audk/MdeModulePkg/Core/PiSmmCore/MemoryAttributesTable.c

1510 lines
54 KiB
C
Raw Normal View History

/** @file
PI SMM MemoryAttributes support
Copyright (c) 2016, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <PiDxe.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/SmmServicesTableLib.h>
#include <Library/DebugLib.h>
#include <Library/PcdLib.h>
#include <Library/PeCoffLib.h>
#include <Library/PeCoffGetEntryPointLib.h>
#include <Guid/PiSmmMemoryAttributesTable.h>
#include "PiSmmCore.h"
#define PREVIOUS_MEMORY_DESCRIPTOR(MemoryDescriptor, Size) \
((EFI_MEMORY_DESCRIPTOR *)((UINT8 *)(MemoryDescriptor) - (Size)))
#define IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE SIGNATURE_32 ('I','P','R','C')
typedef struct {
UINT32 Signature;
LIST_ENTRY Link;
EFI_PHYSICAL_ADDRESS CodeSegmentBase;
UINT64 CodeSegmentSize;
} IMAGE_PROPERTIES_RECORD_CODE_SECTION;
#define IMAGE_PROPERTIES_RECORD_SIGNATURE SIGNATURE_32 ('I','P','R','D')
typedef struct {
UINT32 Signature;
LIST_ENTRY Link;
EFI_PHYSICAL_ADDRESS ImageBase;
UINT64 ImageSize;
UINTN CodeSegmentCount;
LIST_ENTRY CodeSegmentList;
} IMAGE_PROPERTIES_RECORD;
#define IMAGE_PROPERTIES_PRIVATE_DATA_SIGNATURE SIGNATURE_32 ('I','P','P','D')
typedef struct {
UINT32 Signature;
UINTN ImageRecordCount;
UINTN CodeSegmentCountMax;
LIST_ENTRY ImageRecordList;
} IMAGE_PROPERTIES_PRIVATE_DATA;
IMAGE_PROPERTIES_PRIVATE_DATA mImagePropertiesPrivateData = {
IMAGE_PROPERTIES_PRIVATE_DATA_SIGNATURE,
0,
0,
INITIALIZE_LIST_HEAD_VARIABLE (mImagePropertiesPrivateData.ImageRecordList)
};
#define EFI_MEMORY_ATTRIBUTES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA BIT0
UINT64 mMemoryProtectionAttribute = EFI_MEMORY_ATTRIBUTES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA;
//
// Below functions are for MemoryMap
//
/**
Converts a number of EFI_PAGEs to a size in bytes.
NOTE: Do not use EFI_PAGES_TO_SIZE because it handles UINTN only.
@param[in] Pages The number of EFI_PAGES.
@return The number of bytes associated with the number of EFI_PAGEs specified
by Pages.
**/
STATIC
UINT64
EfiPagesToSize (
IN UINT64 Pages
)
{
return LShiftU64 (Pages, EFI_PAGE_SHIFT);
}
/**
Converts a size, in bytes, to a number of EFI_PAGESs.
NOTE: Do not use EFI_SIZE_TO_PAGES because it handles UINTN only.
@param[in] Size A size in bytes.
@return The number of EFI_PAGESs associated with the number of bytes specified
by Size.
**/
STATIC
UINT64
EfiSizeToPages (
IN UINT64 Size
)
{
return RShiftU64 (Size, EFI_PAGE_SHIFT) + ((((UINTN)Size) & EFI_PAGE_MASK) ? 1 : 0);
}
/**
Check the consistency of Smm memory attributes table.
@param[in] MemoryAttributesTable PI SMM memory attributes table
**/
VOID
SmmMemoryAttributesTableConsistencyCheck (
IN EDKII_PI_SMM_MEMORY_ATTRIBUTES_TABLE *MemoryAttributesTable
)
{
EFI_MEMORY_DESCRIPTOR *MemoryMap;
UINTN MemoryMapEntryCount;
UINTN DescriptorSize;
UINTN Index;
UINT64 Address;
Address = 0;
MemoryMapEntryCount = MemoryAttributesTable->NumberOfEntries;
DescriptorSize = MemoryAttributesTable->DescriptorSize;
MemoryMap = (EFI_MEMORY_DESCRIPTOR *)(MemoryAttributesTable + 1);
for (Index = 0; Index < MemoryMapEntryCount; Index++) {
if (Address != 0) {
ASSERT (Address == MemoryMap->PhysicalStart);
}
Address = MemoryMap->PhysicalStart + EFI_PAGES_TO_SIZE(MemoryMap->NumberOfPages);
MemoryMap = NEXT_MEMORY_DESCRIPTOR(MemoryMap, DescriptorSize);
}
}
/**
Sort memory map entries based upon PhysicalStart, from low to high.
@param[in] MemoryMap A pointer to the buffer in which firmware places
the current memory map.
@param[in] MemoryMapSize Size, in bytes, of the MemoryMap buffer.
@param[in] DescriptorSize Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
**/
STATIC
VOID
SortMemoryMap (
IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,
IN UINTN MemoryMapSize,
IN UINTN DescriptorSize
)
{
EFI_MEMORY_DESCRIPTOR *MemoryMapEntry;
EFI_MEMORY_DESCRIPTOR *NextMemoryMapEntry;
EFI_MEMORY_DESCRIPTOR *MemoryMapEnd;
EFI_MEMORY_DESCRIPTOR TempMemoryMap;
MemoryMapEntry = MemoryMap;
NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) MemoryMap + MemoryMapSize);
while (MemoryMapEntry < MemoryMapEnd) {
while (NextMemoryMapEntry < MemoryMapEnd) {
if (MemoryMapEntry->PhysicalStart > NextMemoryMapEntry->PhysicalStart) {
CopyMem (&TempMemoryMap, MemoryMapEntry, sizeof(EFI_MEMORY_DESCRIPTOR));
CopyMem (MemoryMapEntry, NextMemoryMapEntry, sizeof(EFI_MEMORY_DESCRIPTOR));
CopyMem (NextMemoryMapEntry, &TempMemoryMap, sizeof(EFI_MEMORY_DESCRIPTOR));
}
NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize);
}
MemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
}
return ;
}
/**
Merge continous memory map entries whose have same attributes.
@param[in, out] MemoryMap A pointer to the buffer in which firmware places
the current memory map.
@param[in, out] MemoryMapSize A pointer to the size, in bytes, of the
MemoryMap buffer. On input, this is the size of
the current memory map. On output,
it is the size of new memory map after merge.
@param[in] DescriptorSize Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
**/
STATIC
VOID
MergeMemoryMap (
IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,
IN OUT UINTN *MemoryMapSize,
IN UINTN DescriptorSize
)
{
EFI_MEMORY_DESCRIPTOR *MemoryMapEntry;
EFI_MEMORY_DESCRIPTOR *MemoryMapEnd;
UINT64 MemoryBlockLength;
EFI_MEMORY_DESCRIPTOR *NewMemoryMapEntry;
EFI_MEMORY_DESCRIPTOR *NextMemoryMapEntry;
MemoryMapEntry = MemoryMap;
NewMemoryMapEntry = MemoryMap;
MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) MemoryMap + *MemoryMapSize);
while ((UINTN)MemoryMapEntry < (UINTN)MemoryMapEnd) {
CopyMem (NewMemoryMapEntry, MemoryMapEntry, sizeof(EFI_MEMORY_DESCRIPTOR));
NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
do {
MemoryBlockLength = (UINT64) (EfiPagesToSize (MemoryMapEntry->NumberOfPages));
if (((UINTN)NextMemoryMapEntry < (UINTN)MemoryMapEnd) &&
(MemoryMapEntry->Type == NextMemoryMapEntry->Type) &&
(MemoryMapEntry->Attribute == NextMemoryMapEntry->Attribute) &&
((MemoryMapEntry->PhysicalStart + MemoryBlockLength) == NextMemoryMapEntry->PhysicalStart)) {
MemoryMapEntry->NumberOfPages += NextMemoryMapEntry->NumberOfPages;
if (NewMemoryMapEntry != MemoryMapEntry) {
NewMemoryMapEntry->NumberOfPages += NextMemoryMapEntry->NumberOfPages;
}
NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize);
continue;
} else {
MemoryMapEntry = PREVIOUS_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize);
break;
}
} while (TRUE);
MemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
NewMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NewMemoryMapEntry, DescriptorSize);
}
*MemoryMapSize = (UINTN)NewMemoryMapEntry - (UINTN)MemoryMap;
return ;
}
/**
Enforce memory map attributes.
This function will set EfiRuntimeServicesData/EfiMemoryMappedIO/EfiMemoryMappedIOPortSpace to be EFI_MEMORY_XP.
@param[in, out] MemoryMap A pointer to the buffer in which firmware places
the current memory map.
@param[in] MemoryMapSize Size, in bytes, of the MemoryMap buffer.
@param[in] DescriptorSize Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
**/
STATIC
VOID
EnforceMemoryMapAttribute (
IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,
IN UINTN MemoryMapSize,
IN UINTN DescriptorSize
)
{
EFI_MEMORY_DESCRIPTOR *MemoryMapEntry;
EFI_MEMORY_DESCRIPTOR *MemoryMapEnd;
MemoryMapEntry = MemoryMap;
MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) MemoryMap + MemoryMapSize);
while ((UINTN)MemoryMapEntry < (UINTN)MemoryMapEnd) {
switch (MemoryMapEntry->Type) {
case EfiRuntimeServicesCode:
MemoryMapEntry->Attribute |= EFI_MEMORY_RO;
break;
case EfiRuntimeServicesData:
MemoryMapEntry->Attribute |= EFI_MEMORY_XP;
break;
}
MemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
}
return ;
}
/**
Return the first image record, whose [ImageBase, ImageSize] covered by [Buffer, Length].
@param[in] Buffer Start Address
@param[in] Length Address length
@return first image record covered by [buffer, length]
**/
STATIC
IMAGE_PROPERTIES_RECORD *
GetImageRecordByAddress (
IN EFI_PHYSICAL_ADDRESS Buffer,
IN UINT64 Length
)
{
IMAGE_PROPERTIES_RECORD *ImageRecord;
LIST_ENTRY *ImageRecordLink;
LIST_ENTRY *ImageRecordList;
ImageRecordList = &mImagePropertiesPrivateData.ImageRecordList;
for (ImageRecordLink = ImageRecordList->ForwardLink;
ImageRecordLink != ImageRecordList;
ImageRecordLink = ImageRecordLink->ForwardLink) {
ImageRecord = CR (
ImageRecordLink,
IMAGE_PROPERTIES_RECORD,
Link,
IMAGE_PROPERTIES_RECORD_SIGNATURE
);
if ((Buffer <= ImageRecord->ImageBase) &&
(Buffer + Length >= ImageRecord->ImageBase + ImageRecord->ImageSize)) {
return ImageRecord;
}
}
return NULL;
}
/**
Set the memory map to new entries, according to one old entry,
based upon PE code section and data section in image record
@param[in] ImageRecord An image record whose [ImageBase, ImageSize] covered
by old memory map entry.
@param[in, out] NewRecord A pointer to several new memory map entries.
The caller gurantee the buffer size be 1 +
(SplitRecordCount * DescriptorSize) calculated
below.
@param[in] OldRecord A pointer to one old memory map entry.
@param[in] DescriptorSize Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
**/
STATIC
UINTN
SetNewRecord (
IN IMAGE_PROPERTIES_RECORD *ImageRecord,
IN OUT EFI_MEMORY_DESCRIPTOR *NewRecord,
IN EFI_MEMORY_DESCRIPTOR *OldRecord,
IN UINTN DescriptorSize
)
{
EFI_MEMORY_DESCRIPTOR TempRecord;
IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection;
LIST_ENTRY *ImageRecordCodeSectionLink;
LIST_ENTRY *ImageRecordCodeSectionEndLink;
LIST_ENTRY *ImageRecordCodeSectionList;
UINTN NewRecordCount;
UINT64 PhysicalEnd;
UINT64 ImageEnd;
CopyMem (&TempRecord, OldRecord, sizeof(EFI_MEMORY_DESCRIPTOR));
PhysicalEnd = TempRecord.PhysicalStart + EfiPagesToSize(TempRecord.NumberOfPages);
NewRecordCount = 0;
ImageRecordCodeSectionList = &ImageRecord->CodeSegmentList;
ImageRecordCodeSectionLink = ImageRecordCodeSectionList->ForwardLink;
ImageRecordCodeSectionEndLink = ImageRecordCodeSectionList;
while (ImageRecordCodeSectionLink != ImageRecordCodeSectionEndLink) {
ImageRecordCodeSection = CR (
ImageRecordCodeSectionLink,
IMAGE_PROPERTIES_RECORD_CODE_SECTION,
Link,
IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE
);
ImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink;
if (TempRecord.PhysicalStart <= ImageRecordCodeSection->CodeSegmentBase) {
//
// DATA
//
NewRecord->Type = EfiRuntimeServicesData;
NewRecord->PhysicalStart = TempRecord.PhysicalStart;
NewRecord->VirtualStart = 0;
NewRecord->NumberOfPages = EfiSizeToPages(ImageRecordCodeSection->CodeSegmentBase - NewRecord->PhysicalStart);
NewRecord->Attribute = TempRecord.Attribute | EFI_MEMORY_XP;
if (NewRecord->NumberOfPages != 0) {
NewRecord = NEXT_MEMORY_DESCRIPTOR (NewRecord, DescriptorSize);
NewRecordCount ++;
}
//
// CODE
//
NewRecord->Type = EfiRuntimeServicesCode;
NewRecord->PhysicalStart = ImageRecordCodeSection->CodeSegmentBase;
NewRecord->VirtualStart = 0;
NewRecord->NumberOfPages = EfiSizeToPages(ImageRecordCodeSection->CodeSegmentSize);
NewRecord->Attribute = (TempRecord.Attribute & (~EFI_MEMORY_XP)) | EFI_MEMORY_RO;
if (NewRecord->NumberOfPages != 0) {
NewRecord = NEXT_MEMORY_DESCRIPTOR (NewRecord, DescriptorSize);
NewRecordCount ++;
}
TempRecord.PhysicalStart = ImageRecordCodeSection->CodeSegmentBase + EfiPagesToSize (EfiSizeToPages(ImageRecordCodeSection->CodeSegmentSize));
TempRecord.NumberOfPages = EfiSizeToPages(PhysicalEnd - TempRecord.PhysicalStart);
if (TempRecord.NumberOfPages == 0) {
break;
}
}
}
ImageEnd = ImageRecord->ImageBase + ImageRecord->ImageSize;
//
// Final DATA
//
if (TempRecord.PhysicalStart < ImageEnd) {
NewRecord->Type = EfiRuntimeServicesData;
NewRecord->PhysicalStart = TempRecord.PhysicalStart;
NewRecord->VirtualStart = 0;
NewRecord->NumberOfPages = EfiSizeToPages (ImageEnd - TempRecord.PhysicalStart);
NewRecord->Attribute = TempRecord.Attribute | EFI_MEMORY_XP;
NewRecordCount ++;
}
return NewRecordCount;
}
/**
Return the max number of new splitted entries, according to one old entry,
based upon PE code section and data section.
@param[in] OldRecord A pointer to one old memory map entry.
@retval 0 no entry need to be splitted.
@return the max number of new splitted entries
**/
STATIC
UINTN
GetMaxSplitRecordCount (
IN EFI_MEMORY_DESCRIPTOR *OldRecord
)
{
IMAGE_PROPERTIES_RECORD *ImageRecord;
UINTN SplitRecordCount;
UINT64 PhysicalStart;
UINT64 PhysicalEnd;
SplitRecordCount = 0;
PhysicalStart = OldRecord->PhysicalStart;
PhysicalEnd = OldRecord->PhysicalStart + EfiPagesToSize(OldRecord->NumberOfPages);
do {
ImageRecord = GetImageRecordByAddress (PhysicalStart, PhysicalEnd - PhysicalStart);
if (ImageRecord == NULL) {
break;
}
SplitRecordCount += (2 * ImageRecord->CodeSegmentCount + 1);
PhysicalStart = ImageRecord->ImageBase + ImageRecord->ImageSize;
} while ((ImageRecord != NULL) && (PhysicalStart < PhysicalEnd));
if (SplitRecordCount != 0) {
SplitRecordCount--;
}
return SplitRecordCount;
}
/**
Split the memory map to new entries, according to one old entry,
based upon PE code section and data section.
@param[in] OldRecord A pointer to one old memory map entry.
@param[in, out] NewRecord A pointer to several new memory map entries.
The caller gurantee the buffer size be 1 +
(SplitRecordCount * DescriptorSize) calculated
below.
@param[in] MaxSplitRecordCount The max number of splitted entries
@param[in] DescriptorSize Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
@retval 0 no entry is splitted.
@return the real number of splitted record.
**/
STATIC
UINTN
SplitRecord (
IN EFI_MEMORY_DESCRIPTOR *OldRecord,
IN OUT EFI_MEMORY_DESCRIPTOR *NewRecord,
IN UINTN MaxSplitRecordCount,
IN UINTN DescriptorSize
)
{
EFI_MEMORY_DESCRIPTOR TempRecord;
IMAGE_PROPERTIES_RECORD *ImageRecord;
IMAGE_PROPERTIES_RECORD *NewImageRecord;
UINT64 PhysicalStart;
UINT64 PhysicalEnd;
UINTN NewRecordCount;
UINTN TotalNewRecordCount;
if (MaxSplitRecordCount == 0) {
CopyMem (NewRecord, OldRecord, DescriptorSize);
return 0;
}
TotalNewRecordCount = 0;
//
// Override previous record
//
CopyMem (&TempRecord, OldRecord, sizeof(EFI_MEMORY_DESCRIPTOR));
PhysicalStart = TempRecord.PhysicalStart;
PhysicalEnd = TempRecord.PhysicalStart + EfiPagesToSize(TempRecord.NumberOfPages);
ImageRecord = NULL;
do {
NewImageRecord = GetImageRecordByAddress (PhysicalStart, PhysicalEnd - PhysicalStart);
if (NewImageRecord == NULL) {
//
// No more image covered by this range, stop
//
if ((PhysicalEnd > PhysicalStart) && (ImageRecord != NULL)) {
//
// If this is still address in this record, need record.
//
NewRecord = PREVIOUS_MEMORY_DESCRIPTOR (NewRecord, DescriptorSize);
if (NewRecord->Type == EfiRuntimeServicesData) {
//
// Last record is DATA, just merge it.
//
NewRecord->NumberOfPages = EfiSizeToPages(PhysicalEnd - NewRecord->PhysicalStart);
} else {
//
// Last record is CODE, create a new DATA entry.
//
NewRecord = NEXT_MEMORY_DESCRIPTOR (NewRecord, DescriptorSize);
NewRecord->Type = EfiRuntimeServicesData;
NewRecord->PhysicalStart = TempRecord.PhysicalStart;
NewRecord->VirtualStart = 0;
NewRecord->NumberOfPages = TempRecord.NumberOfPages;
NewRecord->Attribute = TempRecord.Attribute | EFI_MEMORY_XP;
TotalNewRecordCount ++;
}
}
break;
}
ImageRecord = NewImageRecord;
//
// Set new record
//
NewRecordCount = SetNewRecord (ImageRecord, NewRecord, &TempRecord, DescriptorSize);
TotalNewRecordCount += NewRecordCount;
NewRecord = (EFI_MEMORY_DESCRIPTOR *)((UINT8 *)NewRecord + NewRecordCount * DescriptorSize);
//
// Update PhysicalStart, in order to exclude the image buffer already splitted.
//
PhysicalStart = ImageRecord->ImageBase + ImageRecord->ImageSize;
TempRecord.PhysicalStart = PhysicalStart;
TempRecord.NumberOfPages = EfiSizeToPages (PhysicalEnd - PhysicalStart);
} while ((ImageRecord != NULL) && (PhysicalStart < PhysicalEnd));
return TotalNewRecordCount - 1;
}
/**
Split the original memory map, and add more entries to describe PE code section and data section.
This function will set EfiRuntimeServicesData to be EFI_MEMORY_XP.
This function will merge entries with same attributes finally.
NOTE: It assumes PE code/data section are page aligned.
NOTE: It assumes enough entry is prepared for new memory map.
Split table:
+---------------+
| Record X |
+---------------+
| Record RtCode |
+---------------+
| Record Y |
+---------------+
==>
+---------------+
| Record X |
+---------------+ ----
| Record RtData | |
+---------------+ |
| Record RtCode | |-> PE/COFF1
+---------------+ |
| Record RtData | |
+---------------+ ----
| Record RtData | |
+---------------+ |
| Record RtCode | |-> PE/COFF2
+---------------+ |
| Record RtData | |
+---------------+ ----
| Record Y |
+---------------+
@param[in, out] MemoryMapSize A pointer to the size, in bytes, of the
MemoryMap buffer. On input, this is the size of
old MemoryMap before split. The actual buffer
size of MemoryMap is MemoryMapSize +
(AdditionalRecordCount * DescriptorSize) calculated
below. On output, it is the size of new MemoryMap
after split.
@param[in, out] MemoryMap A pointer to the buffer in which firmware places
the current memory map.
@param[in] DescriptorSize Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
**/
STATIC
VOID
SplitTable (
IN OUT UINTN *MemoryMapSize,
IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,
IN UINTN DescriptorSize
)
{
INTN IndexOld;
INTN IndexNew;
UINTN MaxSplitRecordCount;
UINTN RealSplitRecordCount;
UINTN TotalSplitRecordCount;
UINTN AdditionalRecordCount;
AdditionalRecordCount = (2 * mImagePropertiesPrivateData.CodeSegmentCountMax + 1) * mImagePropertiesPrivateData.ImageRecordCount;
TotalSplitRecordCount = 0;
//
// Let old record point to end of valid MemoryMap buffer.
//
IndexOld = ((*MemoryMapSize) / DescriptorSize) - 1;
//
// Let new record point to end of full MemoryMap buffer.
//
IndexNew = ((*MemoryMapSize) / DescriptorSize) - 1 + AdditionalRecordCount;
for (; IndexOld >= 0; IndexOld--) {
MaxSplitRecordCount = GetMaxSplitRecordCount ((EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMap + IndexOld * DescriptorSize));
//
// Split this MemoryMap record
//
IndexNew -= MaxSplitRecordCount;
RealSplitRecordCount = SplitRecord (
(EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMap + IndexOld * DescriptorSize),
(EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMap + IndexNew * DescriptorSize),
MaxSplitRecordCount,
DescriptorSize
);
//
// Adjust IndexNew according to real split.
//
CopyMem (
((UINT8 *)MemoryMap + (IndexNew + MaxSplitRecordCount - RealSplitRecordCount) * DescriptorSize),
((UINT8 *)MemoryMap + IndexNew * DescriptorSize),
RealSplitRecordCount * DescriptorSize
);
IndexNew = IndexNew + MaxSplitRecordCount - RealSplitRecordCount;
TotalSplitRecordCount += RealSplitRecordCount;
IndexNew --;
}
//
// Move all records to the beginning.
//
CopyMem (
MemoryMap,
(UINT8 *)MemoryMap + (AdditionalRecordCount - TotalSplitRecordCount) * DescriptorSize,
(*MemoryMapSize) + TotalSplitRecordCount * DescriptorSize
);
*MemoryMapSize = (*MemoryMapSize) + DescriptorSize * TotalSplitRecordCount;
//
// Sort from low to high (Just in case)
//
SortMemoryMap (MemoryMap, *MemoryMapSize, DescriptorSize);
//
// Set RuntimeData to XP
//
EnforceMemoryMapAttribute (MemoryMap, *MemoryMapSize, DescriptorSize);
//
// Merge same type to save entry size
//
MergeMemoryMap (MemoryMap, MemoryMapSize, DescriptorSize);
return ;
}
/**
This function for GetMemoryMap() with memory attributes table.
It calls original GetMemoryMap() to get the original memory map information. Then
plus the additional memory map entries for PE Code/Data seperation.
@param[in, out] MemoryMapSize A pointer to the size, in bytes, of the
MemoryMap buffer. On input, this is the size of
the buffer allocated by the caller. On output,
it is the size of the buffer returned by the
firmware if the buffer was large enough, or the
size of the buffer needed to contain the map if
the buffer was too small.
@param[in, out] MemoryMap A pointer to the buffer in which firmware places
the current memory map.
@param[out] MapKey A pointer to the location in which firmware
returns the key for the current memory map.
@param[out] DescriptorSize A pointer to the location in which firmware
returns the size, in bytes, of an individual
EFI_MEMORY_DESCRIPTOR.
@param[out] DescriptorVersion A pointer to the location in which firmware
returns the version number associated with the
EFI_MEMORY_DESCRIPTOR.
@retval EFI_SUCCESS The memory map was returned in the MemoryMap
buffer.
@retval EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current
buffer size needed to hold the memory map is
returned in MemoryMapSize.
@retval EFI_INVALID_PARAMETER One of the parameters has an invalid value.
**/
STATIC
EFI_STATUS
EFIAPI
SmmCoreGetMemoryMapMemoryAttributesTable (
IN OUT UINTN *MemoryMapSize,
IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,
OUT UINTN *MapKey,
OUT UINTN *DescriptorSize,
OUT UINT32 *DescriptorVersion
)
{
EFI_STATUS Status;
UINTN OldMemoryMapSize;
UINTN AdditionalRecordCount;
//
// If PE code/data is not aligned, just return.
//
if ((mMemoryProtectionAttribute & EFI_MEMORY_ATTRIBUTES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA) == 0) {
return SmmCoreGetMemoryMap (MemoryMapSize, MemoryMap, MapKey, DescriptorSize, DescriptorVersion);
}
if (MemoryMapSize == NULL) {
return EFI_INVALID_PARAMETER;
}
AdditionalRecordCount = (2 * mImagePropertiesPrivateData.CodeSegmentCountMax + 1) * mImagePropertiesPrivateData.ImageRecordCount;
OldMemoryMapSize = *MemoryMapSize;
Status = SmmCoreGetMemoryMap (MemoryMapSize, MemoryMap, MapKey, DescriptorSize, DescriptorVersion);
if (Status == EFI_BUFFER_TOO_SMALL) {
*MemoryMapSize = *MemoryMapSize + (*DescriptorSize) * AdditionalRecordCount;
} else if (Status == EFI_SUCCESS) {
if (OldMemoryMapSize - *MemoryMapSize < (*DescriptorSize) * AdditionalRecordCount) {
*MemoryMapSize = *MemoryMapSize + (*DescriptorSize) * AdditionalRecordCount;
//
// Need update status to buffer too small
//
Status = EFI_BUFFER_TOO_SMALL;
} else {
//
// Split PE code/data
//
ASSERT(MemoryMap != NULL);
SplitTable (MemoryMapSize, MemoryMap, *DescriptorSize);
}
}
return Status;
}
//
// Below functions are for ImageRecord
//
/**
Set MemoryProtectionAttribute accroding to PE/COFF image section alignment.
@param[in] SectionAlignment PE/COFF section alignment
**/
STATIC
VOID
SetMemoryAttributesTableSectionAlignment (
IN UINT32 SectionAlignment
)
{
if (((SectionAlignment & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) != 0) &&
((mMemoryProtectionAttribute & EFI_MEMORY_ATTRIBUTES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA) != 0)) {
DEBUG ((DEBUG_VERBOSE, "SMM SetMemoryAttributesTableSectionAlignment - Clear\n"));
mMemoryProtectionAttribute &= ~((UINT64)EFI_MEMORY_ATTRIBUTES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
}
}
/**
Swap two code sections in image record.
@param[in] FirstImageRecordCodeSection first code section in image record
@param[in] SecondImageRecordCodeSection second code section in image record
**/
STATIC
VOID
SwapImageRecordCodeSection (
IN IMAGE_PROPERTIES_RECORD_CODE_SECTION *FirstImageRecordCodeSection,
IN IMAGE_PROPERTIES_RECORD_CODE_SECTION *SecondImageRecordCodeSection
)
{
IMAGE_PROPERTIES_RECORD_CODE_SECTION TempImageRecordCodeSection;
TempImageRecordCodeSection.CodeSegmentBase = FirstImageRecordCodeSection->CodeSegmentBase;
TempImageRecordCodeSection.CodeSegmentSize = FirstImageRecordCodeSection->CodeSegmentSize;
FirstImageRecordCodeSection->CodeSegmentBase = SecondImageRecordCodeSection->CodeSegmentBase;
FirstImageRecordCodeSection->CodeSegmentSize = SecondImageRecordCodeSection->CodeSegmentSize;
SecondImageRecordCodeSection->CodeSegmentBase = TempImageRecordCodeSection.CodeSegmentBase;
SecondImageRecordCodeSection->CodeSegmentSize = TempImageRecordCodeSection.CodeSegmentSize;
}
/**
Sort code section in image record, based upon CodeSegmentBase from low to high.
@param[in] ImageRecord image record to be sorted
**/
STATIC
VOID
SortImageRecordCodeSection (
IN IMAGE_PROPERTIES_RECORD *ImageRecord
)
{
IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection;
IMAGE_PROPERTIES_RECORD_CODE_SECTION *NextImageRecordCodeSection;
LIST_ENTRY *ImageRecordCodeSectionLink;
LIST_ENTRY *NextImageRecordCodeSectionLink;
LIST_ENTRY *ImageRecordCodeSectionEndLink;
LIST_ENTRY *ImageRecordCodeSectionList;
ImageRecordCodeSectionList = &ImageRecord->CodeSegmentList;
ImageRecordCodeSectionLink = ImageRecordCodeSectionList->ForwardLink;
NextImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink;
ImageRecordCodeSectionEndLink = ImageRecordCodeSectionList;
while (ImageRecordCodeSectionLink != ImageRecordCodeSectionEndLink) {
ImageRecordCodeSection = CR (
ImageRecordCodeSectionLink,
IMAGE_PROPERTIES_RECORD_CODE_SECTION,
Link,
IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE
);
while (NextImageRecordCodeSectionLink != ImageRecordCodeSectionEndLink) {
NextImageRecordCodeSection = CR (
NextImageRecordCodeSectionLink,
IMAGE_PROPERTIES_RECORD_CODE_SECTION,
Link,
IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE
);
if (ImageRecordCodeSection->CodeSegmentBase > NextImageRecordCodeSection->CodeSegmentBase) {
SwapImageRecordCodeSection (ImageRecordCodeSection, NextImageRecordCodeSection);
}
NextImageRecordCodeSectionLink = NextImageRecordCodeSectionLink->ForwardLink;
}
ImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink;
NextImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink;
}
}
/**
Check if code section in image record is valid.
@param[in] ImageRecord image record to be checked
@retval TRUE image record is valid
@retval FALSE image record is invalid
**/
STATIC
BOOLEAN
IsImageRecordCodeSectionValid (
IN IMAGE_PROPERTIES_RECORD *ImageRecord
)
{
IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection;
IMAGE_PROPERTIES_RECORD_CODE_SECTION *LastImageRecordCodeSection;
LIST_ENTRY *ImageRecordCodeSectionLink;
LIST_ENTRY *ImageRecordCodeSectionEndLink;
LIST_ENTRY *ImageRecordCodeSectionList;
DEBUG ((DEBUG_VERBOSE, "SMM ImageCode SegmentCount - 0x%x\n", ImageRecord->CodeSegmentCount));
ImageRecordCodeSectionList = &ImageRecord->CodeSegmentList;
ImageRecordCodeSectionLink = ImageRecordCodeSectionList->ForwardLink;
ImageRecordCodeSectionEndLink = ImageRecordCodeSectionList;
LastImageRecordCodeSection = NULL;
while (ImageRecordCodeSectionLink != ImageRecordCodeSectionEndLink) {
ImageRecordCodeSection = CR (
ImageRecordCodeSectionLink,
IMAGE_PROPERTIES_RECORD_CODE_SECTION,
Link,
IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE
);
if (ImageRecordCodeSection->CodeSegmentSize == 0) {
return FALSE;
}
if (ImageRecordCodeSection->CodeSegmentBase < ImageRecord->ImageBase) {
return FALSE;
}
if (ImageRecordCodeSection->CodeSegmentBase >= MAX_ADDRESS - ImageRecordCodeSection->CodeSegmentSize) {
return FALSE;
}
if ((ImageRecordCodeSection->CodeSegmentBase + ImageRecordCodeSection->CodeSegmentSize) > (ImageRecord->ImageBase + ImageRecord->ImageSize)) {
return FALSE;
}
if (LastImageRecordCodeSection != NULL) {
if ((LastImageRecordCodeSection->CodeSegmentBase + LastImageRecordCodeSection->CodeSegmentSize) > ImageRecordCodeSection->CodeSegmentBase) {
return FALSE;
}
}
LastImageRecordCodeSection = ImageRecordCodeSection;
ImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink;
}
return TRUE;
}
/**
Swap two image records.
@param[in] FirstImageRecord first image record.
@param[in] SecondImageRecord second image record.
**/
STATIC
VOID
SwapImageRecord (
IN IMAGE_PROPERTIES_RECORD *FirstImageRecord,
IN IMAGE_PROPERTIES_RECORD *SecondImageRecord
)
{
IMAGE_PROPERTIES_RECORD TempImageRecord;
TempImageRecord.ImageBase = FirstImageRecord->ImageBase;
TempImageRecord.ImageSize = FirstImageRecord->ImageSize;
TempImageRecord.CodeSegmentCount = FirstImageRecord->CodeSegmentCount;
FirstImageRecord->ImageBase = SecondImageRecord->ImageBase;
FirstImageRecord->ImageSize = SecondImageRecord->ImageSize;
FirstImageRecord->CodeSegmentCount = SecondImageRecord->CodeSegmentCount;
SecondImageRecord->ImageBase = TempImageRecord.ImageBase;
SecondImageRecord->ImageSize = TempImageRecord.ImageSize;
SecondImageRecord->CodeSegmentCount = TempImageRecord.CodeSegmentCount;
SwapListEntries (&FirstImageRecord->CodeSegmentList, &SecondImageRecord->CodeSegmentList);
}
/**
Sort image record based upon the ImageBase from low to high.
**/
STATIC
VOID
SortImageRecord (
VOID
)
{
IMAGE_PROPERTIES_RECORD *ImageRecord;
IMAGE_PROPERTIES_RECORD *NextImageRecord;
LIST_ENTRY *ImageRecordLink;
LIST_ENTRY *NextImageRecordLink;
LIST_ENTRY *ImageRecordEndLink;
LIST_ENTRY *ImageRecordList;
ImageRecordList = &mImagePropertiesPrivateData.ImageRecordList;
ImageRecordLink = ImageRecordList->ForwardLink;
NextImageRecordLink = ImageRecordLink->ForwardLink;
ImageRecordEndLink = ImageRecordList;
while (ImageRecordLink != ImageRecordEndLink) {
ImageRecord = CR (
ImageRecordLink,
IMAGE_PROPERTIES_RECORD,
Link,
IMAGE_PROPERTIES_RECORD_SIGNATURE
);
while (NextImageRecordLink != ImageRecordEndLink) {
NextImageRecord = CR (
NextImageRecordLink,
IMAGE_PROPERTIES_RECORD,
Link,
IMAGE_PROPERTIES_RECORD_SIGNATURE
);
if (ImageRecord->ImageBase > NextImageRecord->ImageBase) {
SwapImageRecord (ImageRecord, NextImageRecord);
}
NextImageRecordLink = NextImageRecordLink->ForwardLink;
}
ImageRecordLink = ImageRecordLink->ForwardLink;
NextImageRecordLink = ImageRecordLink->ForwardLink;
}
}
/**
Dump image record.
**/
STATIC
VOID
DumpImageRecord (
VOID
)
{
IMAGE_PROPERTIES_RECORD *ImageRecord;
LIST_ENTRY *ImageRecordLink;
LIST_ENTRY *ImageRecordList;
UINTN Index;
ImageRecordList = &mImagePropertiesPrivateData.ImageRecordList;
for (ImageRecordLink = ImageRecordList->ForwardLink, Index= 0;
ImageRecordLink != ImageRecordList;
ImageRecordLink = ImageRecordLink->ForwardLink, Index++) {
ImageRecord = CR (
ImageRecordLink,
IMAGE_PROPERTIES_RECORD,
Link,
IMAGE_PROPERTIES_RECORD_SIGNATURE
);
DEBUG ((DEBUG_VERBOSE, "SMM Image[%d]: 0x%016lx - 0x%016lx\n", Index, ImageRecord->ImageBase, ImageRecord->ImageSize));
}
}
/**
Insert image record.
@param[in] DriverEntry Driver information
**/
VOID
SmmInsertImageRecord (
IN EFI_SMM_DRIVER_ENTRY *DriverEntry
)
{
VOID *ImageAddress;
EFI_IMAGE_DOS_HEADER *DosHdr;
UINT32 PeCoffHeaderOffset;
UINT32 SectionAlignment;
EFI_IMAGE_SECTION_HEADER *Section;
EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr;
UINT8 *Name;
UINTN Index;
IMAGE_PROPERTIES_RECORD *ImageRecord;
CHAR8 *PdbPointer;
IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection;
UINT16 Magic;
DEBUG ((DEBUG_VERBOSE, "SMM InsertImageRecord - 0x%x\n", DriverEntry));
DEBUG ((DEBUG_VERBOSE, "SMM InsertImageRecord - 0x%016lx - 0x%08x\n", DriverEntry->ImageBuffer, DriverEntry->NumberOfPage));
ImageRecord = AllocatePool (sizeof(*ImageRecord));
if (ImageRecord == NULL) {
return ;
}
ImageRecord->Signature = IMAGE_PROPERTIES_RECORD_SIGNATURE;
DEBUG ((DEBUG_VERBOSE, "SMM ImageRecordCount - 0x%x\n", mImagePropertiesPrivateData.ImageRecordCount));
//
// Step 1: record whole region
//
ImageRecord->ImageBase = DriverEntry->ImageBuffer;
ImageRecord->ImageSize = EFI_PAGES_TO_SIZE(DriverEntry->NumberOfPage);
ImageAddress = (VOID *)(UINTN)DriverEntry->ImageBuffer;
PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageAddress);
if (PdbPointer != NULL) {
DEBUG ((DEBUG_VERBOSE, "SMM Image - %a\n", PdbPointer));
}
//
// Check PE/COFF image
//
DosHdr = (EFI_IMAGE_DOS_HEADER *) (UINTN) ImageAddress;
PeCoffHeaderOffset = 0;
if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
PeCoffHeaderOffset = DosHdr->e_lfanew;
}
Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)((UINT8 *) (UINTN) ImageAddress + PeCoffHeaderOffset);
if (Hdr.Pe32->Signature != EFI_IMAGE_NT_SIGNATURE) {
DEBUG ((DEBUG_VERBOSE, "SMM Hdr.Pe32->Signature invalid - 0x%x\n", Hdr.Pe32->Signature));
goto Finish;
}
//
// Get SectionAlignment
//
if (Hdr.Pe32->FileHeader.Machine == IMAGE_FILE_MACHINE_IA64 && Hdr.Pe32->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
//
// NOTE: Some versions of Linux ELILO for Itanium have an incorrect magic value
// in the PE/COFF Header. If the MachineType is Itanium(IA64) and the
// Magic value in the OptionalHeader is EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC
// then override the magic value to EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC
//
Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
} else {
//
// Get the magic value from the PE/COFF Optional Header
//
Magic = Hdr.Pe32->OptionalHeader.Magic;
}
if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
SectionAlignment = Hdr.Pe32->OptionalHeader.SectionAlignment;
} else {
SectionAlignment = Hdr.Pe32Plus->OptionalHeader.SectionAlignment;
}
SetMemoryAttributesTableSectionAlignment (SectionAlignment);
if ((SectionAlignment & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) != 0) {
DEBUG ((DEBUG_ERROR, "SMM !!!!!!!! InsertImageRecord - Section Alignment(0x%x) is not %dK !!!!!!!!\n",
SectionAlignment, EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT >> 10));
PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageAddress);
if (PdbPointer != NULL) {
DEBUG ((DEBUG_ERROR, "SMM !!!!!!!! Image - %a !!!!!!!!\n", PdbPointer));
}
goto Finish;
}
Section = (EFI_IMAGE_SECTION_HEADER *) (
(UINT8 *) (UINTN) ImageAddress +
PeCoffHeaderOffset +
sizeof(UINT32) +
sizeof(EFI_IMAGE_FILE_HEADER) +
Hdr.Pe32->FileHeader.SizeOfOptionalHeader
);
ImageRecord->CodeSegmentCount = 0;
InitializeListHead (&ImageRecord->CodeSegmentList);
for (Index = 0; Index < Hdr.Pe32->FileHeader.NumberOfSections; Index++) {
Name = Section[Index].Name;
DEBUG ((
DEBUG_VERBOSE,
"SMM Section - '%c%c%c%c%c%c%c%c'\n",
Name[0],
Name[1],
Name[2],
Name[3],
Name[4],
Name[5],
Name[6],
Name[7]
));
if ((Section[Index].Characteristics & EFI_IMAGE_SCN_CNT_CODE) != 0) {
DEBUG ((DEBUG_VERBOSE, "SMM VirtualSize - 0x%08x\n", Section[Index].Misc.VirtualSize));
DEBUG ((DEBUG_VERBOSE, "SMM VirtualAddress - 0x%08x\n", Section[Index].VirtualAddress));
DEBUG ((DEBUG_VERBOSE, "SMM SizeOfRawData - 0x%08x\n", Section[Index].SizeOfRawData));
DEBUG ((DEBUG_VERBOSE, "SMM PointerToRawData - 0x%08x\n", Section[Index].PointerToRawData));
DEBUG ((DEBUG_VERBOSE, "SMM PointerToRelocations - 0x%08x\n", Section[Index].PointerToRelocations));
DEBUG ((DEBUG_VERBOSE, "SMM PointerToLinenumbers - 0x%08x\n", Section[Index].PointerToLinenumbers));
DEBUG ((DEBUG_VERBOSE, "SMM NumberOfRelocations - 0x%08x\n", Section[Index].NumberOfRelocations));
DEBUG ((DEBUG_VERBOSE, "SMM NumberOfLinenumbers - 0x%08x\n", Section[Index].NumberOfLinenumbers));
DEBUG ((DEBUG_VERBOSE, "SMM Characteristics - 0x%08x\n", Section[Index].Characteristics));
//
// Step 2: record code section
//
ImageRecordCodeSection = AllocatePool (sizeof(*ImageRecordCodeSection));
if (ImageRecordCodeSection == NULL) {
return ;
}
ImageRecordCodeSection->Signature = IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE;
ImageRecordCodeSection->CodeSegmentBase = (UINTN)ImageAddress + Section[Index].VirtualAddress;
ImageRecordCodeSection->CodeSegmentSize = Section[Index].SizeOfRawData;
DEBUG ((DEBUG_VERBOSE, "SMM ImageCode: 0x%016lx - 0x%016lx\n", ImageRecordCodeSection->CodeSegmentBase, ImageRecordCodeSection->CodeSegmentSize));
InsertTailList (&ImageRecord->CodeSegmentList, &ImageRecordCodeSection->Link);
ImageRecord->CodeSegmentCount++;
}
}
if (ImageRecord->CodeSegmentCount == 0) {
SetMemoryAttributesTableSectionAlignment (1);
DEBUG ((DEBUG_ERROR, "SMM !!!!!!!! InsertImageRecord - CodeSegmentCount is 0 !!!!!!!!\n"));
PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageAddress);
if (PdbPointer != NULL) {
DEBUG ((DEBUG_ERROR, "SMM !!!!!!!! Image - %a !!!!!!!!\n", PdbPointer));
}
goto Finish;
}
//
// Final
//
SortImageRecordCodeSection (ImageRecord);
//
// Check overlap all section in ImageBase/Size
//
if (!IsImageRecordCodeSectionValid (ImageRecord)) {
DEBUG ((DEBUG_ERROR, "SMM IsImageRecordCodeSectionValid - FAIL\n"));
goto Finish;
}
InsertTailList (&mImagePropertiesPrivateData.ImageRecordList, &ImageRecord->Link);
mImagePropertiesPrivateData.ImageRecordCount++;
SortImageRecord ();
if (mImagePropertiesPrivateData.CodeSegmentCountMax < ImageRecord->CodeSegmentCount) {
mImagePropertiesPrivateData.CodeSegmentCountMax = ImageRecord->CodeSegmentCount;
}
Finish:
return ;
}
/**
Find image record accroding to image base and size.
@param[in] ImageBase Base of PE image
@param[in] ImageSize Size of PE image
@return image record
**/
STATIC
IMAGE_PROPERTIES_RECORD *
FindImageRecord (
IN EFI_PHYSICAL_ADDRESS ImageBase,
IN UINT64 ImageSize
)
{
IMAGE_PROPERTIES_RECORD *ImageRecord;
LIST_ENTRY *ImageRecordLink;
LIST_ENTRY *ImageRecordList;
ImageRecordList = &mImagePropertiesPrivateData.ImageRecordList;
for (ImageRecordLink = ImageRecordList->ForwardLink;
ImageRecordLink != ImageRecordList;
ImageRecordLink = ImageRecordLink->ForwardLink) {
ImageRecord = CR (
ImageRecordLink,
IMAGE_PROPERTIES_RECORD,
Link,
IMAGE_PROPERTIES_RECORD_SIGNATURE
);
if ((ImageBase == ImageRecord->ImageBase) &&
(ImageSize == ImageRecord->ImageSize)) {
return ImageRecord;
}
}
return NULL;
}
/**
Remove Image record.
@param[in] DriverEntry Driver information
**/
VOID
SmmRemoveImageRecord (
IN EFI_SMM_DRIVER_ENTRY *DriverEntry
)
{
IMAGE_PROPERTIES_RECORD *ImageRecord;
LIST_ENTRY *CodeSegmentListHead;
IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection;
DEBUG ((DEBUG_VERBOSE, "SMM RemoveImageRecord - 0x%x\n", DriverEntry));
DEBUG ((DEBUG_VERBOSE, "SMM RemoveImageRecord - 0x%016lx - 0x%016lx\n", DriverEntry->ImageBuffer, DriverEntry->NumberOfPage));
ImageRecord = FindImageRecord (DriverEntry->ImageBuffer, EFI_PAGES_TO_SIZE(DriverEntry->NumberOfPage));
if (ImageRecord == NULL) {
DEBUG ((DEBUG_ERROR, "SMM !!!!!!!! ImageRecord not found !!!!!!!!\n"));
return ;
}
CodeSegmentListHead = &ImageRecord->CodeSegmentList;
while (!IsListEmpty (CodeSegmentListHead)) {
ImageRecordCodeSection = CR (
CodeSegmentListHead->ForwardLink,
IMAGE_PROPERTIES_RECORD_CODE_SECTION,
Link,
IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE
);
RemoveEntryList (&ImageRecordCodeSection->Link);
FreePool (ImageRecordCodeSection);
}
RemoveEntryList (&ImageRecord->Link);
FreePool (ImageRecord);
mImagePropertiesPrivateData.ImageRecordCount--;
}
/**
Publish MemoryAttributesTable to SMM configuration table.
**/
VOID
PublishMemoryAttributesTable (
VOID
)
{
UINTN MemoryMapSize;
EFI_MEMORY_DESCRIPTOR *MemoryMap;
UINTN MapKey;
UINTN DescriptorSize;
UINT32 DescriptorVersion;
UINTN Index;
EFI_STATUS Status;
UINTN RuntimeEntryCount;
EDKII_PI_SMM_MEMORY_ATTRIBUTES_TABLE *MemoryAttributesTable;
EFI_MEMORY_DESCRIPTOR *MemoryAttributesEntry;
UINTN MemoryAttributesTableSize;
MemoryMapSize = 0;
MemoryMap = NULL;
Status = SmmCoreGetMemoryMapMemoryAttributesTable (
&MemoryMapSize,
MemoryMap,
&MapKey,
&DescriptorSize,
&DescriptorVersion
);
ASSERT (Status == EFI_BUFFER_TOO_SMALL);
do {
DEBUG ((DEBUG_INFO, "MemoryMapSize - 0x%x\n", MemoryMapSize));
MemoryMap = AllocatePool (MemoryMapSize);
ASSERT (MemoryMap != NULL);
DEBUG ((DEBUG_INFO, "MemoryMap - 0x%x\n", MemoryMap));
Status = SmmCoreGetMemoryMapMemoryAttributesTable (
&MemoryMapSize,
MemoryMap,
&MapKey,
&DescriptorSize,
&DescriptorVersion
);
if (EFI_ERROR (Status)) {
FreePool (MemoryMap);
}
} while (Status == EFI_BUFFER_TOO_SMALL);
//
// Allocate MemoryAttributesTable
//
RuntimeEntryCount = MemoryMapSize/DescriptorSize;
MemoryAttributesTableSize = sizeof(EDKII_PI_SMM_MEMORY_ATTRIBUTES_TABLE) + DescriptorSize * RuntimeEntryCount;
MemoryAttributesTable = AllocatePool (sizeof(EDKII_PI_SMM_MEMORY_ATTRIBUTES_TABLE) + DescriptorSize * RuntimeEntryCount);
ASSERT (MemoryAttributesTable != NULL);
MemoryAttributesTable->Version = EDKII_PI_SMM_MEMORY_ATTRIBUTES_TABLE_VERSION;
MemoryAttributesTable->NumberOfEntries = (UINT32)RuntimeEntryCount;
MemoryAttributesTable->DescriptorSize = (UINT32)DescriptorSize;
MemoryAttributesTable->Reserved = 0;
DEBUG ((DEBUG_INFO, "MemoryAttributesTable:\n"));
DEBUG ((DEBUG_INFO, " Version - 0x%08x\n", MemoryAttributesTable->Version));
DEBUG ((DEBUG_INFO, " NumberOfEntries - 0x%08x\n", MemoryAttributesTable->NumberOfEntries));
DEBUG ((DEBUG_INFO, " DescriptorSize - 0x%08x\n", MemoryAttributesTable->DescriptorSize));
MemoryAttributesEntry = (EFI_MEMORY_DESCRIPTOR *)(MemoryAttributesTable + 1);
for (Index = 0; Index < MemoryMapSize/DescriptorSize; Index++) {
CopyMem (MemoryAttributesEntry, MemoryMap, DescriptorSize);
DEBUG ((DEBUG_INFO, "Entry (0x%x)\n", MemoryAttributesEntry));
DEBUG ((DEBUG_INFO, " Type - 0x%x\n", MemoryAttributesEntry->Type));
DEBUG ((DEBUG_INFO, " PhysicalStart - 0x%016lx\n", MemoryAttributesEntry->PhysicalStart));
DEBUG ((DEBUG_INFO, " VirtualStart - 0x%016lx\n", MemoryAttributesEntry->VirtualStart));
DEBUG ((DEBUG_INFO, " NumberOfPages - 0x%016lx\n", MemoryAttributesEntry->NumberOfPages));
DEBUG ((DEBUG_INFO, " Attribute - 0x%016lx\n", MemoryAttributesEntry->Attribute));
MemoryAttributesEntry = NEXT_MEMORY_DESCRIPTOR(MemoryAttributesEntry, DescriptorSize);
MemoryMap = NEXT_MEMORY_DESCRIPTOR(MemoryMap, DescriptorSize);
}
Status = gSmst->SmmInstallConfigurationTable (gSmst, &gEdkiiPiSmmMemoryAttributesTableGuid, MemoryAttributesTable, MemoryAttributesTableSize);
ASSERT_EFI_ERROR (Status);
}
/**
This function returns if image is inside SMRAM.
@param[in] LoadedImage LoadedImage protocol instance for an image.
@retval TRUE the image is inside SMRAM.
@retval FALSE the image is outside SMRAM.
**/
BOOLEAN
IsImageInsideSmram (
IN EFI_LOADED_IMAGE_PROTOCOL *LoadedImage
)
{
UINTN Index;
for (Index = 0; Index < mFullSmramRangeCount; Index++) {
if ((mFullSmramRanges[Index].PhysicalStart <= (UINTN)LoadedImage->ImageBase)&&
(mFullSmramRanges[Index].PhysicalStart + mFullSmramRanges[Index].PhysicalSize >= (UINTN)LoadedImage->ImageBase + LoadedImage->ImageSize)) {
return TRUE;
}
}
return FALSE;
}
/**
This function installs all SMM image record information.
**/
VOID
SmmInstallImageRecord (
VOID
)
{
EFI_STATUS Status;
UINTN NoHandles;
EFI_HANDLE *HandleBuffer;
EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;
UINTN Index;
EFI_SMM_DRIVER_ENTRY DriverEntry;
Status = SmmLocateHandleBuffer (
ByProtocol,
&gEfiLoadedImageProtocolGuid,
NULL,
&NoHandles,
&HandleBuffer
);
if (EFI_ERROR (Status)) {
return ;
}
for (Index = 0; Index < NoHandles; Index++) {
Status = gSmst->SmmHandleProtocol (
HandleBuffer[Index],
&gEfiLoadedImageProtocolGuid,
(VOID **)&LoadedImage
);
if (EFI_ERROR (Status)) {
continue;
}
DEBUG ((DEBUG_VERBOSE, "LoadedImage - 0x%x 0x%x ", LoadedImage->ImageBase, LoadedImage->ImageSize));
{
VOID *PdbPointer;
PdbPointer = PeCoffLoaderGetPdbPointer (LoadedImage->ImageBase);
if (PdbPointer != NULL) {
DEBUG ((DEBUG_VERBOSE, "(%a) ", PdbPointer));
}
}
DEBUG ((DEBUG_VERBOSE, "\n"));
ZeroMem (&DriverEntry, sizeof(DriverEntry));
DriverEntry.ImageBuffer = (UINTN)LoadedImage->ImageBase;
DriverEntry.NumberOfPage = EFI_SIZE_TO_PAGES((UINTN)LoadedImage->ImageSize);
SmmInsertImageRecord (&DriverEntry);
}
FreePool (HandleBuffer);
}
/**
Install MemoryAttributesTable.
@param[in] Protocol Points to the protocol's unique identifier.
@param[in] Interface Points to the interface instance.
@param[in] Handle The handle on which the interface was installed.
@retval EFI_SUCCESS Notification runs successfully.
**/
EFI_STATUS
EFIAPI
SmmInstallMemoryAttributesTable (
IN CONST EFI_GUID *Protocol,
IN VOID *Interface,
IN EFI_HANDLE Handle
)
{
SmmInstallImageRecord ();
DEBUG ((DEBUG_INFO, "SMM MemoryProtectionAttribute - 0x%016lx\n", mMemoryProtectionAttribute));
if ((mMemoryProtectionAttribute & EFI_MEMORY_ATTRIBUTES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA) == 0) {
return EFI_SUCCESS;
}
DEBUG ((DEBUG_VERBOSE, "SMM Total Image Count - 0x%x\n", mImagePropertiesPrivateData.ImageRecordCount));
DEBUG ((DEBUG_VERBOSE, "SMM Dump ImageRecord:\n"));
DumpImageRecord ();
PublishMemoryAttributesTable ();
return EFI_SUCCESS;
}
/**
Initialize MemoryAttributesTable support.
**/
VOID
EFIAPI
SmmCoreInitializeMemoryAttributesTable (
VOID
)
{
EFI_STATUS Status;
VOID *Registration;
Status = gSmst->SmmRegisterProtocolNotify (
&gEfiSmmEndOfDxeProtocolGuid,
SmmInstallMemoryAttributesTable,
&Registration
);
ASSERT_EFI_ERROR (Status);
return ;
}