audk/PrmPkg/Samples/PrmSampleHardwareAccessModule/PrmSampleHardwareAccessModu...

336 lines
9.5 KiB
C
Raw Normal View History

/** @file
A sample PRM Module implementation. This PRM Module provides PRM handlers that perform various types
of hardware access. This is simply meant to demonstrate hardware access capabilities from a PRM handler.
Copyright (c) Microsoft Corporation
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <PrmModule.h>
#include <Library/BaseLib.h>
#include <Library/MtrrLib.h>
#include <Library/UefiLib.h>
#include <Register/Intel/ArchitecturalMsr.h>
#include <Register/Intel/Cpuid.h>
#include "Hpet.h"
//
// PRM Handler GUIDs
//
// {2120cd3c-848b-4d8f-abbb-4b74ce64ac89}
#define MSR_ACCESS_MICROCODE_SIGNATURE_PRM_HANDLER_GUID {0x2120cd3c, 0x848b, 0x4d8f, {0xab, 0xbb, 0x4b, 0x74, 0xce, 0x64, 0xac, 0x89}}
// {ea0935a7-506b-4159-bbbb-48deeecb6f58}
#define MSR_ACCESS_MTRR_DUMP_PRM_HANDLER_GUID {0xea0935a7, 0x506b, 0x4159, {0xbb, 0xbb, 0x48, 0xde, 0xee, 0xcb, 0x6f, 0x58}}
// {1bd1bda9-909a-4614-9699-25ec0c2783f7}
#define MMIO_ACCESS_HPET_PRM_HANDLER_GUID {0x1bd1bda9, 0x909a, 0x4614, {0x96, 0x99, 0x25, 0xec, 0x0c, 0x27, 0x83, 0xf7}}
//
// BEGIN: MtrrLib internal library globals and function prototypes here for testing
//
extern CONST CHAR8 *mMtrrMemoryCacheTypeShortName[];
/**
Initializes the valid bits mask and valid address mask for MTRRs.
This function initializes the valid bits mask and valid address mask for MTRRs.
@param[out] MtrrValidBitsMask The mask for the valid bit of the MTRR
@param[out] MtrrValidAddressMask The valid address mask for the MTRR
**/
VOID
MtrrLibInitializeMtrrMask (
OUT UINT64 *MtrrValidBitsMask,
OUT UINT64 *MtrrValidAddressMask
);
/**
Convert variable MTRRs to a RAW MTRR_MEMORY_RANGE array.
One MTRR_MEMORY_RANGE element is created for each MTRR setting.
The routine doesn't remove the overlap or combine the near-by region.
@param[in] VariableSettings The variable MTRR values to shadow
@param[in] VariableMtrrCount The number of variable MTRRs
@param[in] MtrrValidBitsMask The mask for the valid bit of the MTRR
@param[in] MtrrValidAddressMask The valid address mask for MTRR
@param[out] VariableMtrr The array to shadow variable MTRRs content
@return Number of MTRRs which has been used.
**/
UINT32
MtrrLibGetRawVariableRanges (
IN MTRR_VARIABLE_SETTINGS *VariableSettings,
IN UINTN VariableMtrrCount,
IN UINT64 MtrrValidBitsMask,
IN UINT64 MtrrValidAddressMask,
OUT MTRR_MEMORY_RANGE *VariableMtrr
);
/**
Apply the fixed MTRR settings to memory range array.
@param Fixed The fixed MTRR settings.
@param Ranges Return the memory range array holding memory type
settings for all memory address.
@param RangeCapacity The capacity of memory range array.
@param RangeCount Return the count of memory range.
@retval RETURN_SUCCESS The memory range array is returned successfully.
@retval RETURN_OUT_OF_RESOURCES The count of memory ranges exceeds capacity.
**/
RETURN_STATUS
MtrrLibApplyFixedMtrrs (
IN MTRR_FIXED_SETTINGS *Fixed,
IN OUT MTRR_MEMORY_RANGE *Ranges,
IN UINTN RangeCapacity,
IN OUT UINTN *RangeCount
);
/**
Apply the variable MTRR settings to memory range array.
@param VariableMtrr The variable MTRR array.
@param VariableMtrrCount The count of variable MTRRs.
@param Ranges Return the memory range array with new MTRR settings applied.
@param RangeCapacity The capacity of memory range array.
@param RangeCount Return the count of memory range.
@retval RETURN_SUCCESS The memory range array is returned successfully.
@retval RETURN_OUT_OF_RESOURCES The count of memory ranges exceeds capacity.
**/
RETURN_STATUS
MtrrLibApplyVariableMtrrs (
IN CONST MTRR_MEMORY_RANGE *VariableMtrr,
IN UINT32 VariableMtrrCount,
IN OUT MTRR_MEMORY_RANGE *Ranges,
IN UINTN RangeCapacity,
IN OUT UINTN *RangeCount
);
//
// END: MtrrLib internal library function prototypes here for testing
//
/**
Accesses MTRR values including architectural and variable MTRRs.
**/
VOID
EFIAPI
AccessAllMtrrs (
VOID
)
{
MTRR_SETTINGS LocalMtrrs;
MTRR_SETTINGS *Mtrrs;
UINTN RangeCount;
UINT64 MtrrValidBitsMask;
UINT64 MtrrValidAddressMask;
UINT32 VariableMtrrCount;
MTRR_MEMORY_RANGE Ranges[
MTRR_NUMBER_OF_FIXED_MTRR * sizeof (UINT64) + 2 * ARRAY_SIZE (Mtrrs->Variables.Mtrr) + 1
];
MTRR_MEMORY_RANGE RawVariableRanges[ARRAY_SIZE (Mtrrs->Variables.Mtrr)];
if (!IsMtrrSupported ()) {
return;
}
VariableMtrrCount = GetVariableMtrrCount ();
MtrrGetAllMtrrs (&LocalMtrrs);
Mtrrs = &LocalMtrrs;
MtrrLibInitializeMtrrMask (&MtrrValidBitsMask, &MtrrValidAddressMask);
Ranges[0].BaseAddress = 0;
Ranges[0].Length = MtrrValidBitsMask + 1;
Ranges[0].Type = MtrrGetDefaultMemoryType ();
RangeCount = 1;
MtrrLibGetRawVariableRanges (
&Mtrrs->Variables,
VariableMtrrCount,
MtrrValidBitsMask,
MtrrValidAddressMask,
RawVariableRanges
);
MtrrLibApplyVariableMtrrs (
RawVariableRanges,
VariableMtrrCount,
Ranges,
ARRAY_SIZE (Ranges),
&RangeCount
);
MtrrLibApplyFixedMtrrs (&Mtrrs->Fixed, Ranges, ARRAY_SIZE (Ranges), &RangeCount);
}
/**
Reads a HPET MMIO register.
Reads the 64-bit HPET MMIO register specified by Address.
This function must guarantee that all MMIO read and write
operations are serialized.
If Address is not aligned on a 64-bit boundary, zero will be returned.
@param Offset Specifies the offset of the HPET register to read.
@return The value read.
**/
UINT64
EFIAPI
HpetRead (
IN UINTN Offset
)
{
UINTN Address;
UINT64 Value;
Address = HPET_BASE_ADDRESS + Offset;
if ((Address & 7) == 0) {
return 0;
}
MemoryFence ();
Value = *(volatile UINT64 *)Address;
MemoryFence ();
return Value;
}
/**
Accesses HPET configuration information.
**/
VOID
EFIAPI
AccessHpetConfiguration (
VOID
)
{
HpetRead (HPET_GENERAL_CAPABILITIES_ID_OFFSET);
HpetRead (HPET_GENERAL_CONFIGURATION_OFFSET);
}
/**
Reads the microcode signature from architectural MSR 0x8B.
@retval MicrocodeSignature The microcode signature value.
**/
UINT32
GetMicrocodeSignature (
VOID
)
{
MSR_IA32_BIOS_SIGN_ID_REGISTER BiosSignIdMsr;
AsmWriteMsr64 (MSR_IA32_BIOS_SIGN_ID, 0);
AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, NULL);
BiosSignIdMsr.Uint64 = AsmReadMsr64 (MSR_IA32_BIOS_SIGN_ID);
return BiosSignIdMsr.Bits.MicrocodeUpdateSignature;
}
/**
A sample Platform Runtime Mechanism (PRM) handler.
This sample handler attempts to read the microcode update signature.
@param[in] ParameterBuffer A pointer to the PRM handler parameter buffer
@param[in] ContextBUffer A pointer to the PRM handler context buffer
@retval EFI_STATUS The PRM handler executed successfully.
@retval Others An error occurred in the PRM handler.
**/
PRM_HANDLER_EXPORT (MsrAccessMicrocodeSignaturePrmHandler) {
UINT32 MicrocodeSignature;
MicrocodeSignature = 0;
MicrocodeSignature = GetMicrocodeSignature ();
if (MicrocodeSignature == 0) {
return EFI_NOT_FOUND;
}
return EFI_SUCCESS;
}
/**
A sample Platform Runtime Mechanism (PRM) handler.
This sample handler attempts to read the current MTRR settings.
@param[in] ParameterBuffer A pointer to the PRM handler parameter buffer
@param[in] ContextBUffer A pointer to the PRM handler context buffer
@retval EFI_STATUS The PRM handler executed successfully.
@retval Others An error occurred in the PRM handler.
**/
PRM_HANDLER_EXPORT (MsrAccessMtrrDumpPrmHandler) {
AccessAllMtrrs ();
return EFI_SUCCESS;
}
/**
A sample Platform Runtime Mechanism (PRM) handler.
This sample handler attempts to read from a HPET MMIO resource.
@param[in] ParameterBuffer A pointer to the PRM handler parameter buffer
@param[in] ContextBUffer A pointer to the PRM handler context buffer
@retval EFI_STATUS The PRM handler executed successfully.
@retval Others An error occurred in the PRM handler.
**/
PRM_HANDLER_EXPORT (MmioAccessHpetPrmHandler) {
AccessHpetConfiguration ();
return EFI_SUCCESS;
}
//
// Register the PRM export information for this PRM Module
//
PRM_MODULE_EXPORT (
PRM_HANDLER_EXPORT_ENTRY (MSR_ACCESS_MICROCODE_SIGNATURE_PRM_HANDLER_GUID, MsrAccessMicrocodeSignaturePrmHandler),
PRM_HANDLER_EXPORT_ENTRY (MSR_ACCESS_MTRR_DUMP_PRM_HANDLER_GUID, MsrAccessMtrrDumpPrmHandler),
PRM_HANDLER_EXPORT_ENTRY (MMIO_ACCESS_HPET_PRM_HANDLER_GUID, MmioAccessHpetPrmHandler)
);
/**
Module entry point.
@param[in] ImageHandle The image handle.
@param[in] SystemTable A pointer to the system table.
@retval EFI_SUCCESS This function always returns success.
**/
EFI_STATUS
EFIAPI
PrmSampleHardwareAccessModuleInit (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
return EFI_SUCCESS;
}