audk/OvmfPkg/SataControllerDxe/SataController.h

545 lines
23 KiB
C
Raw Normal View History

/** @file
Header file for Sata Controller driver.
Copyright (c) 2011, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef _SATA_CONTROLLER_H_
#define _SATA_CONTROLLER_H_
#include <Uefi.h>
#include <Protocol/ComponentName.h>
#include <Protocol/DriverBinding.h>
#include <Protocol/PciIo.h>
#include <Protocol/IdeControllerInit.h>
#include <Library/UefiDriverEntryPoint.h>
#include <Library/DebugLib.h>
#include <Library/UefiLib.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <IndustryStandard/Pci.h>
//
// Global Variables definitions
//
extern EFI_DRIVER_BINDING_PROTOCOL gSataControllerDriverBinding;
extern EFI_COMPONENT_NAME_PROTOCOL gSataControllerComponentName;
extern EFI_COMPONENT_NAME2_PROTOCOL gSataControllerComponentName2;
#define AHCI_BAR_INDEX 0x05
#define R_AHCI_CAP 0x0
#define B_AHCI_CAP_NPS (BIT4 | BIT3 | BIT2 | BIT1 | BIT0) // Number of Ports
#define B_AHCI_CAP_SPM BIT17 // Supports Port Multiplier
///
/// AHCI each channel can have up to 1 device
///
#define AHCI_MAX_DEVICES 0x01
///
/// AHCI each channel can have 15 devices in the presence of a multiplier
///
#define AHCI_MULTI_MAX_DEVICES 0x0F
///
/// IDE supports 2 channel max
///
#define IDE_MAX_CHANNEL 0x02
///
/// IDE supports 2 devices max
///
#define IDE_MAX_DEVICES 0x02
#define SATA_ENUMER_ALL FALSE
//
// Sata Controller driver private data structure
//
#define SATA_CONTROLLER_SIGNATURE SIGNATURE_32('S','A','T','A')
typedef struct _EFI_SATA_CONTROLLER_PRIVATE_DATA {
//
// Standard signature used to identify Sata Controller private data
//
UINT32 Signature;
//
// Protocol instance of IDE_CONTROLLER_INIT produced by this driver
//
EFI_IDE_CONTROLLER_INIT_PROTOCOL IdeInit;
//
// Copy of protocol pointers used by this driver
//
EFI_PCI_IO_PROTOCOL *PciIo;
OvmfPkg: SataControllerDxe: enable IO / mem access and DMA when binding When we bind the SATA controller in SataControllerStart(), we read the NP ("Number of Ports") bitfield from the CAP ("HBA Capabilities") register of the controller. (See the AHCI 1.3.1 spec.) This register is memory mapped. If we'd like to access it, we must at least enable memory space access for the device. In addition, Feng Tian recommended enabling Bus Master DMA in <http://thread.gmane.org/gmane.comp.bios.tianocore.devel/10545/focus=10659>. We also enable IO space access for completeness. Further, because we change the PCI attributes of the device with the above when binding it, we must also restore its original PCI attributes when unbinding it. See the Driver Writer's Guide for UEFI 2.3.1 v1.01, section 18.3 "PCI drivers" | 18.3.2 "Start() and Stop()". (OvmfPkg's copy of SataControllerDxe differs from the same in DuetPkg because Duet inherits a pre-configured SATA controller from the BIOS, as explained by Feng. Technically, DuetPkg's SataControllerDxe could also apply the technique seen in this patch.) Cc: Alexander Graf <agraf@suse.de> Cc: Reza Jelveh <reza.jelveh@tuhh.de> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Hannes Reinecke <hare@suse.de> Cc: Gabriel L. Somlo <somlo@cmu.edu> Cc: Feng Tian <feng.tian@intel.com> Suggested-by: Feng Tian <feng.tian@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Feng Tian <feng.tian@intel.com> Tested-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18528 6f19259b-4bc3-4df7-8a09-765794883524
2015-09-22 13:18:27 +02:00
//
// Original PCI attributes
//
UINT64 OriginalPciAttributes;
OvmfPkg: SataControllerDxe: enable IO / mem access and DMA when binding When we bind the SATA controller in SataControllerStart(), we read the NP ("Number of Ports") bitfield from the CAP ("HBA Capabilities") register of the controller. (See the AHCI 1.3.1 spec.) This register is memory mapped. If we'd like to access it, we must at least enable memory space access for the device. In addition, Feng Tian recommended enabling Bus Master DMA in <http://thread.gmane.org/gmane.comp.bios.tianocore.devel/10545/focus=10659>. We also enable IO space access for completeness. Further, because we change the PCI attributes of the device with the above when binding it, we must also restore its original PCI attributes when unbinding it. See the Driver Writer's Guide for UEFI 2.3.1 v1.01, section 18.3 "PCI drivers" | 18.3.2 "Start() and Stop()". (OvmfPkg's copy of SataControllerDxe differs from the same in DuetPkg because Duet inherits a pre-configured SATA controller from the BIOS, as explained by Feng. Technically, DuetPkg's SataControllerDxe could also apply the technique seen in this patch.) Cc: Alexander Graf <agraf@suse.de> Cc: Reza Jelveh <reza.jelveh@tuhh.de> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Hannes Reinecke <hare@suse.de> Cc: Gabriel L. Somlo <somlo@cmu.edu> Cc: Feng Tian <feng.tian@intel.com> Suggested-by: Feng Tian <feng.tian@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Feng Tian <feng.tian@intel.com> Tested-by: Gabriel Somlo <somlo@cmu.edu> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18528 6f19259b-4bc3-4df7-8a09-765794883524
2015-09-22 13:18:27 +02:00
//
// The number of devices that are supported by this channel
//
UINT8 DeviceCount;
//
// The highest disqulified mode for each attached device,
// From ATA/ATAPI spec, if a mode is not supported,
// the modes higher than it is also not supported
//
EFI_ATA_COLLECTIVE_MODE *DisqualifiedModes;
//
// A copy of EFI_IDENTIFY_DATA data for each attached SATA device and its flag
//
EFI_IDENTIFY_DATA *IdentifyData;
BOOLEAN *IdentifyValid;
} EFI_SATA_CONTROLLER_PRIVATE_DATA;
#define SATA_CONTROLLER_PRIVATE_DATA_FROM_THIS(a) CR(a, EFI_SATA_CONTROLLER_PRIVATE_DATA, IdeInit, SATA_CONTROLLER_SIGNATURE)
//
// Driver binding functions declaration
//
/**
Supported function of Driver Binding protocol for this driver.
Test to see if this driver supports ControllerHandle.
@param This Protocol instance pointer.
@param Controller Handle of device to test.
@param RemainingDevicePath A pointer to the device path. Should be ignored by
device driver.
@retval EFI_SUCCESS This driver supports this device.
@retval EFI_ALREADY_STARTED This driver is already running on this device.
@retval other This driver does not support this device.
**/
EFI_STATUS
EFIAPI
SataControllerSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
;
/**
This routine is called right after the .Supported() called and
Start this driver on ControllerHandle.
@param This Protocol instance pointer.
@param Controller Handle of device to bind driver to.
@param RemainingDevicePath A pointer to the device path. Should be ignored by
device driver.
@retval EFI_SUCCESS This driver is added to this device.
@retval EFI_ALREADY_STARTED This driver is already running on this device.
@retval other Some error occurs when binding this driver to this device.
**/
EFI_STATUS
EFIAPI
SataControllerStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
;
/**
Stop this driver on ControllerHandle.
@param This Protocol instance pointer.
@param Controller Handle of device to stop driver on.
@param NumberOfChildren Not used.
@param ChildHandleBuffer Not used.
@retval EFI_SUCCESS This driver is removed from this device.
@retval other Some error occurs when removing this driver from this device.
**/
EFI_STATUS
EFIAPI
SataControllerStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer
)
;
//
// IDE controller init functions declaration
//
/**
Returns the information about the specified IDE channel.
This function can be used to obtain information about a particular IDE channel.
The driver entity uses this information during the enumeration process.
If Enabled is set to FALSE, the driver entity will not scan the channel. Note
that it will not prevent an operating system driver from scanning the channel.
For most of today's controllers, MaxDevices will either be 1 or 2. For SATA
controllers, this value will always be 1. SATA configurations can contain SATA
port multipliers. SATA port multipliers behave like SATA bridges and can support
up to 16 devices on the other side. If a SATA port out of the IDE controller
is connected to a port multiplier, MaxDevices will be set to the number of SATA
devices that the port multiplier supports. Because today's port multipliers
support up to fifteen SATA devices, this number can be as large as fifteen. The IDE
bus driver is required to scan for the presence of port multipliers behind an SATA
controller and enumerate up to MaxDevices number of devices behind the port
multiplier.
In this context, the devices behind a port multiplier constitute a channel.
@param[in] This The pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
@param[in] Channel Zero-based channel number.
@param[out] Enabled TRUE if this channel is enabled. Disabled channels
are not scanned to see if any devices are present.
@param[out] MaxDevices The maximum number of IDE devices that the bus driver
can expect on this channel. For the ATA/ATAPI
specification, version 6, this number will either be
one or two. For Serial ATA (SATA) configurations with a
port multiplier, this number can be as large as fifteen.
@retval EFI_SUCCESS Information was returned without any errors.
@retval EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).
**/
EFI_STATUS
EFIAPI
IdeInitGetChannelInfo (
IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
IN UINT8 Channel,
OUT BOOLEAN *Enabled,
OUT UINT8 *MaxDevices
)
;
/**
The notifications from the driver entity that it is about to enter a certain
phase of the IDE channel enumeration process.
This function can be used to notify the IDE controller driver to perform
specific actions, including any chipset-specific initialization, so that the
chipset is ready to enter the next phase. Seven notification points are defined
at this time.
More synchronization points may be added as required in the future.
@param[in] This The pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
@param[in] Phase The phase during enumeration.
@param[in] Channel Zero-based channel number.
@retval EFI_SUCCESS The notification was accepted without any errors.
@retval EFI_UNSUPPORTED Phase is not supported.
@retval EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).
@retval EFI_NOT_READY This phase cannot be entered at this time; for
example, an attempt was made to enter a Phase
without having entered one or more previous
Phase.
**/
EFI_STATUS
EFIAPI
IdeInitNotifyPhase (
IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
IN EFI_IDE_CONTROLLER_ENUM_PHASE Phase,
IN UINT8 Channel
)
;
/**
Submits the device information to the IDE controller driver.
This function is used by the driver entity to pass detailed information about
a particular device to the IDE controller driver. The driver entity obtains
this information by issuing an ATA or ATAPI IDENTIFY_DEVICE command. IdentifyData
is the pointer to the response data buffer. The IdentifyData buffer is owned
by the driver entity, and the IDE controller driver must make a local copy
of the entire buffer or parts of the buffer as needed. The original IdentifyData
buffer pointer may not be valid when
- EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() or
- EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode() is called at a later point.
The IDE controller driver may consult various fields of EFI_IDENTIFY_DATA to
compute the optimum mode for the device. These fields are not limited to the
timing information. For example, an implementation of the IDE controller driver
may examine the vendor and type/mode field to match known bad drives.
The driver entity may submit drive information in any order, as long as it
submits information for all the devices belonging to the enumeration group
before EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() is called for any device
in that enumeration group. If a device is absent, EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()
should be called with IdentifyData set to NULL. The IDE controller driver may
not have any other mechanism to know whether a device is present or not. Therefore,
setting IdentifyData to NULL does not constitute an error condition.
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData() can be called only once for a
given (Channel, Device) pair.
@param[in] This A pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
@param[in] Channel Zero-based channel number.
@param[in] Device Zero-based device number on the Channel.
@param[in] IdentifyData The device's response to the ATA IDENTIFY_DEVICE command.
@retval EFI_SUCCESS The information was accepted without any errors.
@retval EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).
@retval EFI_INVALID_PARAMETER Device is invalid.
**/
EFI_STATUS
EFIAPI
IdeInitSubmitData (
IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
IN UINT8 Channel,
IN UINT8 Device,
IN EFI_IDENTIFY_DATA *IdentifyData
)
;
/**
Disqualifies specific modes for an IDE device.
This function allows the driver entity or other drivers (such as platform
drivers) to reject certain timing modes and request the IDE controller driver
to recalculate modes. This function allows the driver entity and the IDE
controller driver to negotiate the timings on a per-device basis. This function
is useful in the case of drives that lie about their capabilities. An example
is when the IDE device fails to accept the timing modes that are calculated
by the IDE controller driver based on the response to the Identify Drive command.
If the driver entity does not want to limit the ATA timing modes and leave that
decision to the IDE controller driver, it can either not call this function for
the given device or call this function and set the Valid flag to FALSE for all
modes that are listed in EFI_ATA_COLLECTIVE_MODE.
The driver entity may disqualify modes for a device in any order and any number
of times.
This function can be called multiple times to invalidate multiple modes of the
same type (e.g., Programmed Input/Output [PIO] modes 3 and 4). See the ATA/ATAPI
specification for more information on PIO modes.
For Serial ATA (SATA) controllers, this member function can be used to disqualify
a higher transfer rate mode on a given channel. For example, a platform driver
may inform the IDE controller driver to not use second-generation (Gen2) speeds
for a certain SATA drive.
@param[in] This The pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
@param[in] Channel The zero-based channel number.
@param[in] Device The zero-based device number on the Channel.
@param[in] BadModes The modes that the device does not support and that
should be disqualified.
@retval EFI_SUCCESS The modes were accepted without any errors.
@retval EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).
@retval EFI_INVALID_PARAMETER Device is invalid.
@retval EFI_INVALID_PARAMETER IdentifyData is NULL.
**/
EFI_STATUS
EFIAPI
IdeInitDisqualifyMode (
IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
IN UINT8 Channel,
IN UINT8 Device,
IN EFI_ATA_COLLECTIVE_MODE *BadModes
)
;
/**
Returns the information about the optimum modes for the specified IDE device.
This function is used by the driver entity to obtain the optimum ATA modes for
a specific device. The IDE controller driver takes into account the following
while calculating the mode:
- The IdentifyData inputs to EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()
- The BadModes inputs to EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode()
The driver entity is required to call EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()
for all the devices that belong to an enumeration group before calling
EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() for any device in the same group.
The IDE controller driver will use controller- and possibly platform-specific
algorithms to arrive at SupportedModes. The IDE controller may base its
decision on user preferences and other considerations as well. This function
may be called multiple times because the driver entity may renegotiate the mode
with the IDE controller driver using EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode().
The driver entity may collect timing information for various devices in any
order. The driver entity is responsible for making sure that all the dependencies
are satisfied. For example, the SupportedModes information for device A that
was previously returned may become stale after a call to
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode() for device B.
The buffer SupportedModes is allocated by the callee because the caller does
not necessarily know the size of the buffer. The type EFI_ATA_COLLECTIVE_MODE
is defined in a way that allows for future extensibility and can be of variable
length. This memory pool should be deallocated by the caller when it is no
longer necessary.
The IDE controller driver for a Serial ATA (SATA) controller can use this
member function to force a lower speed (first-generation [Gen1] speeds on a
second-generation [Gen2]-capable hardware). The IDE controller driver can
also allow the driver entity to stay with the speed that has been negotiated
by the physical layer.
@param[in] This The pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
@param[in] Channel A zero-based channel number.
@param[in] Device A zero-based device number on the Channel.
@param[out] SupportedModes The optimum modes for the device.
@retval EFI_SUCCESS SupportedModes was returned.
@retval EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).
@retval EFI_INVALID_PARAMETER Device is invalid.
@retval EFI_INVALID_PARAMETER SupportedModes is NULL.
@retval EFI_NOT_READY Modes cannot be calculated due to a lack of
data. This error may happen if
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()
and EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyData()
were not called for at least one drive in the
same enumeration group.
**/
EFI_STATUS
EFIAPI
IdeInitCalculateMode (
IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
IN UINT8 Channel,
IN UINT8 Device,
OUT EFI_ATA_COLLECTIVE_MODE **SupportedModes
)
;
/**
Commands the IDE controller driver to program the IDE controller hardware
so that the specified device can operate at the specified mode.
This function is used by the driver entity to instruct the IDE controller
driver to program the IDE controller hardware to the specified modes. This
function can be called only once for a particular device. For a Serial ATA
(SATA) Advanced Host Controller Interface (AHCI) controller, no controller-
specific programming may be required.
@param[in] This Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
@param[in] Channel Zero-based channel number.
@param[in] Device Zero-based device number on the Channel.
@param[in] Modes The modes to set.
@retval EFI_SUCCESS The command was accepted without any errors.
@retval EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).
@retval EFI_INVALID_PARAMETER Device is invalid.
@retval EFI_NOT_READY Modes cannot be set at this time due to lack of data.
@retval EFI_DEVICE_ERROR Modes cannot be set due to hardware failure.
The driver entity should not use this device.
**/
EFI_STATUS
EFIAPI
IdeInitSetTiming (
IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
IN UINT8 Channel,
IN UINT8 Device,
IN EFI_ATA_COLLECTIVE_MODE *Modes
)
;
//
// Forward reference declaration
//
/**
Retrieves a Unicode string that is the user readable name of the UEFI Driver.
@param This A pointer to the EFI_COMPONENT_NAME_PROTOCOL instance.
@param Language A pointer to a three character ISO 639-2 language identifier.
This is the language of the driver name that that the caller
is requesting, and it must match one of the languages specified
in SupportedLanguages. The number of languages supported by a
driver is up to the driver writer.
@param DriverName A pointer to the Unicode string to return. This Unicode string
is the name of the driver specified by This in the language
specified by Language.
@retval EFI_SUCCESS The Unicode string for the Driver specified by This
and the language specified by Language was returned
in DriverName.
@retval EFI_INVALID_PARAMETER Language is NULL.
@retval EFI_INVALID_PARAMETER DriverName is NULL.
@retval EFI_UNSUPPORTED The driver specified by This does not support the
language specified by Language.
**/
EFI_STATUS
EFIAPI
SataControllerComponentNameGetDriverName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN CHAR8 *Language,
OUT CHAR16 **DriverName
)
;
/**
Retrieves a Unicode string that is the user readable name of the controller
that is being managed by an UEFI Driver.
@param This A pointer to the EFI_COMPONENT_NAME_PROTOCOL instance.
@param ControllerHandle The handle of a controller that the driver specified by
This is managing. This handle specifies the controller
whose name is to be returned.
@param OPTIONAL ChildHandle The handle of the child controller to retrieve the name
of. This is an optional parameter that may be NULL. It
will be NULL for device drivers. It will also be NULL
for a bus drivers that wish to retrieve the name of the
bus controller. It will not be NULL for a bus driver
that wishes to retrieve the name of a child controller.
@param Language A pointer to a three character ISO 639-2 language
identifier. This is the language of the controller name
that that the caller is requesting, and it must match one
of the languages specified in SupportedLanguages. The
number of languages supported by a driver is up to the
driver writer.
@param ControllerName A pointer to the Unicode string to return. This Unicode
string is the name of the controller specified by
ControllerHandle and ChildHandle in the language
specified by Language from the point of view of the
driver specified by This.
@retval EFI_SUCCESS The Unicode string for the user readable name in the
language specified by Language for the driver
specified by This was returned in DriverName.
@retval EFI_INVALID_PARAMETER ControllerHandle is not a valid EFI_HANDLE.
@retval EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid
EFI_HANDLE.
@retval EFI_INVALID_PARAMETER Language is NULL.
@retval EFI_INVALID_PARAMETER ControllerName is NULL.
@retval EFI_UNSUPPORTED The driver specified by This is not currently
managing the controller specified by
ControllerHandle and ChildHandle.
@retval EFI_UNSUPPORTED The driver specified by This does not support the
language specified by Language.
**/
EFI_STATUS
EFIAPI
SataControllerComponentNameGetControllerName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
)
;
#endif