audk/MdeModulePkg/Universal/EbcDxe/AArch64/EbcSupport.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

482 lines
14 KiB
C
Raw Normal View History

/** @file
This module contains EBC support routines that are customized based on
the target AArch64 processor.
Copyright (c) 2016, Linaro, Ltd. All rights reserved.<BR>
Copyright (c) 2015, The Linux Foundation. All rights reserved.<BR>
Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "EbcInt.h"
#include "EbcExecute.h"
#include "EbcDebuggerHook.h"
//
// Amount of space that is not used in the stack
//
#define STACK_REMAIN_SIZE (1024 * 4)
#pragma pack(1)
typedef struct {
UINT32 Instr[3];
UINT32 Magic;
UINT64 EbcEntryPoint;
UINT64 EbcLlEntryPoint;
} EBC_INSTRUCTION_BUFFER;
#pragma pack()
extern CONST EBC_INSTRUCTION_BUFFER mEbcInstructionBufferTemplate;
/**
Begin executing an EBC image.
This is used for Ebc Thunk call.
@return The value returned by the EBC application we're going to run.
**/
UINT64
EFIAPI
EbcLLEbcInterpret (
VOID
);
/**
Begin executing an EBC image.
This is used for Ebc image entrypoint.
@return The value returned by the EBC application we're going to run.
**/
UINT64
EFIAPI
EbcLLExecuteEbcImageEntryPoint (
VOID
);
/**
Pushes a 64 bit unsigned value to the VM stack.
@param VmPtr The pointer to current VM context.
@param Arg The value to be pushed.
**/
VOID
PushU64 (
IN VM_CONTEXT *VmPtr,
IN UINT64 Arg
)
{
//
// Advance the VM stack down, and then copy the argument to the stack.
// Hope it's aligned.
//
VmPtr->Gpr[0] -= sizeof (UINT64);
*(UINT64 *)VmPtr->Gpr[0] = Arg;
return;
}
/**
Begin executing an EBC image.
This is a thunk function.
@param Arg1 The 1st argument.
@param Arg2 The 2nd argument.
@param Arg3 The 3rd argument.
@param Arg4 The 4th argument.
@param Arg5 The 5th argument.
@param Arg6 The 6th argument.
@param Arg7 The 7th argument.
@param Arg8 The 8th argument.
@param EntryPoint The entrypoint of EBC code.
@param Args9_16[] Array containing arguments #9 to #16.
@return The value returned by the EBC application we're going to run.
**/
UINT64
EFIAPI
EbcInterpret (
IN UINTN Arg1,
IN UINTN Arg2,
IN UINTN Arg3,
IN UINTN Arg4,
IN UINTN Arg5,
IN UINTN Arg6,
IN UINTN Arg7,
IN UINTN Arg8,
IN UINTN EntryPoint,
IN CONST UINTN Args9_16[]
)
{
//
// Create a new VM context on the stack
//
VM_CONTEXT VmContext;
UINTN Addr;
EFI_STATUS Status;
UINTN StackIndex;
//
// Get the EBC entry point
//
Addr = EntryPoint;
//
// Now clear out our context
//
ZeroMem ((VOID *)&VmContext, sizeof (VM_CONTEXT));
//
// Set the VM instruction pointer to the correct location in memory.
//
VmContext.Ip = (VMIP)Addr;
//
// Initialize the stack pointer for the EBC. Get the current system stack
// pointer and adjust it down by the max needed for the interpreter.
//
//
// Adjust the VM's stack pointer down.
//
Status = GetEBCStack ((EFI_HANDLE)(UINTN)-1, &VmContext.StackPool, &StackIndex);
if (EFI_ERROR (Status)) {
return Status;
}
VmContext.StackTop = (UINT8 *)VmContext.StackPool + (STACK_REMAIN_SIZE);
VmContext.Gpr[0] = (UINT64)((UINT8 *)VmContext.StackPool + STACK_POOL_SIZE);
VmContext.HighStackBottom = (UINTN)VmContext.Gpr[0];
VmContext.Gpr[0] -= sizeof (UINTN);
//
// Align the stack on a natural boundary.
//
VmContext.Gpr[0] &= ~(VM_REGISTER)(sizeof (UINTN) - 1);
//
// Put a magic value in the stack gap, then adjust down again.
//
*(UINTN *)(UINTN)(VmContext.Gpr[0]) = (UINTN)VM_STACK_KEY_VALUE;
VmContext.StackMagicPtr = (UINTN *)(UINTN)VmContext.Gpr[0];
//
// The stack upper to LowStackTop is belong to the VM.
//
VmContext.LowStackTop = (UINTN)VmContext.Gpr[0];
//
// For the worst case, assume there are 4 arguments passed in registers, store
// them to VM's stack.
//
PushU64 (&VmContext, (UINT64)Args9_16[7]);
PushU64 (&VmContext, (UINT64)Args9_16[6]);
PushU64 (&VmContext, (UINT64)Args9_16[5]);
PushU64 (&VmContext, (UINT64)Args9_16[4]);
PushU64 (&VmContext, (UINT64)Args9_16[3]);
PushU64 (&VmContext, (UINT64)Args9_16[2]);
PushU64 (&VmContext, (UINT64)Args9_16[1]);
PushU64 (&VmContext, (UINT64)Args9_16[0]);
PushU64 (&VmContext, (UINT64)Arg8);
PushU64 (&VmContext, (UINT64)Arg7);
PushU64 (&VmContext, (UINT64)Arg6);
PushU64 (&VmContext, (UINT64)Arg5);
PushU64 (&VmContext, (UINT64)Arg4);
PushU64 (&VmContext, (UINT64)Arg3);
PushU64 (&VmContext, (UINT64)Arg2);
PushU64 (&VmContext, (UINT64)Arg1);
//
// Interpreter assumes 64-bit return address is pushed on the stack.
// AArch64 does not do this so pad the stack accordingly.
//
PushU64 (&VmContext, (UINT64)0);
PushU64 (&VmContext, (UINT64)0x1234567887654321ULL);
//
// For AArch64, this is where we say our return address is
//
VmContext.StackRetAddr = (UINT64)VmContext.Gpr[0];
//
// We need to keep track of where the EBC stack starts. This way, if the EBC
// accesses any stack variables above its initial stack setting, then we know
// it's accessing variables passed into it, which means the data is on the
// VM's stack.
// When we're called, on the stack (high to low) we have the parameters, the
// return address, then the saved ebp. Save the pointer to the return address.
// EBC code knows that's there, so should look above it for function parameters.
// The offset is the size of locals (VMContext + Addr + saved ebp).
// Note that the interpreter assumes there is a 16 bytes of return address on
// the stack too, so adjust accordingly.
// VmContext.HighStackBottom = (UINTN)(Addr + sizeof (VmContext) + sizeof (Addr));
//
//
// Begin executing the EBC code
//
EbcDebuggerHookEbcInterpret (&VmContext);
EbcExecute (&VmContext);
//
// Return the value in R[7] unless there was an error
//
ReturnEBCStack (StackIndex);
return (UINT64)VmContext.Gpr[7];
}
/**
Begin executing an EBC image.
@param ImageHandle image handle for the EBC application we're executing
@param SystemTable standard system table passed into an driver's entry
point
@param EntryPoint The entrypoint of EBC code.
@return The value returned by the EBC application we're going to run.
**/
UINT64
EFIAPI
ExecuteEbcImageEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable,
IN UINTN EntryPoint
)
{
//
// Create a new VM context on the stack
//
VM_CONTEXT VmContext;
UINTN Addr;
EFI_STATUS Status;
UINTN StackIndex;
//
// Get the EBC entry point
//
Addr = EntryPoint;
//
// Now clear out our context
//
ZeroMem ((VOID *)&VmContext, sizeof (VM_CONTEXT));
//
// Save the image handle so we can track the thunks created for this image
//
VmContext.ImageHandle = ImageHandle;
VmContext.SystemTable = SystemTable;
//
// Set the VM instruction pointer to the correct location in memory.
//
VmContext.Ip = (VMIP)Addr;
//
// Initialize the stack pointer for the EBC. Get the current system stack
// pointer and adjust it down by the max needed for the interpreter.
//
Status = GetEBCStack (ImageHandle, &VmContext.StackPool, &StackIndex);
if (EFI_ERROR (Status)) {
return Status;
}
VmContext.StackTop = (UINT8 *)VmContext.StackPool + (STACK_REMAIN_SIZE);
VmContext.Gpr[0] = (UINT64)((UINT8 *)VmContext.StackPool + STACK_POOL_SIZE);
VmContext.HighStackBottom = (UINTN)VmContext.Gpr[0];
VmContext.Gpr[0] -= sizeof (UINTN);
//
// Put a magic value in the stack gap, then adjust down again
//
*(UINTN *)(UINTN)(VmContext.Gpr[0]) = (UINTN)VM_STACK_KEY_VALUE;
VmContext.StackMagicPtr = (UINTN *)(UINTN)VmContext.Gpr[0];
//
// Align the stack on a natural boundary
VmContext.Gpr[0] &= ~(VM_REGISTER)(sizeof (UINTN) - 1);
//
VmContext.LowStackTop = (UINTN)VmContext.Gpr[0];
//
// Simply copy the image handle and system table onto the EBC stack.
// Greatly simplifies things by not having to spill the args.
//
PushU64 (&VmContext, (UINT64)SystemTable);
PushU64 (&VmContext, (UINT64)ImageHandle);
//
// VM pushes 16-bytes for return address. Simulate that here.
//
PushU64 (&VmContext, (UINT64)0);
PushU64 (&VmContext, (UINT64)0x1234567887654321ULL);
//
// For AArch64, this is where we say our return address is
//
VmContext.StackRetAddr = (UINT64)VmContext.Gpr[0];
//
// Entry function needn't access high stack context, simply
// put the stack pointer here.
//
//
// Begin executing the EBC code
//
EbcDebuggerHookExecuteEbcImageEntryPoint (&VmContext);
EbcExecute (&VmContext);
//
// Return the value in R[7] unless there was an error
//
ReturnEBCStack (StackIndex);
return (UINT64)VmContext.Gpr[7];
}
/**
Create thunks for an EBC image entry point, or an EBC protocol service.
@param ImageHandle Image handle for the EBC image. If not null, then
we're creating a thunk for an image entry point.
@param EbcEntryPoint Address of the EBC code that the thunk is to call
@param Thunk Returned thunk we create here
@param Flags Flags indicating options for creating the thunk
@retval EFI_SUCCESS The thunk was created successfully.
@retval EFI_INVALID_PARAMETER The parameter of EbcEntryPoint is not 16-bit
aligned.
@retval EFI_OUT_OF_RESOURCES There is not enough memory to created the EBC
Thunk.
@retval EFI_BUFFER_TOO_SMALL EBC_THUNK_SIZE is not larger enough.
**/
EFI_STATUS
EbcCreateThunks (
IN EFI_HANDLE ImageHandle,
IN VOID *EbcEntryPoint,
OUT VOID **Thunk,
IN UINT32 Flags
)
{
EBC_INSTRUCTION_BUFFER *InstructionBuffer;
//
// Check alignment of pointer to EBC code
//
if ((UINT32)(UINTN)EbcEntryPoint & 0x01) {
return EFI_INVALID_PARAMETER;
}
InstructionBuffer = EbcAllocatePoolForThunk (sizeof (EBC_INSTRUCTION_BUFFER));
if (InstructionBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Give them the address of our buffer we're going to fix up
//
*Thunk = InstructionBuffer;
//
// Copy whole thunk instruction buffer template
//
CopyMem (
InstructionBuffer,
&mEbcInstructionBufferTemplate,
sizeof (EBC_INSTRUCTION_BUFFER)
);
//
// Patch EbcEntryPoint and EbcLLEbcInterpret
//
InstructionBuffer->EbcEntryPoint = (UINT64)EbcEntryPoint;
if ((Flags & FLAG_THUNK_ENTRY_POINT) != 0) {
InstructionBuffer->EbcLlEntryPoint = (UINT64)EbcLLExecuteEbcImageEntryPoint;
} else {
InstructionBuffer->EbcLlEntryPoint = (UINT64)EbcLLEbcInterpret;
}
//
// Add the thunk to the list for this image. Do this last since the add
// function flushes the cache for us.
//
EbcAddImageThunk (
ImageHandle,
InstructionBuffer,
sizeof (EBC_INSTRUCTION_BUFFER)
);
return EFI_SUCCESS;
}
/**
This function is called to execute an EBC CALLEX instruction.
The function check the callee's content to see whether it is common native
code or a thunk to another piece of EBC code.
If the callee is common native code, use EbcLLCAllEXASM to manipulate,
otherwise, set the VM->IP to target EBC code directly to avoid another VM
be startup which cost time and stack space.
@param VmPtr Pointer to a VM context.
@param FuncAddr Callee's address
@param NewStackPointer New stack pointer after the call
@param FramePtr New frame pointer after the call
@param Size The size of call instruction
**/
VOID
EbcLLCALLEX (
IN VM_CONTEXT *VmPtr,
IN UINTN FuncAddr,
IN UINTN NewStackPointer,
IN VOID *FramePtr,
IN UINT8 Size
)
{
CONST EBC_INSTRUCTION_BUFFER *InstructionBuffer;
//
// Processor specific code to check whether the callee is a thunk to EBC.
//
InstructionBuffer = (EBC_INSTRUCTION_BUFFER *)FuncAddr;
if (CompareMem (
InstructionBuffer,
&mEbcInstructionBufferTemplate,
sizeof (EBC_INSTRUCTION_BUFFER) - 2 * sizeof (UINT64)
) == 0)
{
//
// The callee is a thunk to EBC, adjust the stack pointer down 16 bytes and
// put our return address and frame pointer on the VM stack.
// Then set the VM's IP to new EBC code.
//
VmPtr->Gpr[0] -= 8;
VmWriteMemN (VmPtr, (UINTN)VmPtr->Gpr[0], (UINTN)FramePtr);
VmPtr->FramePtr = (VOID *)(UINTN)VmPtr->Gpr[0];
VmPtr->Gpr[0] -= 8;
VmWriteMem64 (VmPtr, (UINTN)VmPtr->Gpr[0], (UINT64)(UINTN)(VmPtr->Ip + Size));
VmPtr->Ip = (VMIP)InstructionBuffer->EbcEntryPoint;
} else {
//
// The callee is not a thunk to EBC, call native code,
// and get return value.
//
VmPtr->Gpr[7] = EbcLLCALLEXNative (FuncAddr, NewStackPointer, FramePtr);
//
// Advance the IP.
//
VmPtr->Ip += Size;
}
}