audk/UefiPayloadPkg/UefiPayloadEntry/UefiPayloadEntry.c

612 lines
21 KiB
C
Raw Normal View History

/** @file
Copyright (c) 2014 - 2021, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "UefiPayloadEntry.h"
STATIC UINT32 mTopOfLowerUsableDram = 0;
/**
Callback function to build resource descriptor HOB
This function build a HOB based on the memory map entry info.
It creates only EFI_RESOURCE_MEMORY_MAPPED_IO and EFI_RESOURCE_MEMORY_RESERVED
resources.
@param MemoryMapEntry Memory map entry info got from bootloader.
@param Params A pointer to ACPI_BOARD_INFO.
@retval EFI_SUCCESS Successfully build a HOB.
@retval EFI_INVALID_PARAMETER Invalid parameter provided.
**/
EFI_STATUS
MemInfoCallbackMmio (
IN MEMROY_MAP_ENTRY *MemoryMapEntry,
IN VOID *Params
)
{
EFI_PHYSICAL_ADDRESS Base;
EFI_RESOURCE_TYPE Type;
UINT64 Size;
EFI_RESOURCE_ATTRIBUTE_TYPE Attribue;
ACPI_BOARD_INFO *AcpiBoardInfo;
AcpiBoardInfo = (ACPI_BOARD_INFO *)Params;
if (AcpiBoardInfo == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Skip types already handled in MemInfoCallback
//
if (MemoryMapEntry->Type == E820_RAM || MemoryMapEntry->Type == E820_ACPI) {
return EFI_SUCCESS;
}
if (MemoryMapEntry->Base == AcpiBoardInfo->PcieBaseAddress) {
//
// MMCONF is always MMIO
//
Type = EFI_RESOURCE_MEMORY_MAPPED_IO;
} else if (MemoryMapEntry->Base < mTopOfLowerUsableDram) {
//
// It's in DRAM and thus must be reserved
//
Type = EFI_RESOURCE_MEMORY_RESERVED;
} else if ((MemoryMapEntry->Base < 0x100000000ULL) && (MemoryMapEntry->Base >= mTopOfLowerUsableDram)) {
//
// It's not in DRAM, must be MMIO
//
Type = EFI_RESOURCE_MEMORY_MAPPED_IO;
} else {
Type = EFI_RESOURCE_MEMORY_RESERVED;
}
Base = MemoryMapEntry->Base;
Size = MemoryMapEntry->Size;
Attribue = EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_TESTED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE;
BuildResourceDescriptorHob (Type, Attribue, (EFI_PHYSICAL_ADDRESS)Base, Size);
DEBUG ((DEBUG_INFO , "buildhob: base = 0x%lx, size = 0x%lx, type = 0x%x\n", Base, Size, Type));
if (MemoryMapEntry->Type == E820_UNUSABLE ||
MemoryMapEntry->Type == E820_DISABLED) {
BuildMemoryAllocationHob (Base, Size, EfiUnusableMemory);
} else if (MemoryMapEntry->Type == E820_PMEM) {
BuildMemoryAllocationHob (Base, Size, EfiPersistentMemory);
}
return EFI_SUCCESS;
}
/**
Callback function to find TOLUD (Top of Lower Usable DRAM)
Estimate where TOLUD (Top of Lower Usable DRAM) resides. The exact position
would require platform specific code.
@param MemoryMapEntry Memory map entry info got from bootloader.
@param Params Not used for now.
@retval EFI_SUCCESS Successfully updated mTopOfLowerUsableDram.
**/
EFI_STATUS
FindToludCallback (
IN MEMROY_MAP_ENTRY *MemoryMapEntry,
IN VOID *Params
)
{
//
// This code assumes that the memory map on this x86 machine below 4GiB is continous
// until TOLUD. In addition it assumes that the bootloader provided memory tables have
// no "holes" and thus the first memory range not covered by e820 marks the end of
// usable DRAM. In addition it's assumed that every reserved memory region touching
// usable RAM is also covering DRAM, everything else that is marked reserved thus must be
// MMIO not detectable by bootloader/OS
//
//
// Skip memory types not RAM or reserved
//
if ((MemoryMapEntry->Type == E820_UNUSABLE) || (MemoryMapEntry->Type == E820_DISABLED) ||
(MemoryMapEntry->Type == E820_PMEM)) {
return EFI_SUCCESS;
}
//
// Skip resources above 4GiB
//
if ((MemoryMapEntry->Base + MemoryMapEntry->Size) > 0x100000000ULL) {
return EFI_SUCCESS;
}
if ((MemoryMapEntry->Type == E820_RAM) || (MemoryMapEntry->Type == E820_ACPI) ||
(MemoryMapEntry->Type == E820_NVS)) {
//
// It's usable DRAM. Update TOLUD.
//
if (mTopOfLowerUsableDram < (MemoryMapEntry->Base + MemoryMapEntry->Size)) {
mTopOfLowerUsableDram = (UINT32)(MemoryMapEntry->Base + MemoryMapEntry->Size);
}
} else {
//
// It might be 'reserved DRAM' or 'MMIO'.
//
// If it touches usable DRAM at Base assume it's DRAM as well,
// as it could be bootloader installed tables, TSEG, GTT, ...
//
if (mTopOfLowerUsableDram == MemoryMapEntry->Base) {
mTopOfLowerUsableDram = (UINT32)(MemoryMapEntry->Base + MemoryMapEntry->Size);
}
}
return EFI_SUCCESS;
}
/**
Callback function to build resource descriptor HOB
This function build a HOB based on the memory map entry info.
Only add EFI_RESOURCE_SYSTEM_MEMORY.
@param MemoryMapEntry Memory map entry info got from bootloader.
@param Params Not used for now.
@retval RETURN_SUCCESS Successfully build a HOB.
**/
EFI_STATUS
MemInfoCallback (
IN MEMROY_MAP_ENTRY *MemoryMapEntry,
IN VOID *Params
)
{
EFI_PHYSICAL_ADDRESS Base;
EFI_RESOURCE_TYPE Type;
UINT64 Size;
EFI_RESOURCE_ATTRIBUTE_TYPE Attribue;
//
// Skip everything not known to be usable DRAM.
// It will be added later.
//
if ((MemoryMapEntry->Type != E820_RAM) && (MemoryMapEntry->Type != E820_ACPI) &&
(MemoryMapEntry->Type != E820_NVS)) {
return RETURN_SUCCESS;
}
Type = EFI_RESOURCE_SYSTEM_MEMORY;
Base = MemoryMapEntry->Base;
Size = MemoryMapEntry->Size;
Attribue = EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_TESTED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE;
BuildResourceDescriptorHob (Type, Attribue, (EFI_PHYSICAL_ADDRESS)Base, Size);
DEBUG ((DEBUG_INFO , "buildhob: base = 0x%lx, size = 0x%lx, type = 0x%x\n", Base, Size, Type));
if (MemoryMapEntry->Type == E820_ACPI) {
BuildMemoryAllocationHob (Base, Size, EfiACPIReclaimMemory);
} else if (MemoryMapEntry->Type == E820_NVS) {
BuildMemoryAllocationHob (Base, Size, EfiACPIMemoryNVS);
}
return RETURN_SUCCESS;
}
/**
Find the board related info from ACPI table
@param AcpiTableBase ACPI table start address in memory
@param AcpiBoardInfo Pointer to the acpi board info strucutre
@retval RETURN_SUCCESS Successfully find out all the required information.
@retval RETURN_NOT_FOUND Failed to find the required info.
**/
RETURN_STATUS
ParseAcpiInfo (
IN UINT64 AcpiTableBase,
OUT ACPI_BOARD_INFO *AcpiBoardInfo
)
{
EFI_ACPI_3_0_ROOT_SYSTEM_DESCRIPTION_POINTER *Rsdp;
EFI_ACPI_DESCRIPTION_HEADER *Rsdt;
UINT32 *Entry32;
UINTN Entry32Num;
EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt;
EFI_ACPI_DESCRIPTION_HEADER *Xsdt;
UINT64 *Entry64;
UINTN Entry64Num;
UINTN Idx;
UINT32 *Signature;
EFI_ACPI_MEMORY_MAPPED_CONFIGURATION_BASE_ADDRESS_TABLE_HEADER *MmCfgHdr;
EFI_ACPI_MEMORY_MAPPED_ENHANCED_CONFIGURATION_SPACE_BASE_ADDRESS_ALLOCATION_STRUCTURE *MmCfgBase;
Rsdp = (EFI_ACPI_3_0_ROOT_SYSTEM_DESCRIPTION_POINTER *)(UINTN)AcpiTableBase;
DEBUG ((DEBUG_INFO, "Rsdp at 0x%p\n", Rsdp));
DEBUG ((DEBUG_INFO, "Rsdt at 0x%x, Xsdt at 0x%lx\n", Rsdp->RsdtAddress, Rsdp->XsdtAddress));
//
// Search Rsdt First
//
Fadt = NULL;
MmCfgHdr = NULL;
Rsdt = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN)(Rsdp->RsdtAddress);
if (Rsdt != NULL) {
Entry32 = (UINT32 *)(Rsdt + 1);
Entry32Num = (Rsdt->Length - sizeof(EFI_ACPI_DESCRIPTION_HEADER)) >> 2;
for (Idx = 0; Idx < Entry32Num; Idx++) {
Signature = (UINT32 *)(UINTN)Entry32[Idx];
if (*Signature == EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE) {
Fadt = (EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE *)Signature;
DEBUG ((DEBUG_INFO, "Found Fadt in Rsdt\n"));
}
if (*Signature == EFI_ACPI_5_0_PCI_EXPRESS_MEMORY_MAPPED_CONFIGURATION_SPACE_BASE_ADDRESS_DESCRIPTION_TABLE_SIGNATURE) {
MmCfgHdr = (EFI_ACPI_MEMORY_MAPPED_CONFIGURATION_BASE_ADDRESS_TABLE_HEADER *)Signature;
DEBUG ((DEBUG_INFO, "Found MM config address in Rsdt\n"));
}
if ((Fadt != NULL) && (MmCfgHdr != NULL)) {
goto Done;
}
}
}
//
// Search Xsdt Second
//
Xsdt = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN)(Rsdp->XsdtAddress);
if (Xsdt != NULL) {
Entry64 = (UINT64 *)(Xsdt + 1);
Entry64Num = (Xsdt->Length - sizeof(EFI_ACPI_DESCRIPTION_HEADER)) >> 3;
for (Idx = 0; Idx < Entry64Num; Idx++) {
Signature = (UINT32 *)(UINTN)Entry64[Idx];
if (*Signature == EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE) {
Fadt = (EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE *)Signature;
DEBUG ((DEBUG_INFO, "Found Fadt in Xsdt\n"));
}
if (*Signature == EFI_ACPI_5_0_PCI_EXPRESS_MEMORY_MAPPED_CONFIGURATION_SPACE_BASE_ADDRESS_DESCRIPTION_TABLE_SIGNATURE) {
MmCfgHdr = (EFI_ACPI_MEMORY_MAPPED_CONFIGURATION_BASE_ADDRESS_TABLE_HEADER *)Signature;
DEBUG ((DEBUG_INFO, "Found MM config address in Xsdt\n"));
}
if ((Fadt != NULL) && (MmCfgHdr != NULL)) {
goto Done;
}
}
}
if (Fadt == NULL) {
return RETURN_NOT_FOUND;
}
Done:
AcpiBoardInfo->PmCtrlRegBase = Fadt->Pm1aCntBlk;
AcpiBoardInfo->PmTimerRegBase = Fadt->PmTmrBlk;
AcpiBoardInfo->ResetRegAddress = Fadt->ResetReg.Address;
AcpiBoardInfo->ResetValue = Fadt->ResetValue;
AcpiBoardInfo->PmEvtBase = Fadt->Pm1aEvtBlk;
AcpiBoardInfo->PmGpeEnBase = Fadt->Gpe0Blk + Fadt->Gpe0BlkLen / 2;
if (MmCfgHdr != NULL) {
MmCfgBase = (EFI_ACPI_MEMORY_MAPPED_ENHANCED_CONFIGURATION_SPACE_BASE_ADDRESS_ALLOCATION_STRUCTURE *)((UINT8*) MmCfgHdr + sizeof (*MmCfgHdr));
AcpiBoardInfo->PcieBaseAddress = MmCfgBase->BaseAddress;
AcpiBoardInfo->PcieBaseSize = (MmCfgBase->EndBusNumber + 1 - MmCfgBase->StartBusNumber) * 4096 * 32 * 8;
} else {
AcpiBoardInfo->PcieBaseAddress = 0;
AcpiBoardInfo->PcieBaseSize = 0;
}
DEBUG ((DEBUG_INFO, "PmCtrl Reg 0x%lx\n", AcpiBoardInfo->PmCtrlRegBase));
DEBUG ((DEBUG_INFO, "PmTimer Reg 0x%lx\n", AcpiBoardInfo->PmTimerRegBase));
DEBUG ((DEBUG_INFO, "Reset Reg 0x%lx\n", AcpiBoardInfo->ResetRegAddress));
DEBUG ((DEBUG_INFO, "Reset Value 0x%x\n", AcpiBoardInfo->ResetValue));
DEBUG ((DEBUG_INFO, "PmEvt Reg 0x%lx\n", AcpiBoardInfo->PmEvtBase));
DEBUG ((DEBUG_INFO, "PmGpeEn Reg 0x%lx\n", AcpiBoardInfo->PmGpeEnBase));
DEBUG ((DEBUG_INFO, "PcieBaseAddr 0x%lx\n", AcpiBoardInfo->PcieBaseAddress));
DEBUG ((DEBUG_INFO, "PcieBaseSize 0x%lx\n", AcpiBoardInfo->PcieBaseSize));
//
// Verify values for proper operation
//
ASSERT(Fadt->Pm1aCntBlk != 0);
ASSERT(Fadt->PmTmrBlk != 0);
ASSERT(Fadt->ResetReg.Address != 0);
ASSERT(Fadt->Pm1aEvtBlk != 0);
ASSERT(Fadt->Gpe0Blk != 0);
DEBUG_CODE_BEGIN ();
BOOLEAN SciEnabled;
//
// Check the consistency of SCI enabling
//
//
// Get SCI_EN value
//
if (Fadt->Pm1CntLen == 4) {
SciEnabled = (IoRead32 (Fadt->Pm1aCntBlk) & BIT0)? TRUE : FALSE;
} else {
//
// if (Pm1CntLen == 2), use 16 bit IO read;
// if (Pm1CntLen != 2 && Pm1CntLen != 4), use 16 bit IO read as a fallback
//
SciEnabled = (IoRead16 (Fadt->Pm1aCntBlk) & BIT0)? TRUE : FALSE;
}
if (!(Fadt->Flags & EFI_ACPI_5_0_HW_REDUCED_ACPI) &&
(Fadt->SmiCmd == 0) &&
!SciEnabled) {
//
// The ACPI enabling status is inconsistent: SCI is not enabled but ACPI
// table does not provide a means to enable it through FADT->SmiCmd
//
DEBUG ((DEBUG_ERROR, "ERROR: The ACPI enabling status is inconsistent: SCI is not"
" enabled but the ACPI table does not provide a means to enable it through FADT->SmiCmd."
" This may cause issues in OS.\n"));
}
DEBUG_CODE_END ();
return RETURN_SUCCESS;
}
/**
It will build HOBs based on information from bootloaders.
@retval EFI_SUCCESS If it completed successfully.
@retval Others If it failed to build required HOBs.
**/
EFI_STATUS
BuildHobFromBl (
VOID
)
{
EFI_STATUS Status;
SYSTEM_TABLE_INFO SysTableInfo;
SYSTEM_TABLE_INFO *NewSysTableInfo;
ACPI_BOARD_INFO AcpiBoardInfo;
ACPI_BOARD_INFO *NewAcpiBoardInfo;
EFI_PEI_GRAPHICS_INFO_HOB GfxInfo;
EFI_PEI_GRAPHICS_INFO_HOB *NewGfxInfo;
EFI_PEI_GRAPHICS_DEVICE_INFO_HOB GfxDeviceInfo;
EFI_PEI_GRAPHICS_DEVICE_INFO_HOB *NewGfxDeviceInfo;
UNIVERSAL_PAYLOAD_SMBIOS_TABLE *SmBiosTableHob;
UNIVERSAL_PAYLOAD_ACPI_TABLE *AcpiTableHob;
//
// First find TOLUD
//
DEBUG ((DEBUG_INFO , "Guessing Top of Lower Usable DRAM:\n"));
Status = ParseMemoryInfo (FindToludCallback, NULL);
if (EFI_ERROR(Status)) {
return Status;
}
DEBUG ((DEBUG_INFO , "Assuming TOLUD = 0x%x\n", mTopOfLowerUsableDram));
//
// Parse memory info and build memory HOBs for Usable RAM
//
DEBUG ((DEBUG_INFO , "Building ResourceDescriptorHobs for usable memory:\n"));
Status = ParseMemoryInfo (MemInfoCallback, NULL);
if (EFI_ERROR(Status)) {
return Status;
}
//
// Create guid hob for frame buffer information
//
Status = ParseGfxInfo (&GfxInfo);
if (!EFI_ERROR (Status)) {
NewGfxInfo = BuildGuidHob (&gEfiGraphicsInfoHobGuid, sizeof (GfxInfo));
ASSERT (NewGfxInfo != NULL);
CopyMem (NewGfxInfo, &GfxInfo, sizeof (GfxInfo));
DEBUG ((DEBUG_INFO, "Created graphics info hob\n"));
}
Status = ParseGfxDeviceInfo (&GfxDeviceInfo);
if (!EFI_ERROR (Status)) {
NewGfxDeviceInfo = BuildGuidHob (&gEfiGraphicsDeviceInfoHobGuid, sizeof (GfxDeviceInfo));
ASSERT (NewGfxDeviceInfo != NULL);
CopyMem (NewGfxDeviceInfo, &GfxDeviceInfo, sizeof (GfxDeviceInfo));
DEBUG ((DEBUG_INFO, "Created graphics device info hob\n"));
}
//
// Create guid hob for system tables like acpi table and smbios table
//
Status = ParseSystemTable(&SysTableInfo);
ASSERT_EFI_ERROR (Status);
if (!EFI_ERROR (Status)) {
NewSysTableInfo = BuildGuidHob (&gUefiSystemTableInfoGuid, sizeof (SYSTEM_TABLE_INFO));
ASSERT (NewSysTableInfo != NULL);
CopyMem (NewSysTableInfo, &SysTableInfo, sizeof (SYSTEM_TABLE_INFO));
DEBUG ((DEBUG_INFO, "Detected Acpi Table at 0x%lx, length 0x%x\n", SysTableInfo.AcpiTableBase, SysTableInfo.AcpiTableSize));
DEBUG ((DEBUG_INFO, "Detected Smbios Table at 0x%lx, length 0x%x\n", SysTableInfo.SmbiosTableBase, SysTableInfo.SmbiosTableSize));
}
//
// Creat SmBios table Hob
//
SmBiosTableHob = BuildGuidHob (&gUniversalPayloadSmbiosTableGuid, sizeof (UNIVERSAL_PAYLOAD_SMBIOS_TABLE));
ASSERT (SmBiosTableHob != NULL);
SmBiosTableHob->Header.Revision = UNIVERSAL_PAYLOAD_SMBIOS_TABLE_REVISION;
SmBiosTableHob->Header.Length = sizeof (UNIVERSAL_PAYLOAD_SMBIOS_TABLE);
SmBiosTableHob->SmBiosEntryPoint = SysTableInfo.SmbiosTableBase;
DEBUG ((DEBUG_INFO, "Create smbios table gUniversalPayloadSmbiosTableGuid guid hob\n"));
//
// Creat ACPI table Hob
//
AcpiTableHob = BuildGuidHob (&gUniversalPayloadAcpiTableGuid, sizeof (UNIVERSAL_PAYLOAD_ACPI_TABLE));
ASSERT (AcpiTableHob != NULL);
AcpiTableHob->Header.Revision = UNIVERSAL_PAYLOAD_ACPI_TABLE_REVISION;
AcpiTableHob->Header.Length = sizeof (UNIVERSAL_PAYLOAD_ACPI_TABLE);
AcpiTableHob->Rsdp = SysTableInfo.AcpiTableBase;
DEBUG ((DEBUG_INFO, "Create smbios table gUniversalPayloadAcpiTableGuid guid hob\n"));
//
// Create guid hob for acpi board information
//
Status = ParseAcpiInfo (SysTableInfo.AcpiTableBase, &AcpiBoardInfo);
ASSERT_EFI_ERROR (Status);
if (!EFI_ERROR (Status)) {
NewAcpiBoardInfo = BuildGuidHob (&gUefiAcpiBoardInfoGuid, sizeof (ACPI_BOARD_INFO));
ASSERT (NewAcpiBoardInfo != NULL);
CopyMem (NewAcpiBoardInfo, &AcpiBoardInfo, sizeof (ACPI_BOARD_INFO));
DEBUG ((DEBUG_INFO, "Create acpi board info guid hob\n"));
}
//
// Parse memory info and build memory HOBs for reserved DRAM and MMIO
//
DEBUG ((DEBUG_INFO , "Building ResourceDescriptorHobs for reserved memory:\n"));
Status = ParseMemoryInfo (MemInfoCallbackMmio, &AcpiBoardInfo);
if (EFI_ERROR(Status)) {
return Status;
}
//
// Parse platform specific information.
//
Status = ParsePlatformInfo ();
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Error when parsing platform info, Status = %r\n", Status));
return Status;
}
return EFI_SUCCESS;
}
/**
This function will build some generic HOBs that doesn't depend on information from bootloaders.
**/
VOID
BuildGenericHob (
VOID
)
{
UINT32 RegEax;
UINT8 PhysicalAddressBits;
EFI_RESOURCE_ATTRIBUTE_TYPE ResourceAttribute;
// The UEFI payload FV
BuildMemoryAllocationHob (PcdGet32 (PcdPayloadFdMemBase), PcdGet32 (PcdPayloadFdMemSize), EfiBootServicesData);
//
// Build CPU memory space and IO space hob
//
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000008) {
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
PhysicalAddressBits = (UINT8) RegEax;
} else {
PhysicalAddressBits = 36;
}
BuildCpuHob (PhysicalAddressBits, 16);
//
// Report Local APIC range, cause sbl HOB to be NULL, comment now
//
ResourceAttribute = (
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_TESTED
);
BuildResourceDescriptorHob (EFI_RESOURCE_MEMORY_MAPPED_IO, ResourceAttribute, 0xFEC80000, SIZE_512KB);
BuildMemoryAllocationHob ( 0xFEC80000, SIZE_512KB, EfiMemoryMappedIO);
}
/**
Entry point to the C language phase of UEFI payload.
@retval It will not return if SUCCESS, and return error when passing bootloader parameter.
**/
EFI_STATUS
EFIAPI
PayloadEntry (
IN UINTN BootloaderParameter
)
{
EFI_STATUS Status;
PHYSICAL_ADDRESS DxeCoreEntryPoint;
UINTN MemBase;
UINTN HobMemBase;
UINTN HobMemTop;
EFI_PEI_HOB_POINTERS Hob;
// Call constructor for all libraries
ProcessLibraryConstructorList ();
DEBUG ((DEBUG_INFO, "GET_BOOTLOADER_PARAMETER() = 0x%lx\n", GET_BOOTLOADER_PARAMETER()));
DEBUG ((DEBUG_INFO, "sizeof(UINTN) = 0x%x\n", sizeof(UINTN)));
// Initialize floating point operating environment to be compliant with UEFI spec.
InitializeFloatingPointUnits ();
// HOB region is used for HOB and memory allocation for this module
MemBase = PcdGet32 (PcdPayloadFdMemBase);
HobMemBase = ALIGN_VALUE (MemBase + PcdGet32 (PcdPayloadFdMemSize), SIZE_1MB);
HobMemTop = HobMemBase + FixedPcdGet32 (PcdSystemMemoryUefiRegionSize);
HobConstructor ((VOID *)MemBase, (VOID *)HobMemTop, (VOID *)HobMemBase, (VOID *)HobMemTop);
// Build HOB based on information from Bootloader
Status = BuildHobFromBl ();
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "BuildHobFromBl Status = %r\n", Status));
return Status;
}
// Build other HOBs required by DXE
BuildGenericHob ();
// Load the DXE Core
Status = LoadDxeCore (&DxeCoreEntryPoint);
ASSERT_EFI_ERROR (Status);
DEBUG ((DEBUG_INFO, "DxeCoreEntryPoint = 0x%lx\n", DxeCoreEntryPoint));
//
// Mask off all legacy 8259 interrupt sources
//
IoWrite8 (LEGACY_8259_MASK_REGISTER_MASTER, 0xFF);
IoWrite8 (LEGACY_8259_MASK_REGISTER_SLAVE, 0xFF);
Hob.HandoffInformationTable = (EFI_HOB_HANDOFF_INFO_TABLE *) GetFirstHob(EFI_HOB_TYPE_HANDOFF);
HandOffToDxeCore (DxeCoreEntryPoint, Hob);
// Should not get here
CpuDeadLoop ();
return EFI_SUCCESS;
}