audk/CryptoPkg/Test/UnitTest/Library/BaseCryptLib/EcTests.c

291 lines
8.7 KiB
C
Raw Normal View History

/** @file
Application for Diffie-Hellman Primitives Validation.
Copyright (c) 2022, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "TestBaseCryptLib.h"
#define EC_CURVE_NUM_SUPPORTED 3
UINTN EcCurveList[EC_CURVE_NUM_SUPPORTED] = { CRYPTO_NID_SECP256R1, CRYPTO_NID_SECP384R1, CRYPTO_NID_SECP521R1 };
UINTN EcKeyHalfSize[EC_CURVE_NUM_SUPPORTED] = { 32, 48, 66 };
struct Generator {
UINT8 X[66];
UINT8 Y[66];
};
// Generator points of all ec curve
struct Generator EcCurveGenerator[EC_CURVE_NUM_SUPPORTED] =
{
// CRYPTO_NID_SECP256R1
{
{ 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, 0xE6, 0xE5,
0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0,
0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96 },
{ 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a,
0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5 }
},
// CRYPTO_NID_SECP384R1
{
{ 0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E,
0xF3, 0x20, 0xAD, 0x74, 0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98,
0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38, 0x55, 0x02, 0xF2, 0x5D,
0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7 },
{ 0x36, 0x17, 0xde, 0x4a, 0x96, 0x26, 0x2c, 0x6f, 0x5d, 0x9e, 0x98, 0xbf,
0x92, 0x92, 0xdc, 0x29, 0xf8, 0xf4, 0x1d, 0xbd, 0x28, 0x9a, 0x14, 0x7c,
0xe9, 0xda, 0x31, 0x13, 0xb5, 0xf0, 0xb8, 0xc0, 0x0a, 0x60, 0xb1, 0xce,
0x1d, 0x7e, 0x81, 0x9d, 0x7a, 0x43, 0x1d, 0x7c, 0x90, 0xea, 0x0e, 0x5f }
},
// CRYPTO_NID_SECP521R1
{
{ 0x00, 0xC6, 0x85, 0x8E, 0x06, 0xB7, 0x04, 0x04, 0xE9, 0xCD, 0x9E, 0x3E,
0xCB, 0x66, 0x23, 0x95, 0xB4, 0x42, 0x9C, 0x64, 0x81, 0x39, 0x05, 0x3F,
0xB5, 0x21, 0xF8, 0x28, 0xAF, 0x60, 0x6B, 0x4D, 0x3D, 0xBA, 0xA1, 0x4B,
0x5E, 0x77, 0xEF, 0xE7, 0x59, 0x28, 0xFE, 0x1D, 0xC1, 0x27, 0xA2, 0xFF,
0xA8, 0xDE, 0x33, 0x48, 0xB3, 0xC1, 0x85, 0x6A, 0x42, 0x9B, 0xF9, 0x7E,
0x7E, 0x31, 0xC2, 0xE5, 0xBD, 0x66 },
{ 0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, 0xc0, 0x04, 0x5c, 0x8a,
0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee,
0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe,
0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50 }
}
};
VOID *Ec1;
VOID *Ec2;
VOID *Group;
VOID *Point1;
VOID *Point2;
VOID *PointRes;
VOID *BnX;
VOID *BnY;
VOID *BnP;
VOID *BnOrder;
UNIT_TEST_STATUS
EFIAPI
TestVerifyEcPreReq (
UNIT_TEST_CONTEXT Context
)
{
Ec1 = NULL;
Ec2 = NULL;
Group = NULL;
Point1 = NULL;
Point2 = NULL;
PointRes = NULL;
BnX = NULL;
BnY = NULL;
BnP = BigNumInit ();
BnOrder = BigNumInit ();
if ((BnP == NULL) || (BnOrder == NULL)) {
return UNIT_TEST_ERROR_TEST_FAILED;
}
return UNIT_TEST_PASSED;
}
VOID
EFIAPI
TestVerifyEcCleanUp (
UNIT_TEST_CONTEXT Context
)
{
BigNumFree (BnX, TRUE);
BigNumFree (BnY, TRUE);
BigNumFree (BnP, TRUE);
BigNumFree (BnOrder, TRUE);
EcGroupFree (Group);
EcPointDeInit (Point1, TRUE);
EcPointDeInit (Point2, TRUE);
EcPointDeInit (PointRes, TRUE);
EcFree (Ec1);
EcFree (Ec2);
}
UNIT_TEST_STATUS
EFIAPI
TestVerifyEcBasic (
UNIT_TEST_CONTEXT Context
)
{
UINTN CurveCount;
BOOLEAN Status;
//
// Initialize BigNumbers
//
for (CurveCount = 0; CurveCount < EC_CURVE_NUM_SUPPORTED; CurveCount++) {
//
// Basic EC functions unit test
//
Group = EcGroupInit (EcCurveList[CurveCount]);
if (Group == NULL) {
return UNIT_TEST_ERROR_TEST_FAILED;
}
Point1 = EcPointInit (Group);
Point2 = EcPointInit (Group);
PointRes = EcPointInit (Group);
BnX = BigNumFromBin (EcCurveGenerator[CurveCount].X, EcKeyHalfSize[CurveCount]);
BnY = BigNumFromBin (EcCurveGenerator[CurveCount].Y, EcKeyHalfSize[CurveCount]);
if ((Point1 == NULL) || (Point2 == NULL) || (PointRes == NULL) || (BnX == NULL) || (BnY == NULL)) {
return UNIT_TEST_ERROR_TEST_FAILED;
}
Status = EcGroupGetCurve (Group, BnP, NULL, NULL, NULL);
UT_ASSERT_TRUE (Status);
Status = EcGroupGetOrder (Group, BnOrder);
UT_ASSERT_TRUE (Status);
// Point G should on curve
Status = EcPointSetAffineCoordinates (Group, Point1, BnX, BnY, NULL);
UT_ASSERT_TRUE (Status);
Status = EcPointSetAffineCoordinates (Group, Point2, BnX, BnY, NULL);
UT_ASSERT_TRUE (Status);
Status = EcPointEqual (Group, Point1, Point2, NULL);
UT_ASSERT_TRUE (Status);
Status = EcPointIsOnCurve (Group, Point1, NULL);
UT_ASSERT_TRUE (Status);
Status = EcPointIsAtInfinity (Group, Point1);
UT_ASSERT_FALSE (Status);
// Point 2G should on curve
Status = EcPointAdd (Group, PointRes, Point1, Point1, NULL);
UT_ASSERT_TRUE (Status);
Status = EcPointIsOnCurve (Group, PointRes, NULL);
UT_ASSERT_TRUE (Status);
// Point Order * G should at infinity
Status = EcPointMul (Group, PointRes, Point1, BnOrder, NULL);
UT_ASSERT_TRUE (Status);
Status = EcPointIsAtInfinity (Group, PointRes);
UT_ASSERT_TRUE (Status);
// -(-G) == G
Status = EcPointInvert (Group, Point2, NULL);
UT_ASSERT_TRUE (Status);
Status = EcPointEqual (Group, Point2, Point1, NULL);
UT_ASSERT_FALSE (Status);
Status = EcPointInvert (Group, Point2, NULL);
UT_ASSERT_TRUE (Status);
Status = EcPointEqual (Group, Point2, Point1, NULL);
UT_ASSERT_TRUE (Status);
// Compress point test
Status = EcPointSetCompressedCoordinates (Group, Point1, BnX, 0, NULL);
UT_ASSERT_TRUE (Status);
Status = EcPointSetCompressedCoordinates (Group, Point2, BnX, 1, NULL);
UT_ASSERT_TRUE (Status);
Status = EcPointEqual (Group, Point2, Point1, NULL);
UT_ASSERT_FALSE (Status);
Status = EcPointInvert (Group, Point2, NULL);
UT_ASSERT_TRUE (Status);
Status = EcPointEqual (Group, Point2, Point1, NULL);
UT_ASSERT_TRUE (Status);
}
return UNIT_TEST_PASSED;
}
UNIT_TEST_STATUS
EFIAPI
TestVerifyEcDh (
UNIT_TEST_CONTEXT Context
)
{
UINT8 Public1[66 * 2];
UINTN Public1Length;
UINT8 Public2[66 * 2];
UINTN Public2Length;
UINT8 Key1[66];
UINTN Key1Length;
UINT8 Key2[66];
UINTN Key2Length;
UINTN CurveCount;
BOOLEAN Status;
for (CurveCount = 0; CurveCount < EC_CURVE_NUM_SUPPORTED; CurveCount++) {
//
// Initial key length
//
Public1Length = sizeof (Public1);
Public2Length = sizeof (Public2);
Key1Length = sizeof (Key1);
Key2Length = sizeof (Key2);
//
// ECDH functions unit test
//
Ec1 = EcNewByNid (EcCurveList[CurveCount]);
if (Ec1 == NULL) {
return UNIT_TEST_ERROR_TEST_FAILED;
}
Ec2 = EcNewByNid (EcCurveList[CurveCount]);
if (Ec2 == NULL) {
return UNIT_TEST_ERROR_TEST_FAILED;
}
Status = EcGenerateKey (Ec1, Public1, &Public1Length);
UT_ASSERT_TRUE (Status);
UT_ASSERT_EQUAL (Public1Length, EcKeyHalfSize[CurveCount] * 2);
Status = EcGenerateKey (Ec2, Public2, &Public2Length);
UT_ASSERT_TRUE (Status);
UT_ASSERT_EQUAL (Public2Length, EcKeyHalfSize[CurveCount] * 2);
Status = EcDhComputeKey (Ec1, Public2, Public2Length, NULL, Key1, &Key1Length);
UT_ASSERT_TRUE (Status);
UT_ASSERT_EQUAL (Key1Length, EcKeyHalfSize[CurveCount]);
Status = EcDhComputeKey (Ec2, Public1, Public1Length, NULL, Key2, &Key2Length);
UT_ASSERT_TRUE (Status);
UT_ASSERT_EQUAL (Key2Length, EcKeyHalfSize[CurveCount]);
UT_ASSERT_EQUAL (Key1Length, Key2Length);
UT_ASSERT_MEM_EQUAL (Key1, Key2, Key1Length);
Status = EcGetPubKey (Ec1, Public2, &Public2Length);
UT_ASSERT_TRUE (Status);
UT_ASSERT_EQUAL (Public2Length, EcKeyHalfSize[CurveCount] * 2);
UT_ASSERT_EQUAL (Public1Length, Public2Length);
UT_ASSERT_MEM_EQUAL (Public1, Public2, Public1Length);
}
return UNIT_TEST_PASSED;
}
TEST_DESC mEcTest[] = {
//
// -----Description-----------------Class------------------Function----Pre----Post----Context
//
{ "TestVerifyEcBasic()", "CryptoPkg.BaseCryptLib.Ec", TestVerifyEcBasic, TestVerifyEcPreReq, TestVerifyEcCleanUp, NULL },
{ "TestVerifyEcDh()", "CryptoPkg.BaseCryptLib.Ec", TestVerifyEcDh, TestVerifyEcPreReq, TestVerifyEcCleanUp, NULL },
};
UINTN mEcTestNum = ARRAY_SIZE (mEcTest);