audk/OvmfPkg/IncompatiblePciDeviceSuppor.../IncompatiblePciDeviceSupport.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

278 lines
12 KiB
C
Raw Normal View History

OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
/** @file
A simple DXE_DRIVER that causes the PCI Bus UEFI_DRIVER to allocate 64-bit
OvmfPkg/IncompatiblePciDeviceSupportDxe: ignore CSM presence The UEFI protocol database cannot contain gEfiLegacyBiosProtocolGuid any longer, after excluding LegacyBiosDxe from the OVMF platforms. Therefore, instruct PciBusDxe from IncompatiblePciDeviceSupportDxe to allocate 64-bit BARs above 4 GB regardless of a CSM. Regression test: in commit 855743f71774 ("OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM", 2016-05-25), where we introduced IncompatiblePciDeviceSupportDxe, we said, "By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space". Therefore it suffices to verify the 64-bit BARs of a device for which QEMU provides an option ROM. The simplest case is the virtio-net-pci device. And indeed, with this patch applied, the log contains: > PciBus: Discovered PCI @ [04|00|00] [VID = 0x1AF4, DID = 0x1041] > BAR[1]: Type = Mem32; Alignment = 0xFFF; Length = 0x1000; Offset = 0x14 > BAR[4]: Type = PMem64; Alignment = 0x3FFF; Length = 0x4000; Offset = 0x20 This portion shows that Bus|Device|Function 04|00|00 is a (modern) virito-net-pci device [VID = 0x1AF4, DID = 0x1041]. > PciBus: Resource Map for Bridge [00|01|03] > Type = Mem32; Base = 0x81200000; Length = 0x200000; Alignment = 0x1FFFFF > Base = Padding; Length = 0x200000; Alignment = 0x1FFFFF > Base = 0x81200000; Length = 0x1000; Alignment = 0xFFF; Owner = PCI [04|00|00:14] > Type = Mem32; Base = 0x81A43000; Length = 0x1000; Alignment = 0xFFF > Type = PMem64; Base = 0x800200000; Length = 0x100000; Alignment = 0xFFFFF > Base = 0x800200000; Length = 0x4000; Alignment = 0x3FFF; Owner = PCI [04|00|00:20] This quote shows that 04|00|00 has a BAR at 0x8_0020_0000. (It also shows that the device is behind a bridge (PCIe root port) whose own BDF is 00|01|03.) > [Security] 3rd party image[7CEEB418] can be loaded after EndOfDxe: PciRoot(0x0)/Pci(0x1,0x3)/Pci(0x0,0x0)/Offset(0x10E00,0x273FF). > None of Tcg2Protocol/CcMeasurementProtocol is installed. > InstallProtocolInterface: [EfiLoadedImageProtocol] 7D2E5140 > Loading driver at 0x0007CA9F000 EntryPoint=0x0007CAA5447 1af41000.efi > InstallProtocolInterface: [EfiLoadedImageDevicePathProtocol] 7D5B2198 And this part finally shows that the iPXE option ROM for the device (1af41000.efi) was detected and is loaded. (Same PCIe root port, and PCIe root ports can only host a single device.) Cc: Ard Biesheuvel <ardb+tianocore@kernel.org> Cc: Gerd Hoffmann <kraxel@redhat.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=4588 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20231110235820.644381-14-lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Corvin Köhne <corvink@FreeBSD.org> Acked-by: Gerd Hoffmann <kraxel@redhat.com>
2023-11-11 00:57:56 +01:00
MMIO BARs above 4 GB, regardless of option ROM availability, conserving 32-bit
MMIO aperture for 32-bit BARs.
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
Copyright (C) 2016, Red Hat, Inc.
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
SPDX-License-Identifier: BSD-2-Clause-Patent
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
**/
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
#include <IndustryStandard/Acpi10.h>
#include <IndustryStandard/Pci22.h>
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/CcProbeLib.h>
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
#include <Protocol/IncompatiblePciDeviceSupport.h>
//
// The protocol interface this driver produces.
//
STATIC EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
mIncompatiblePciDeviceSupport;
//
// Configuration template for the CheckDevice() protocol member function.
//
// Refer to Table 20 "ACPI 2.0 & 3.0 QWORD Address Space Descriptor Usage" in
// the Platform Init 1.4a Spec, Volume 5.
//
// This structure is interpreted by the UpdatePciInfo() function in the edk2
// PCI Bus UEFI_DRIVER.
//
// This structure looks like:
// AddressDesc-1 + AddressDesc-2 + ... + AddressDesc-n + EndDesc
//
STATIC CONST EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR mMmio64Configuration = {
ACPI_ADDRESS_SPACE_DESCRIPTOR, // Desc
(UINT16)( // Len
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) -
OFFSET_OF (
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR,
ResType
)
),
ACPI_ADDRESS_SPACE_TYPE_MEM, // ResType
0, // GenFlag
0, // SpecificFlag
64, // AddrSpaceGranularity:
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
// aperture selection hint
// for BAR allocation
0, // AddrRangeMin
0, // AddrRangeMax:
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
// no special alignment
// for affected BARs
MAX_UINT64, // AddrTranslationOffset:
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
// hint covers all
// eligible BARs
0 // AddrLen:
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
// use probed BAR size
};
//
// mOptionRomConfiguration is present only in Td guest.
// Host VMM can inject option ROM which is untrusted in Td guest,
// so PCI option ROM needs to be ignored.
// According to "Table 20. ACPI 2.0 & 3.0 QWORD Address Space Descriptor Usage"
// PI spec 1.7, type-specific flags can be set to 0 when
// Address Translation Offset == 6 to skip device option ROM.
//
STATIC CONST EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR mOptionRomConfiguration = {
ACPI_ADDRESS_SPACE_DESCRIPTOR, // Desc
(UINT16)( // Len
sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) -
OFFSET_OF (
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR,
ResType
)
),
ACPI_ADDRESS_SPACE_TYPE_MEM, // ResType
0, // GenFlag
0, // Disable option roms SpecificFlag
64, // AddrSpaceGranularity:
// aperture selection hint
// for BAR allocation
MAX_UINT64, // AddrRangeMin
MAX_UINT64, // AddrRangeMax:
// no special alignment
// for affected BARs
6, // AddrTranslationOffset:
// hint covers all
// eligible BARs
0 // AddrLen:
// use probed BAR size
};
STATIC CONST EFI_ACPI_END_TAG_DESCRIPTOR mEndDesc = {
ACPI_END_TAG_DESCRIPTOR, // Desc
0 // Checksum: to be ignored
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
};
/**
Returns a list of ACPI resource descriptors that detail the special resource
configuration requirements for an incompatible PCI device.
Prior to bus enumeration, the PCI bus driver will look for the presence of
the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL. Only one instance of this
protocol can be present in the system. For each PCI device that the PCI bus
driver discovers, the PCI bus driver calls this function with the device's
vendor ID, device ID, revision ID, subsystem vendor ID, and subsystem device
ID. If the VendorId, DeviceId, RevisionId, SubsystemVendorId, or
SubsystemDeviceId value is set to (UINTN)-1, that field will be ignored. The
ID values that are not (UINTN)-1 will be used to identify the current device.
This function will only return EFI_SUCCESS. However, if the device is an
incompatible PCI device, a list of ACPI resource descriptors will be returned
in Configuration. Otherwise, NULL will be returned in Configuration instead.
The PCI bus driver does not need to allocate memory for Configuration.
However, it is the PCI bus driver's responsibility to free it. The PCI bus
driver then can configure this device with the information that is derived
from this list of resource nodes, rather than the result of BAR probing.
Only the following two resource descriptor types from the ACPI Specification
may be used to describe the incompatible PCI device resource requirements:
- QWORD Address Space Descriptor (ACPI 2.0, section 6.4.3.5.1; also ACPI 3.0)
- End Tag (ACPI 2.0, section 6.4.2.8; also ACPI 3.0)
The QWORD Address Space Descriptor can describe memory, I/O, and bus number
ranges for dynamic or fixed resources. The configuration of a PCI root bridge
is described with one or more QWORD Address Space Descriptors, followed by an
End Tag. See the ACPI Specification for details on the field values.
@param[in] This Pointer to the
EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL
instance.
@param[in] VendorId A unique ID to identify the manufacturer of
the PCI device. See the Conventional PCI
Specification 3.0 for details.
@param[in] DeviceId A unique ID to identify the particular PCI
device. See the Conventional PCI
Specification 3.0 for details.
@param[in] RevisionId A PCI device-specific revision identifier.
See the Conventional PCI Specification 3.0
for details.
@param[in] SubsystemVendorId Specifies the subsystem vendor ID. See the
Conventional PCI Specification 3.0 for
details.
@param[in] SubsystemDeviceId Specifies the subsystem device ID. See the
Conventional PCI Specification 3.0 for
details.
@param[out] Configuration A list of ACPI resource descriptors that
detail the configuration requirement.
@retval EFI_SUCCESS The function always returns EFI_SUCCESS.
**/
STATIC
EFI_STATUS
EFIAPI
CheckDevice (
IN EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL *This,
IN UINTN VendorId,
IN UINTN DeviceId,
IN UINTN RevisionId,
IN UINTN SubsystemVendorId,
IN UINTN SubsystemDeviceId,
OUT VOID **Configuration
)
{
UINTN Length;
UINT8 *Ptr;
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
//
// Unlike the general description of this protocol member suggests, there is
// nothing incompatible about the PCI devices that we'll match here. We'll
// match all PCI devices, and generate exactly one QWORD Address Space
// Descriptor for each. That descriptor will instruct the PCI Bus UEFI_DRIVER
// not to degrade 64-bit MMIO BARs for the device, even if a PCI option ROM
// BAR is present on the device.
//
// The concern captured in the PCI Bus UEFI_DRIVER is that a legacy BIOS boot
// (via a CSM) could dispatch a legacy option ROM on the device, which might
// have trouble with MMIO BARs that have been allocated outside of the 32-bit
OvmfPkg/IncompatiblePciDeviceSupportDxe: ignore CSM presence The UEFI protocol database cannot contain gEfiLegacyBiosProtocolGuid any longer, after excluding LegacyBiosDxe from the OVMF platforms. Therefore, instruct PciBusDxe from IncompatiblePciDeviceSupportDxe to allocate 64-bit BARs above 4 GB regardless of a CSM. Regression test: in commit 855743f71774 ("OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM", 2016-05-25), where we introduced IncompatiblePciDeviceSupportDxe, we said, "By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space". Therefore it suffices to verify the 64-bit BARs of a device for which QEMU provides an option ROM. The simplest case is the virtio-net-pci device. And indeed, with this patch applied, the log contains: > PciBus: Discovered PCI @ [04|00|00] [VID = 0x1AF4, DID = 0x1041] > BAR[1]: Type = Mem32; Alignment = 0xFFF; Length = 0x1000; Offset = 0x14 > BAR[4]: Type = PMem64; Alignment = 0x3FFF; Length = 0x4000; Offset = 0x20 This portion shows that Bus|Device|Function 04|00|00 is a (modern) virito-net-pci device [VID = 0x1AF4, DID = 0x1041]. > PciBus: Resource Map for Bridge [00|01|03] > Type = Mem32; Base = 0x81200000; Length = 0x200000; Alignment = 0x1FFFFF > Base = Padding; Length = 0x200000; Alignment = 0x1FFFFF > Base = 0x81200000; Length = 0x1000; Alignment = 0xFFF; Owner = PCI [04|00|00:14] > Type = Mem32; Base = 0x81A43000; Length = 0x1000; Alignment = 0xFFF > Type = PMem64; Base = 0x800200000; Length = 0x100000; Alignment = 0xFFFFF > Base = 0x800200000; Length = 0x4000; Alignment = 0x3FFF; Owner = PCI [04|00|00:20] This quote shows that 04|00|00 has a BAR at 0x8_0020_0000. (It also shows that the device is behind a bridge (PCIe root port) whose own BDF is 00|01|03.) > [Security] 3rd party image[7CEEB418] can be loaded after EndOfDxe: PciRoot(0x0)/Pci(0x1,0x3)/Pci(0x0,0x0)/Offset(0x10E00,0x273FF). > None of Tcg2Protocol/CcMeasurementProtocol is installed. > InstallProtocolInterface: [EfiLoadedImageProtocol] 7D2E5140 > Loading driver at 0x0007CA9F000 EntryPoint=0x0007CAA5447 1af41000.efi > InstallProtocolInterface: [EfiLoadedImageDevicePathProtocol] 7D5B2198 And this part finally shows that the iPXE option ROM for the device (1af41000.efi) was detected and is loaded. (Same PCIe root port, and PCIe root ports can only host a single device.) Cc: Ard Biesheuvel <ardb+tianocore@kernel.org> Cc: Gerd Hoffmann <kraxel@redhat.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=4588 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Message-Id: <20231110235820.644381-14-lersek@redhat.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Corvin Köhne <corvink@FreeBSD.org> Acked-by: Gerd Hoffmann <kraxel@redhat.com>
2023-11-11 00:57:56 +01:00
// address space. But, we don't support legacy option ROMs at all, thus this
// problem cannot arise.
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
//
// This member function is mis-specified actually: it is supposed to allocate
// memory, but as specified, it could not return an error status. Thankfully,
// the edk2 PCI Bus UEFI_DRIVER actually handles error codes; see the
// UpdatePciInfo() function.
//
Length = sizeof mMmio64Configuration + sizeof mEndDesc;
//
// In Td guest OptionRom is not allowed.
//
if (CcProbe ()) {
Length += sizeof mOptionRomConfiguration;
}
*Configuration = AllocateZeroPool (Length);
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
if (*Configuration == NULL) {
DEBUG ((
DEBUG_WARN,
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
"%a: 64-bit MMIO BARs may be degraded for PCI 0x%04x:0x%04x (rev %d)\n",
__func__,
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
(UINT32)VendorId,
(UINT32)DeviceId,
(UINT8)RevisionId
));
return EFI_OUT_OF_RESOURCES;
}
Ptr = (UINT8 *)(UINTN)*Configuration;
CopyMem (Ptr, &mMmio64Configuration, sizeof mMmio64Configuration);
Length = sizeof mMmio64Configuration;
if (CcProbe ()) {
CopyMem (Ptr + Length, &mOptionRomConfiguration, sizeof mOptionRomConfiguration);
Length += sizeof mOptionRomConfiguration;
}
CopyMem (Ptr + Length, &mEndDesc, sizeof mEndDesc);
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
return EFI_SUCCESS;
}
/**
Entry point for this driver.
@param[in] ImageHandle Image handle of this driver.
@param[in] SystemTable Pointer to SystemTable.
@retval EFI_SUCESS Driver has loaded successfully.
@retval EFI_UNSUPPORTED PCI resource allocation has been disabled.
@retval EFI_UNSUPPORTED There is no 64-bit PCI MMIO aperture.
@return Error codes from lower level functions.
**/
EFI_STATUS
EFIAPI
DriverInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
//
// If there is no 64-bit PCI MMIO aperture, then 64-bit MMIO BARs have to be
// allocated under 4 GB unconditionally.
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
//
if (PcdGet64 (PcdPciMmio64Size) == 0) {
OvmfPkg: prevent 64-bit MMIO BAR degradation if there is no CSM According to edk2 commit "MdeModulePkg/PciBus: do not improperly degrade resource" and to the EFI_INCOMPATIBLE_PCI_DEVICE_SUPPORT_PROTOCOL definition in the Platform Init 1.4a specification, a platform can provide such a protocol in order to influence the PCI resource allocation performed by the PCI Bus driver. In particular it is possible instruct the PCI Bus driver, with a "wildcard" hint, to allocate the 64-bit MMIO BARs of a device in 64-bit address space, regardless of whether the device features an option ROM. (By default, the PCI Bus driver considers an option ROM reason enough for allocating the 64-bit MMIO BARs in 32-bit address space. It cannot know if BDS will launch a legacy boot option, and under legacy boot, a legacy BIOS binary from a combined option ROM could be dispatched, and fail to access MMIO BARs in 64-bit address space.) In platform code we can ascertain whether a CSM is present or not. If not, then legacy BIOS binaries in option ROMs can't be dispatched, hence the BAR degradation is detrimental, and we should prevent it. This is expected to conserve the 32-bit address space for 32-bit MMIO BARs. The driver added in this patch could be simplified based on the following facts: - In the Ia32 build, the 64-bit MMIO aperture is always zero-size, hence the driver will exit immediately. Therefore the driver could be omitted from the Ia32 build. - In the Ia32X64 and X64 builds, the driver could be omitted if CSM_ENABLE was defined (because in that case the degradation would be justified). On the other hand, if CSM_ENABLE was undefined, then the driver could be included, and it could provide the hint unconditionally (without looking for the Legacy BIOS protocol). These short-cuts are not taken because they would increase the differences between the OVMF DSC/FDF files. If we can manage without extreme complexity, we should use dynamic logic (vs. build time configuration), plus keep conditional compilation to a minimum. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Ruiyu Ni <ruiyu.ni@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
2016-05-18 20:13:41 +02:00
return EFI_UNSUPPORTED;
}
mIncompatiblePciDeviceSupport.CheckDevice = CheckDevice;
Status = gBS->InstallMultipleProtocolInterfaces (
&ImageHandle,
&gEfiIncompatiblePciDeviceSupportProtocolGuid,
&mIncompatiblePciDeviceSupport,
NULL
);
return Status;
}