audk/OvmfPkg/QemuFlashFvbServicesRuntimeDxe/FwBlockServiceDxe.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

247 lines
6.8 KiB
C
Raw Normal View History

/**@file
Functions related to the Firmware Volume Block service whose
implementation is specific to the runtime DXE driver build.
Copyright (C) 2015, Red Hat, Inc.
Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Guid/EventGroup.h>
#include <Library/DebugLib.h>
#include <Library/DevicePathLib.h>
#include <Library/DxeServicesTableLib.h>
#include <Library/MemEncryptSevLib.h>
#include <Library/PcdLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiRuntimeLib.h>
#include <Protocol/DevicePath.h>
#include <Protocol/FirmwareVolumeBlock.h>
#include "FwBlockService.h"
#include "QemuFlash.h"
VOID
InstallProtocolInterfaces (
IN EFI_FW_VOL_BLOCK_DEVICE *FvbDevice
)
{
EFI_STATUS Status;
EFI_HANDLE FwbHandle;
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *OldFwbInterface;
ASSERT (!FeaturePcdGet (PcdSmmSmramRequire));
//
// Find a handle with a matching device path that has supports FW Block
// protocol
//
Status = gBS->LocateDevicePath (
&gEfiFirmwareVolumeBlockProtocolGuid,
&FvbDevice->DevicePath,
&FwbHandle
);
if (EFI_ERROR (Status)) {
//
// LocateDevicePath fails so install a new interface and device path
//
FwbHandle = NULL;
DEBUG ((DEBUG_INFO, "Installing QEMU flash FVB\n"));
Status = gBS->InstallMultipleProtocolInterfaces (
&FwbHandle,
&gEfiFirmwareVolumeBlockProtocolGuid,
&FvbDevice->FwVolBlockInstance,
&gEfiDevicePathProtocolGuid,
FvbDevice->DevicePath,
NULL
);
ASSERT_EFI_ERROR (Status);
} else if (IsDevicePathEnd (FvbDevice->DevicePath)) {
//
// Device already exists, so reinstall the FVB protocol
//
Status = gBS->HandleProtocol (
FwbHandle,
&gEfiFirmwareVolumeBlockProtocolGuid,
(VOID **)&OldFwbInterface
);
ASSERT_EFI_ERROR (Status);
DEBUG ((DEBUG_INFO, "Reinstalling FVB for QEMU flash region\n"));
Status = gBS->ReinstallProtocolInterface (
FwbHandle,
&gEfiFirmwareVolumeBlockProtocolGuid,
OldFwbInterface,
&FvbDevice->FwVolBlockInstance
);
ASSERT_EFI_ERROR (Status);
} else {
//
// There was a FVB protocol on an End Device Path node
//
ASSERT (FALSE);
}
}
STATIC
VOID
EFIAPI
FvbVirtualAddressChangeEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
/*++
Routine Description:
Fixup internal data so that EFI and SAL can be call in virtual mode.
Call the passed in Child Notify event and convert the mFvbModuleGlobal
date items to there virtual address.
Arguments:
(Standard EFI notify event - EFI_EVENT_NOTIFY)
Returns:
None
--*/
{
EFI_FW_VOL_INSTANCE *FwhInstance;
UINTN Index;
FwhInstance = mFvbModuleGlobal->FvInstance;
EfiConvertPointer (0x0, (VOID **)&mFvbModuleGlobal->FvInstance);
//
// Convert the base address of all the instances
//
Index = 0;
while (Index < mFvbModuleGlobal->NumFv) {
EfiConvertPointer (0x0, (VOID **)&FwhInstance->FvBase);
FwhInstance = (EFI_FW_VOL_INSTANCE *)
(
(UINTN)((UINT8 *)FwhInstance) +
FwhInstance->VolumeHeader.HeaderLength +
(sizeof (EFI_FW_VOL_INSTANCE) - sizeof (EFI_FIRMWARE_VOLUME_HEADER))
);
Index++;
}
EfiConvertPointer (0x0, (VOID **)&mFvbModuleGlobal);
QemuFlashConvertPointers ();
}
VOID
InstallVirtualAddressChangeHandler (
VOID
)
{
EFI_STATUS Status;
EFI_EVENT VirtualAddressChangeEvent;
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
FvbVirtualAddressChangeEvent,
NULL,
&gEfiEventVirtualAddressChangeGuid,
&VirtualAddressChangeEvent
);
ASSERT_EFI_ERROR (Status);
}
EFI_STATUS
MarkIoMemoryRangeForRuntimeAccess (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINTN Length
)
{
EFI_STATUS Status;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
//
// Mark flash region as runtime memory
//
Status = gDS->RemoveMemorySpace (
BaseAddress,
Length
);
Status = gDS->AddMemorySpace (
EfiGcdMemoryTypeMemoryMappedIo,
BaseAddress,
Length,
EFI_MEMORY_UC | EFI_MEMORY_RUNTIME
);
ASSERT_EFI_ERROR (Status);
Status = gDS->AllocateMemorySpace (
EfiGcdAllocateAddress,
EfiGcdMemoryTypeMemoryMappedIo,
0,
Length,
&BaseAddress,
gImageHandle,
NULL
);
ASSERT_EFI_ERROR (Status);
Status = gDS->GetMemorySpaceDescriptor (BaseAddress, &GcdDescriptor);
ASSERT_EFI_ERROR (Status);
Status = gDS->SetMemorySpaceAttributes (
BaseAddress,
Length,
GcdDescriptor.Attributes | EFI_MEMORY_RUNTIME
);
ASSERT_EFI_ERROR (Status);
//
// When SEV is active, AmdSevDxe mapped the BaseAddress with C=0 but
// SetMemorySpaceAttributes() remaps the range with C=1. Let's restore
// the mapping so that both guest and hyervisor can access the flash
// memory range.
//
if (MemEncryptSevIsEnabled ()) {
Status = MemEncryptSevClearMmioPageEncMask (
0,
BaseAddress,
EFI_SIZE_TO_PAGES (Length)
);
ASSERT_EFI_ERROR (Status);
}
return Status;
}
VOID
SetPcdFlashNvStorageBaseAddresses (
VOID
)
{
RETURN_STATUS PcdStatus;
//
// Set several PCD values to point to flash
//
PcdStatus = PcdSet64S (
PcdFlashNvStorageVariableBase64,
(UINTN)PcdGet32 (PcdOvmfFlashNvStorageVariableBase)
);
ASSERT_RETURN_ERROR (PcdStatus);
PcdStatus = PcdSet32S (
PcdFlashNvStorageFtwWorkingBase,
PcdGet32 (PcdOvmfFlashNvStorageFtwWorkingBase)
);
ASSERT_RETURN_ERROR (PcdStatus);
PcdStatus = PcdSet32S (
PcdFlashNvStorageFtwSpareBase,
PcdGet32 (PcdOvmfFlashNvStorageFtwSpareBase)
);
ASSERT_RETURN_ERROR (PcdStatus);
}