDevice (PciResNode, PPBResNode);
} else {
PciResNode = GetLargerConsumerDevice (PciResNode, Temp);
}
CurrentLink = CurrentLink->ForwardLink;
}
return PciResNode;
}
/**
Adjust host bridge allocation so as to reduce resource requirement
@param IoPool Pointer to instance of I/O resource Node.
@param Mem32Pool Pointer to instance of 32-bit memory resource Node.
@param PMem32Pool Pointer to instance of 32-bit Prefetchable memory resource node.
@param Mem64Pool Pointer to instance of 64-bit memory resource node.
@param PMem64Pool Pointer to instance of 64-bit Prefetchable memory resource node.
@param IoResStatus Status of I/O resource Node.
@param Mem32ResStatus Status of 32-bit memory resource Node.
@param PMem32ResStatus Status of 32-bit Prefetchable memory resource node.
@param Mem64ResStatus Status of 64-bit memory resource node.
@param PMem64ResStatus Status of 64-bit Prefetchable memory resource node.
@retval EFI_SUCCESS Successfully adjusted resoruce on host bridge.
@retval EFI_ABORTED Host bridge hasn't this resource type or no resource be adjusted.
**/
EFI_STATUS
PciHostBridgeAdjustAllocation (
IN PCI_RESOURCE_NODE *IoPool,
IN PCI_RESOURCE_NODE *Mem32Pool,
IN PCI_RESOURCE_NODE *PMem32Pool,
IN PCI_RESOURCE_NODE *Mem64Pool,
IN PCI_RESOURCE_NODE *PMem64Pool,
IN UINT64 IoResStatus,
IN UINT64 Mem32ResStatus,
IN UINT64 PMem32ResStatus,
IN UINT64 Mem64ResStatus,
IN UINT64 PMem64ResStatus
)
{
BOOLEAN AllocationAjusted;
PCI_RESOURCE_NODE *PciResNode;
PCI_RESOURCE_NODE *ResPool[5];
PCI_IO_DEVICE *RemovedPciDev[5];
UINT64 ResStatus[5];
UINTN RemovedPciDevNum;
UINTN DevIndex;
UINTN ResType;
EFI_STATUS Status;
EFI_RESOURCE_ALLOC_FAILURE_ERROR_DATA_PAYLOAD AllocFailExtendedData;
PciResNode = NULL;
ZeroMem (RemovedPciDev, 5 * sizeof (PCI_IO_DEVICE *));
RemovedPciDevNum = 0;
ResPool[0] = IoPool;
ResPool[1] = Mem32Pool;
ResPool[2] = PMem32Pool;
ResPool[3] = Mem64Pool;
ResPool[4] = PMem64Pool;
ResStatus[0] = IoResStatus;
ResStatus[1] = Mem32ResStatus;
ResStatus[2] = PMem32ResStatus;
ResStatus[3] = Mem64ResStatus;
ResStatus[4] = PMem64ResStatus;
AllocationAjusted = FALSE;
for (ResType = 0; ResType < 5; ResType++) {
if (ResStatus[ResType] == EFI_RESOURCE_SATISFIED) {
continue;
}
if (ResStatus[ResType] == EFI_RESOURCE_NOT_SATISFIED) {
//
// Host bridge hasn't this resource type
//
return EFI_ABORTED;
}
//
// Hostbridge hasn't enough resource
//
PciResNode = GetMaxResourceConsumerDevice (ResPool[ResType]);
if (PciResNode == NULL) {
continue;
}
//
// Check if the device has been removed before
//
for (DevIndex = 0; DevIndex < RemovedPciDevNum; DevIndex++) {
if (PciResNode->PciDev == RemovedPciDev[DevIndex]) {
break;
}
}
if (DevIndex != RemovedPciDevNum) {
continue;
}
//
// Remove the device if it isn't in the array
//
Status = RejectPciDevice (PciResNode->PciDev);
if (Status == EFI_SUCCESS) {
DEBUG ((
EFI_D_ERROR,
"PciBus: [%02x|%02x|%02x] was rejected due to resource confliction.\n",
PciResNode->PciDev->BusNumber, PciResNode->PciDev->DeviceNumber, PciResNode->PciDev->FunctionNumber
));
//
// Raise the EFI_IOB_EC_RESOURCE_CONFLICT status code
//
//
// Have no way to get ReqRes, AllocRes & Bar here
//
ZeroMem (&AllocFailExtendedData, sizeof (AllocFailExtendedData));
AllocFailExtendedData.DevicePathSize = (UINT16) sizeof (EFI_DEVICE_PATH_PROTOCOL);
AllocFailExtendedData.DevicePath = (UINT8 *) PciResNode->PciDev->DevicePath;
AllocFailExtendedData.Bar = PciResNode->Bar;
REPORT_STATUS_CODE_WITH_EXTENDED_DATA (
EFI_PROGRESS_CODE,
EFI_IO_BUS_PCI | EFI_IOB_EC_RESOURCE_CONFLICT,
(VOID *) &AllocFailExtendedData,
sizeof (AllocFailExtendedData)
);
//
// Add it to the array and indicate at least a device has been rejected
//
RemovedPciDev[RemovedPciDevNum++] = PciResNode->PciDev;
AllocationAjusted = TRUE;
}
}
//
// End for
//
if (AllocationAjusted) {
return EFI_SUCCESS;
} else {
return EFI_ABORTED;
}
}
/**
Summary requests for all resource type, and contruct ACPI resource
requestor instance.
@param Bridge detecting bridge
@param IoNode Pointer to instance of I/O resource Node
@param Mem32Node Pointer to instance of 32-bit memory resource Node
@param PMem32Node Pointer to instance of 32-bit Pmemory resource node
@param Mem64Node Pointer to instance of 64-bit memory resource node
@param PMem64Node Pointer to instance of 64-bit Pmemory resource node
@param Config Output buffer holding new constructed APCI resource requestor
@retval EFI_SUCCESS Successfully constructed ACPI resource.
@retval EFI_OUT_OF_RESOURCES No memory availabe.
**/
EFI_STATUS
ConstructAcpiResourceRequestor (
IN PCI_IO_DEVICE *Bridge,
IN PCI_RESOURCE_NODE *IoNode,
IN PCI_RESOURCE_NODE *Mem32Node,
IN PCI_RESOURCE_NODE *PMem32Node,
IN PCI_RESOURCE_NODE *Mem64Node,
IN PCI_RESOURCE_NODE *PMem64Node,
OUT VOID **Config
)
{
UINT8 NumConfig;
UINT8 Aperture;
UINT8 *Configuration;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Ptr;
EFI_ACPI_END_TAG_DESCRIPTOR *PtrEnd;
NumConfig = 0;
Aperture = 0;
*Config = NULL;
//
// if there is io request, add to the io aperture
//
if (ResourceRequestExisted (IoNode)) {
NumConfig++;
Aperture |= 0x01;
}
//
// if there is mem32 request, add to the mem32 aperture
//
if (ResourceRequestExisted (Mem32Node)) {
NumConfig++;
Aperture |= 0x02;
}
//
// if there is pmem32 request, add to the pmem32 aperture
//
if (ResourceRequestExisted (PMem32Node)) {
NumConfig++;
Aperture |= 0x04;
}
//
// if there is mem64 request, add to the mem64 aperture
//
if (ResourceRequestExisted (Mem64Node)) {
NumConfig++;
Aperture |= 0x08;
}
//
// if there is pmem64 request, add to the pmem64 aperture
//
if (ResourceRequestExisted (PMem64Node)) {
NumConfig++;
Aperture |= 0x10;
}
if (NumConfig != 0) {
//
// If there is at least one type of resource request,
// allocate a acpi resource node
//
Configuration = AllocateZeroPool (sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) * NumConfig + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR));
if (Configuration == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Ptr = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *) Configuration;
//
// Deal with io aperture
//
if ((Aperture & 0x01) != 0) {
Ptr->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
Ptr->Len = (UINT16) (sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3);
//
// Io
//
Ptr->ResType = ACPI_ADDRESS_SPACE_TYPE_IO;
//
// non ISA range
//
Ptr->SpecificFlag = 1;
Ptr->AddrLen = IoNode->Length;
Ptr->AddrRangeMax = IoNode->Alignment;
Ptr++;
}
//
// Deal with mem32 aperture
//
if ((Aperture & 0x02) != 0) {
Ptr->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
Ptr->Len = (UINT16) (sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3);
//
// Mem
//
Ptr->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
//
// Nonprefechable
//
Ptr->SpecificFlag = 0;
//
// 32 bit
//
Ptr->AddrSpaceGranularity = 32;
Ptr->AddrLen = Mem32Node->Length;
Ptr->AddrRangeMax = Mem32Node->Alignment;
Ptr++;
}
//
// Deal with Pmem32 aperture
//
if ((Aperture & 0x04) != 0) {
Ptr->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
Ptr->Len = (UINT16) (sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3);
//
// Mem
//
Ptr->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
//
// prefechable
//
Ptr->SpecificFlag = 0x6;
//
// 32 bit
//
Ptr->AddrSpaceGranularity = 32;
Ptr->AddrLen = PMem32Node->Length;
Ptr->AddrRangeMax = PMem32Node->Alignment;
Ptr++;
}
//
// Deal with mem64 aperture
//
if ((Aperture & 0x08) != 0) {
Ptr->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
Ptr->Len = (UINT16) (sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3);
//
// Mem
//
Ptr->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
//
// nonprefechable
//
Ptr->SpecificFlag = 0;
//
// 64 bit
//
Ptr->AddrSpaceGranularity = 64;
Ptr->AddrLen = Mem64Node->Length;
Ptr->AddrRangeMax = Mem64Node->Alignment;
Ptr++;
}
//
// Deal with Pmem64 aperture
//
if ((Aperture & 0x10) != 0) {
Ptr->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
Ptr->Len = (UINT16) (sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) - 3);
//
// Mem
//
Ptr->ResType = ACPI_ADDRESS_SPACE_TYPE_MEM;
//
// prefechable
//
Ptr->SpecificFlag = 0x06;
//
// 64 bit
//
Ptr->AddrSpaceGranularity = 64;
Ptr->AddrLen = PMem64Node->Length;
Ptr->AddrRangeMax = PMem64Node->Alignment;
Ptr++;
}
//
// put the checksum
//
PtrEnd = (EFI_ACPI_END_TAG_DESCRIPTOR *) Ptr;
PtrEnd->Desc = ACPI_END_TAG_DESCRIPTOR;
PtrEnd->Checksum = 0;
} else {
//
// If there is no resource request
//
Configuration = AllocateZeroPool (sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) + sizeof (EFI_ACPI_END_TAG_DESCRIPTOR));
if (Configuration == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Ptr = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *) (Configuration);
Ptr->Desc = ACPI_ADDRESS_SPACE_DESCRIPTOR;
PtrEnd = (EFI_ACPI_END_TAG_DESCRIPTOR *) (Ptr + 1);
PtrEnd->Desc = ACPI_END_TAG_DESCRIPTOR;
PtrEnd->Checksum = 0;
}
*Config = Configuration;
return EFI_SUCCESS;
}
/**
Get resource base from an acpi configuration descriptor.
@param Config An acpi configuration descriptor.
@param IoBase Output of I/O resource base address.
@param Mem32Base Output of 32-bit memory base address.
@param PMem32Base Output of 32-bit prefetchable memory base address.
@param Mem64Base Output of 64-bit memory base address.
@param PMem64Base Output of 64-bit prefetchable memory base address.
**/
VOID
GetResourceBase (
IN VOID *Config,
OUT UINT64 *IoBase,
OUT UINT64 *Mem32Base,
OUT UINT64 *PMem32Base,
OUT UINT64 *Mem64Base,
OUT UINT64 *PMem64Base
)
{
UINT8 *Temp;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Ptr;
UINT64 ResStatus;
ASSERT (Config != NULL);
*IoBase = 0xFFFFFFFFFFFFFFFFULL;
*Mem32Base = 0xFFFFFFFFFFFFFFFFULL;
*PMem32Base = 0xFFFFFFFFFFFFFFFFULL;
*Mem64Base = 0xFFFFFFFFFFFFFFFFULL;
*PMem64Base = 0xFFFFFFFFFFFFFFFFULL;
Temp = (UINT8 *) Config;
while (*Temp == ACPI_ADDRESS_SPACE_DESCRIPTOR) {
Ptr = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *) Temp;
ResStatus = Ptr->AddrTranslationOffset;
if (ResStatus == EFI_RESOURCE_SATISFIED) {
switch (Ptr->ResType) {
//
// Memory type aperture
//
case 0:
//
// Check to see the granularity
//
if (Ptr->AddrSpaceGranularity == 32) {
if ((Ptr->SpecificFlag & 0x06) != 0) {
*PMem32Base = Ptr->AddrRangeMin;
} else {
*Mem32Base = Ptr->AddrRangeMin;
}
}
if (Ptr->AddrSpaceGranularity == 64) {
if ((Ptr->SpecificFlag & 0x06) != 0) {
*PMem64Base = Ptr->AddrRangeMin;
} else {
*Mem64Base = Ptr->AddrRangeMin;
}
}
break;
case 1:
//
// Io type aperture
//
*IoBase = Ptr->AddrRangeMin;
break;
default:
break;
}
//
// End switch
//
}
//
// End for
//
Temp += sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR);
}
}
/**
Enumerate pci bridge, allocate resource and determine attribute
for devices on this bridge.
@param BridgeDev Pointer to instance of bridge device.
@retval EFI_SUCCESS Successfully enumerated PCI bridge.
@retval other Failed to enumerate.
**/
EFI_STATUS
PciBridgeEnumerator (
IN PCI_IO_DEVICE *BridgeDev
)
{
UINT8 SubBusNumber;
UINT8 StartBusNumber;
EFI_PCI_IO_PROTOCOL *PciIo;
EFI_STATUS Status;
SubBusNumber = 0;
StartBusNumber = 0;
PciIo = &(BridgeDev->PciIo);
Status = PciIo->Pci.Read (PciIo, EfiPciIoWidthUint8, 0x19, 1, &StartBusNumber);
if (EFI_ERROR (Status)) {
return Status;
}
Status = PciAssignBusNumber (
BridgeDev,
StartBusNumber,
&SubBusNumber
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = PciPciDeviceInfoCollector (BridgeDev, StartBusNumber);
if (EFI_ERROR (Status)) {
return Status;
}
Status = PciBridgeResourceAllocator (BridgeDev);
if (EFI_ERROR (Status)) {
return Status;
}
Status = DetermineDeviceAttribute (BridgeDev);
if (EFI_ERROR (Status)) {
return Status;
}
return EFI_SUCCESS;
}
/**
Allocate all kinds of resource for PCI bridge.
@param Bridge Pointer to bridge instance.
@retval EFI_SUCCESS Successfully allocated resource for PCI bridge.
@retval other Failed to allocate resource for bridge.
**/
EFI_STATUS
PciBridgeResourceAllocator (
IN PCI_IO_DEVICE *Bridge
)
{
PCI_RESOURCE_NODE *IoBridge;
PCI_RESOURCE_NODE *Mem32Bridge;
PCI_RESOURCE_NODE *PMem32Bridge;
PCI_RESOURCE_NODE *Mem64Bridge;
PCI_RESOURCE_NODE *PMem64Bridge;
UINT64 IoBase;
UINT64 Mem32Base;
UINT64 PMem32Base;
UINT64 Mem64Base;
UINT64 PMem64Base;
EFI_STATUS Status;
IoBridge = CreateResourceNode (
Bridge,
0,
Bridge->BridgeIoAlignment,
0,
PciBarTypeIo16,
PciResUsageTypical
);
Mem32Bridge = CreateResourceNode (
Bridge,
0,
0xFFFFF,
0,
PciBarTypeMem32,
PciResUsageTypical
);
PMem32Bridge = CreateResourceNode (
Bridge,
0,
0xFFFFF,
0,
PciBarTypePMem32,
PciResUsageTypical
);
Mem64Bridge = CreateResourceNode (
Bridge,
0,
0xFFFFF,
0,
PciBarTypeMem64,
PciResUsageTypical
);
PMem64Bridge = CreateResourceNode (
Bridge,
0,
0xFFFFF,
0,
PciBarTypePMem64,
PciResUsageTypical
);
//
// Create resourcemap by going through all the devices subject to this root bridge
//
CreateResourceMap (
Bridge,
IoBridge,
Mem32Bridge,
PMem32Bridge,
Mem64Bridge,
PMem64Bridge
);
Status = GetResourceBaseFromBridge (
Bridge,
&IoBase,
&Mem32Base,
&PMem32Base,
&Mem64Base,
&PMem64Base
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Program IO resources
//
ProgramResource (
IoBase,
IoBridge
);
//
// Program Mem32 resources
//
ProgramResource (
Mem32Base,
Mem32Bridge
);
//
// Program PMem32 resources
//
ProgramResource (
PMem32Base,
PMem32Bridge
);
//
// Program Mem64 resources
//
ProgramResource (
Mem64Base,
Mem64Bridge
);
//
// Program PMem64 resources
//
ProgramResource (
PMem64Base,
PMem64Bridge
);
DestroyResourceTree (IoBridge);
DestroyResourceTree (Mem32Bridge);
DestroyResourceTree (PMem32Bridge);
DestroyResourceTree (PMem64Bridge);
DestroyResourceTree (Mem64Bridge);
gBS->FreePool (IoBridge);
gBS->FreePool (Mem32Bridge);
gBS->FreePool (PMem32Bridge);
gBS->FreePool (PMem64Bridge);
gBS->FreePool (Mem64Bridge);
return EFI_SUCCESS;
}
/**
Get resource base address for a pci bridge device.
@param Bridge Given Pci driver instance.
@param IoBase Output for base address of I/O type resource.
@param Mem32Base Output for base address of 32-bit memory type resource.
@param PMem32Base Ooutput for base address of 32-bit Pmemory type resource.
@param Mem64Base Output for base address of 64-bit memory type resource.
@param PMem64Base Output for base address of 64-bit Pmemory type resource.
@retval EFI_SUCCESS Successfully got resource base address.
@retval EFI_OUT_OF_RESOURCES PCI bridge is not available.
**/
EFI_STATUS
GetResourceBaseFromBridge (
IN PCI_IO_DEVICE *Bridge,
OUT UINT64 *IoBase,
OUT UINT64 *Mem32Base,
OUT UINT64 *PMem32Base,
OUT UINT64 *Mem64Base,
OUT UINT64 *PMem64Base
)
{
if (!Bridge->Allocated) {
return EFI_OUT_OF_RESOURCES;
}
*IoBase = gAllOne;
*Mem32Base = gAllOne;
*PMem32Base = gAllOne;
*Mem64Base = gAllOne;
*PMem64Base = gAllOne;
if (IS_PCI_BRIDGE (&Bridge->Pci)) {
if (Bridge->PciBar[PPB_IO_RANGE].Length > 0) {
*IoBase = Bridge->PciBar[PPB_IO_RANGE].BaseAddress;
}
if (Bridge->PciBar[PPB_MEM32_RANGE].Length > 0) {
*Mem32Base = Bridge->PciBar[PPB_MEM32_RANGE].BaseAddress;
}
if (Bridge->PciBar[PPB_PMEM32_RANGE].Length > 0) {
*PMem32Base = Bridge->PciBar[PPB_PMEM32_RANGE].BaseAddress;
}
if (Bridge->PciBar[PPB_PMEM64_RANGE].Length > 0) {
*PMem64Base = Bridge->PciBar[PPB_PMEM64_RANGE].BaseAddress;
} else {
*PMem64Base = gAllOne;
}
}
if (IS_CARDBUS_BRIDGE (&Bridge->Pci)) {
if (Bridge->PciBar[P2C_IO_1].Length > 0) {
*IoBase = Bridge->PciBar[P2C_IO_1].BaseAddress;
} else {
if (Bridge->PciBar[P2C_IO_2].Length > 0) {
*IoBase = Bridge->PciBar[P2C_IO_2].BaseAddress;
}
}
if (Bridge->PciBar[P2C_MEM_1].Length > 0) {
if (Bridge->PciBar[P2C_MEM_1].BarType == PciBarTypePMem32) {
*PMem32Base = Bridge->PciBar[P2C_MEM_1].BaseAddress;
}
if (Bridge->PciBar[P2C_MEM_1].BarType == PciBarTypeMem32) {
*Mem32Base = Bridge->PciBar[P2C_MEM_1].BaseAddress;
}
}
if (Bridge->PciBar[P2C_MEM_2].Length > 0) {
if (Bridge->PciBar[P2C_MEM_2].BarType == PciBarTypePMem32) {
*PMem32Base = Bridge->PciBar[P2C_MEM_2].BaseAddress;
}
if (Bridge->PciBar[P2C_MEM_2].BarType == PciBarTypeMem32) {
*Mem32Base = Bridge->PciBar[P2C_MEM_2].BaseAddress;
}
}
}
return EFI_SUCCESS;
}
/**
These are the notifications from the PCI bus driver that it is about to enter a certain
phase of the PCI enumeration process.
This member function can be used to notify the host bridge driver to perform specific actions,
including any chipset-specific initialization, so that the chipset is ready to enter the next phase.
Eight notification points are defined at this time. See belows:
EfiPciHostBridgeBeginEnumeration Resets the host bridge PCI apertures and internal data
structures. The PCI enumerator should issue this notification
before starting a fresh enumeration process. Enumeration cannot
be restarted after sending any other notification such as
EfiPciHostBridgeBeginBusAllocation.
EfiPciHostBridgeBeginBusAllocation The bus allocation phase is about to begin. No specific action is
required here. This notification can be used to perform any
chipset-specific programming.
EfiPciHostBridgeEndBusAllocation The bus allocation and bus programming phase is complete. No
specific action is required here. This notification can be used to
perform any chipset-specific programming.
EfiPciHostBridgeBeginResourceAllocation
The resource allocation phase is about to begin. No specific
action is required here. This notification can be used to perform
any chipset-specific programming.
EfiPciHostBridgeAllocateResources Allocates resources per previously submitted requests for all the PCI
root bridges. These resource settings are returned on the next call to
GetProposedResources(). Before calling NotifyPhase() with a Phase of
EfiPciHostBridgeAllocateResource, the PCI bus enumerator is responsible
for gathering I/O and memory requests for
all the PCI root bridges and submitting these requests using
SubmitResources(). This function pads the resource amount
to suit the root bridge hardware, takes care of dependencies between
the PCI root bridges, and calls the Global Coherency Domain (GCD)
with the allocation request. In the case of padding, the allocated range
could be bigger than what was requested.
EfiPciHostBridgeSetResources Programs the host bridge hardware to decode previously allocated
resources (proposed resources) for all the PCI root bridges. After the
hardware is programmed, reassigning resources will not be supported.
The bus settings are not affected.
EfiPciHostBridgeFreeResources Deallocates resources that were previously allocated for all the PCI
root bridges and resets the I/O and memory apertures to their initial
state. The bus settings are not affected. If the request to allocate
resources fails, the PCI enumerator can use this notification to
deallocate previous resources, adjust the requests, and retry
allocation.
EfiPciHostBridgeEndResourceAllocation The resource allocation phase is completed. No specific action is
required here. This notification can be used to perform any chipsetspecific
programming.
@param[in] PciResAlloc The instance pointer of EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL
@param[in] Phase The phase during enumeration
@retval EFI_NOT_READY This phase cannot be entered at this time. For example, this error
is valid for a Phase of EfiPciHostBridgeAllocateResources if
SubmitResources() has not been called for one or more
PCI root bridges before this call
@retval EFI_DEVICE_ERROR Programming failed due to a hardware error. This error is valid
for a Phase of EfiPciHostBridgeSetResources.
@retval EFI_INVALID_PARAMETER Invalid phase parameter
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
This error is valid for a Phase of EfiPciHostBridgeAllocateResources if the
previously submitted resource requests cannot be fulfilled or
were only partially fulfilled.
@retval EFI_SUCCESS The notification was accepted without any errors.
**/
EFI_STATUS
NotifyPhase (
IN EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *PciResAlloc,
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PHASE Phase
)
{
EFI_HANDLE HostBridgeHandle;
EFI_HANDLE RootBridgeHandle;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *PciRootBridgeIo;
EFI_STATUS Status;
HostBridgeHandle = NULL;
RootBridgeHandle = NULL;
if (gPciPlatformProtocol != NULL) {
//
// Get Host Bridge Handle.
//
PciResAlloc->GetNextRootBridge (PciResAlloc, &RootBridgeHandle);
//
// Get the rootbridge Io protocol to find the host bridge handle
//
Status = gBS->HandleProtocol (
RootBridgeHandle,
&gEfiPciRootBridgeIoProtocolGuid,
(VOID **) &PciRootBridgeIo
);
if (EFI_ERROR (Status)) {
return EFI_NOT_FOUND;
}
HostBridgeHandle = PciRootBridgeIo->ParentHandle;
//
// Call PlatformPci::PlatformNotify() if the protocol is present.
//
gPciPlatformProtocol->PlatformNotify (
gPciPlatformProtocol,
HostBridgeHandle,
Phase,
ChipsetEntry
);
} else if (gPciOverrideProtocol != NULL){
//
// Get Host Bridge Handle.
//
PciResAlloc->GetNextRootBridge (PciResAlloc, &RootBridgeHandle);
//
// Get the rootbridge Io protocol to find the host bridge handle
//
Status = gBS->HandleProtocol (
RootBridgeHandle,
&gEfiPciRootBridgeIoProtocolGuid,
(VOID **) &PciRootBridgeIo
);
if (EFI_ERROR (Status)) {
return EFI_NOT_FOUND;
}
HostBridgeHandle = PciRootBridgeIo->ParentHandle;
//
// Call PlatformPci::PhaseNotify() if the protocol is present.
//
gPciOverrideProtocol->PlatformNotify (
gPciOverrideProtocol,
HostBridgeHandle,
Phase,
ChipsetEntry
);
}
Status = PciResAlloc->NotifyPhase (
PciResAlloc,
Phase
);
if (gPciPlatformProtocol != NULL) {
//
// Call PlatformPci::PlatformNotify() if the protocol is present.
//
gPciPlatformProtocol->PlatformNotify (
gPciPlatformProtocol,
HostBridgeHandle,
Phase,
ChipsetExit
);
} else if (gPciOverrideProtocol != NULL) {
//
// Call PlatformPci::PhaseNotify() if the protocol is present.
//
gPciOverrideProtocol->PlatformNotify (
gPciOverrideProtocol,
HostBridgeHandle,
Phase,
ChipsetExit
);
}
return Status;
}
/**
Provides the hooks from the PCI bus driver to every PCI controller (device/function) at various
stages of the PCI enumeration process that allow the host bridge driver to preinitialize individual
PCI controllers before enumeration.
This function is called during the PCI enumeration process. No specific action is expected from this
member function. It allows the host bridge driver to preinitialize individual PCI controllers before
enumeration.
@param Bridge Pointer to the EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL instance.
@param Bus The bus number of the pci device.
@param Device The device number of the pci device.
@param Func The function number of the pci device.
@param Phase The phase of the PCI device enumeration.
@retval EFI_SUCCESS The requested parameters were returned.
@retval EFI_INVALID_PARAMETER RootBridgeHandle is not a valid root bridge handle.
@retval EFI_INVALID_PARAMETER Phase is not a valid phase that is defined in
EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE.
@retval EFI_DEVICE_ERROR Programming failed due to a hardware error. The PCI enumerator should
not enumerate this device, including its child devices if it is a PCI-to-PCI
bridge.
**/
EFI_STATUS
PreprocessController (
IN PCI_IO_DEVICE *Bridge,
IN UINT8 Bus,
IN UINT8 Device,
IN UINT8 Func,
IN EFI_PCI_CONTROLLER_RESOURCE_ALLOCATION_PHASE Phase
)
{
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS RootBridgePciAddress;
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL *PciResAlloc;
EFI_HANDLE RootBridgeHandle;
EFI_HANDLE HostBridgeHandle;
EFI_STATUS Status;
//
// Get the host bridge handle
//
HostBridgeHandle = Bridge->PciRootBridgeIo->ParentHandle;
//
// Get the pci host bridge resource allocation protocol
//
Status = gBS->OpenProtocol (
HostBridgeHandle,
&gEfiPciHostBridgeResourceAllocationProtocolGuid,
(VOID **) &PciResAlloc,
NULL,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return EFI_UNSUPPORTED;
}
//
// Get Root Brige Handle
//
while (Bridge->Parent != NULL) {
Bridge = Bridge->Parent;
}
RootBridgeHandle = Bridge->Handle;
RootBridgePciAddress.Register = 0;
RootBridgePciAddress.Function = Func;
RootBridgePciAddress.Device = Device;
RootBridgePciAddress.Bus = Bus;
RootBridgePciAddress.ExtendedRegister = 0;
if (gPciPlatformProtocol != NULL) {
//
// Call PlatformPci::PrepController() if the protocol is present.
//
gPciPlatformProtocol->PlatformPrepController (
gPciPlatformProtocol,
HostBridgeHandle,
RootBridgeHandle,
RootBridgePciAddress,
Phase,
ChipsetEntry
);
} else if (gPciOverrideProtocol != NULL) {
//
// Call PlatformPci::PrepController() if the protocol is present.
//
gPciOverrideProtocol->PlatformPrepController (
gPciOverrideProtocol,
HostBridgeHandle,
RootBridgeHandle,
RootBridgePciAddress,
Phase,
ChipsetEntry
);
}
Status = PciResAlloc->PreprocessController (
PciResAlloc,
RootBridgeHandle,
RootBridgePciAddress,
Phase
);
if (gPciPlatformProtocol != NULL) {
//
// Call PlatformPci::PrepController() if the protocol is present.
//
gPciPlatformProtocol->PlatformPrepController (
gPciPlatformProtocol,
HostBridgeHandle,
RootBridgeHandle,
RootBridgePciAddress,
Phase,
ChipsetExit
);
} else if (gPciOverrideProtocol != NULL) {
//
// Call PlatformPci::PrepController() if the protocol is present.
//
gPciOverrideProtocol->PlatformPrepController (
gPciOverrideProtocol,
HostBridgeHandle,
RootBridgeHandle,
RootBridgePciAddress,
Phase,
ChipsetExit
);
}
return EFI_SUCCESS;
}
/**
This function allows the PCI bus driver to be notified to act as requested when a hot-plug event has
happened on the hot-plug controller. Currently, the operations include add operation and remove operation..
@param This A pointer to the hot plug request protocol.
@param Operation The operation the PCI bus driver is requested to make.
@param Controller The handle of the hot-plug controller.
@param RemainingDevicePath The remaining device path for the PCI-like hot-plug device.
@param NumberOfChildren The number of child handles.
For a add operation, it is an output parameter.
For a remove operation, it's an input parameter.
@param ChildHandleBuffer The buffer which contains the child handles.
@retval EFI_INVALID_PARAMETER Operation is not a legal value.
Controller is NULL or not a valid handle.
NumberOfChildren is NULL.
ChildHandleBuffer is NULL while Operation is add.
@retval EFI_OUT_OF_RESOURCES There are no enough resources to start the devices.
@retval EFI_NOT_FOUND Can not find bridge according to controller handle.
@retval EFI_SUCCESS The handles for the specified device have been created or destroyed
as requested, and for an add operation, the new handles are
returned in ChildHandleBuffer.
**/
EFI_STATUS
EFIAPI
PciHotPlugRequestNotify (
IN EFI_PCI_HOTPLUG_REQUEST_PROTOCOL * This,
IN EFI_PCI_HOTPLUG_OPERATION Operation,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL * RemainingDevicePath OPTIONAL,
IN OUT UINT8 *NumberOfChildren,
IN OUT EFI_HANDLE * ChildHandleBuffer
)
{
PCI_IO_DEVICE *Bridge;
PCI_IO_DEVICE *Temp;
EFI_PCI_IO_PROTOCOL *PciIo;
UINTN Index;
EFI_HANDLE RootBridgeHandle;
EFI_STATUS Status;
//
// Check input parameter validity
//
if ((Controller == NULL) || (NumberOfChildren == NULL)){
return EFI_INVALID_PARAMETER;
}
if ((Operation != EfiPciHotPlugRequestAdd) && (Operation != EfiPciHotplugRequestRemove)) {
return EFI_INVALID_PARAMETER;
}
if (Operation == EfiPciHotPlugRequestAdd){
if (ChildHandleBuffer == NULL) {
return EFI_INVALID_PARAMETER;
}
} else if ((Operation == EfiPciHotplugRequestRemove) && (*NumberOfChildren != 0)) {
if (ChildHandleBuffer == NULL) {
return EFI_INVALID_PARAMETER;
}
}
Status = gBS->OpenProtocol (
Controller,
&gEfiPciIoProtocolGuid,
(VOID **) &PciIo,
gPciBusDriverBinding.DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return EFI_NOT_FOUND;
}
Bridge = PCI_IO_DEVICE_FROM_PCI_IO_THIS (PciIo);
//
// Get root bridge handle
//
Temp = Bridge;
while (Temp->Parent != NULL) {
Temp = Temp->Parent;
}
RootBridgeHandle = Temp->Handle;
if (Operation == EfiPciHotPlugRequestAdd) {
//
// Report Status Code to indicate hot plug happens
//
REPORT_STATUS_CODE_WITH_DEVICE_PATH (
EFI_PROGRESS_CODE,
(EFI_IO_BUS_PCI | EFI_IOB_PC_HOTPLUG),
Temp->DevicePath
);
if (NumberOfChildren != NULL) {
*NumberOfChildren = 0;
}
if (IsListEmpty (&Bridge->ChildList)) {
Status = PciBridgeEnumerator (Bridge);
if (EFI_ERROR (Status)) {
return Status;
}
}
Status = StartPciDevicesOnBridge (
RootBridgeHandle,
Bridge,
RemainingDevicePath,
NumberOfChildren,
ChildHandleBuffer
);
return Status;
}
if (Operation == EfiPciHotplugRequestRemove) {
if (*NumberOfChildren == 0) {
//
// Remove all devices on the bridge
//
RemoveAllPciDeviceOnBridge (RootBridgeHandle, Bridge);
return EFI_SUCCESS;
}
for (Index = 0; Index < *NumberOfChildren; Index++) {
//
// De register all the pci device
//
Status = DeRegisterPciDevice (RootBridgeHandle, ChildHandleBuffer[Index]);
if (EFI_ERROR (Status)) {
return Status;
}
}
//
// End for
//
return EFI_SUCCESS;
}
return EFI_SUCCESS;
}
/**
Search hostbridge according to given handle
@param RootBridgeHandle Host bridge handle.
@retval TRUE Found host bridge handle.
@retval FALSE Not found hot bridge handle.
**/
BOOLEAN
SearchHostBridgeHandle (
IN EFI_HANDLE RootBridgeHandle
)
{
EFI_HANDLE HostBridgeHandle;
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *PciRootBridgeIo;
UINTN Index;
EFI_STATUS Status;
//
// Get the rootbridge Io protocol to find the host bridge handle
//
Status = gBS->OpenProtocol (
RootBridgeHandle,
&gEfiPciRootBridgeIoProtocolGuid,
(VOID **) &PciRootBridgeIo,
gPciBusDriverBinding.DriverBindingHandle,
RootBridgeHandle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return FALSE;
}
HostBridgeHandle = PciRootBridgeIo->ParentHandle;
for (Index = 0; Index < gPciHostBridgeNumber; Index++) {
if (HostBridgeHandle == gPciHostBrigeHandles[Index]) {
return TRUE;
}
}
return FALSE;
}
/**
Add host bridge handle to global variable for enumerating.
@param HostBridgeHandle Host bridge handle.
@retval EFI_SUCCESS Successfully added host bridge.
@retval EFI_ABORTED Host bridge is NULL, or given host bridge
has been in host bridge list.
**/
EFI_STATUS
AddHostBridgeEnumerator (
IN EFI_HANDLE HostBridgeHandle
)
{
UINTN Index;
if (HostBridgeHandle == NULL) {
return EFI_ABORTED;
}
for (Index = 0; Index < gPciHostBridgeNumber; Index++) {
if (HostBridgeHandle == gPciHostBrigeHandles[Index]) {
return EFI_ABORTED;
}
}
if (Index < PCI_MAX_HOST_BRIDGE_NUM) {
gPciHostBrigeHandles[Index] = HostBridgeHandle;
gPciHostBridgeNumber++;
}
return EFI_SUCCESS;
}