audk/MdeModulePkg/Core/PiSmmCore/PiSmmCore.c

840 lines
27 KiB
C
Raw Normal View History

/** @file
SMM Core Main Entry Point
Copyright (c) 2009 - 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available
under the terms and conditions of the BSD License which accompanies this
distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "PiSmmCore.h"
//
// Physical pointer to private structure shared between SMM IPL and the SMM Core
//
SMM_CORE_PRIVATE_DATA *gSmmCorePrivate;
//
// SMM Core global variable for SMM System Table. Only accessed as a physical structure in SMRAM.
//
EFI_SMM_SYSTEM_TABLE2 gSmmCoreSmst = {
{
SMM_SMST_SIGNATURE,
EFI_SMM_SYSTEM_TABLE2_REVISION,
sizeof (gSmmCoreSmst.Hdr)
},
NULL, // SmmFirmwareVendor
0, // SmmFirmwareRevision
SmmInstallConfigurationTable,
{
{
(EFI_SMM_CPU_IO2) SmmEfiNotAvailableYetArg5, // SmmMemRead
(EFI_SMM_CPU_IO2) SmmEfiNotAvailableYetArg5 // SmmMemWrite
},
{
(EFI_SMM_CPU_IO2) SmmEfiNotAvailableYetArg5, // SmmIoRead
(EFI_SMM_CPU_IO2) SmmEfiNotAvailableYetArg5 // SmmIoWrite
}
},
SmmAllocatePool,
SmmFreePool,
SmmAllocatePages,
SmmFreePages,
NULL, // SmmStartupThisAp
0, // CurrentlyExecutingCpu
0, // NumberOfCpus
NULL, // CpuSaveStateSize
NULL, // CpuSaveState
0, // NumberOfTableEntries
NULL, // SmmConfigurationTable
SmmInstallProtocolInterface,
SmmUninstallProtocolInterface,
SmmHandleProtocol,
SmmRegisterProtocolNotify,
SmmLocateHandle,
SmmLocateProtocol,
SmiManage,
SmiHandlerRegister,
SmiHandlerUnRegister
};
//
// Flag to determine if the platform has performed a legacy boot.
// If this flag is TRUE, then the runtime code and runtime data associated with the
// SMM IPL are converted to free memory, so the SMM Core must guarantee that is
// does not touch of the code/data associated with the SMM IPL if this flag is TRUE.
//
BOOLEAN mInLegacyBoot = FALSE;
//
// Flag to determine if it is during S3 resume.
// It will be set in S3 entry callback and cleared at EndOfS3Resume.
//
BOOLEAN mDuringS3Resume = FALSE;
//
// Table of SMI Handlers that are registered by the SMM Core when it is initialized
//
SMM_CORE_SMI_HANDLERS mSmmCoreSmiHandlers[] = {
{ SmmDriverDispatchHandler, &gEfiEventDxeDispatchGuid, NULL, TRUE },
{ SmmReadyToLockHandler, &gEfiDxeSmmReadyToLockProtocolGuid, NULL, TRUE },
{ SmmLegacyBootHandler, &gEfiEventLegacyBootGuid, NULL, FALSE },
{ SmmExitBootServicesHandler, &gEfiEventExitBootServicesGuid, NULL, FALSE },
{ SmmReadyToBootHandler, &gEfiEventReadyToBootGuid, NULL, FALSE },
{ SmmEndOfDxeHandler, &gEfiEndOfDxeEventGroupGuid, NULL, TRUE },
{ SmmEndOfS3ResumeHandler, &gEdkiiEndOfS3ResumeGuid, NULL, FALSE },
{ NULL, NULL, NULL, FALSE }
};
UINTN mFullSmramRangeCount;
EFI_SMRAM_DESCRIPTOR *mFullSmramRanges;
EFI_SMM_DRIVER_ENTRY *mSmmCoreDriverEntry;
EFI_LOADED_IMAGE_PROTOCOL *mSmmCoreLoadedImage;
/**
Place holder function until all the SMM System Table Service are available.
Note: This function is only used by SMRAM invocation. It is never used by DXE invocation.
@param Arg1 Undefined
@param Arg2 Undefined
@param Arg3 Undefined
@param Arg4 Undefined
@param Arg5 Undefined
@return EFI_NOT_AVAILABLE_YET
**/
EFI_STATUS
EFIAPI
SmmEfiNotAvailableYetArg5 (
UINTN Arg1,
UINTN Arg2,
UINTN Arg3,
UINTN Arg4,
UINTN Arg5
)
{
//
// This function should never be executed. If it does, then the architectural protocols
// have not been designed correctly.
//
return EFI_NOT_AVAILABLE_YET;
}
/**
Software SMI handler that is called when a Legacy Boot event is signalled. The SMM
Core uses this signal to know that a Legacy Boot has been performed and that
gSmmCorePrivate that is shared between the UEFI and SMM execution environments can
not be accessed from SMM anymore since that structure is considered free memory by
a legacy OS. Then the SMM Core also install SMM Legacy Boot protocol to notify SMM
driver that system enter legacy boot.
@param DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
@param Context Points to an optional handler context which was specified when the handler was registered.
@param CommBuffer A pointer to a collection of data in memory that will
be conveyed from a non-SMM environment into an SMM environment.
@param CommBufferSize The size of the CommBuffer.
@return Status Code
**/
EFI_STATUS
EFIAPI
SmmLegacyBootHandler (
IN EFI_HANDLE DispatchHandle,
IN CONST VOID *Context, OPTIONAL
IN OUT VOID *CommBuffer, OPTIONAL
IN OUT UINTN *CommBufferSize OPTIONAL
)
{
EFI_STATUS Status;
EFI_HANDLE SmmHandle;
UINTN Index;
//
// Install SMM Legacy Boot protocol.
//
SmmHandle = NULL;
Status = SmmInstallProtocolInterface (
&SmmHandle,
&gEdkiiSmmLegacyBootProtocolGuid,
EFI_NATIVE_INTERFACE,
NULL
);
mInLegacyBoot = TRUE;
SmiHandlerUnRegister (DispatchHandle);
//
// It is legacy boot, unregister ExitBootService SMI handler.
//
for (Index = 0; mSmmCoreSmiHandlers[Index].HandlerType != NULL; Index++) {
if (CompareGuid (mSmmCoreSmiHandlers[Index].HandlerType, &gEfiEventExitBootServicesGuid)) {
SmiHandlerUnRegister (mSmmCoreSmiHandlers[Index].DispatchHandle);
break;
}
}
return Status;
}
/**
Software SMI handler that is called when an Exit Boot Services event is signalled.
Then the SMM Core also install SMM Exit Boot Services protocol to notify SMM driver
that system enter exit boot services.
@param DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
@param Context Points to an optional handler context which was specified when the handler was registered.
@param CommBuffer A pointer to a collection of data in memory that will
be conveyed from a non-SMM environment into an SMM environment.
@param CommBufferSize The size of the CommBuffer.
@return Status Code
**/
EFI_STATUS
EFIAPI
SmmExitBootServicesHandler (
IN EFI_HANDLE DispatchHandle,
IN CONST VOID *Context, OPTIONAL
IN OUT VOID *CommBuffer, OPTIONAL
IN OUT UINTN *CommBufferSize OPTIONAL
)
{
EFI_STATUS Status;
EFI_HANDLE SmmHandle;
UINTN Index;
//
// Install SMM Exit Boot Services protocol.
//
SmmHandle = NULL;
Status = SmmInstallProtocolInterface (
&SmmHandle,
&gEdkiiSmmExitBootServicesProtocolGuid,
EFI_NATIVE_INTERFACE,
NULL
);
SmiHandlerUnRegister (DispatchHandle);
//
// It is UEFI boot, unregister LegacyBoot SMI handler.
//
for (Index = 0; mSmmCoreSmiHandlers[Index].HandlerType != NULL; Index++) {
if (CompareGuid (mSmmCoreSmiHandlers[Index].HandlerType, &gEfiEventLegacyBootGuid)) {
SmiHandlerUnRegister (mSmmCoreSmiHandlers[Index].DispatchHandle);
break;
}
}
return Status;
}
/**
Main entry point for an SMM handler dispatch or communicate-based callback.
@param[in] DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
@param[in] Context Points to an optional handler context which was specified when the
handler was registered.
@param[in,out] CommBuffer A pointer to a collection of data in memory that will
be conveyed from a non-SMM environment into an SMM environment.
@param[in,out] CommBufferSize The size of the CommBuffer.
@retval EFI_SUCCESS The interrupt was handled and quiesced. No other handlers
should still be called.
@retval EFI_WARN_INTERRUPT_SOURCE_QUIESCED The interrupt has been quiesced but other handlers should
still be called.
@retval EFI_WARN_INTERRUPT_SOURCE_PENDING The interrupt is still pending and other handlers should still
be called.
@retval EFI_INTERRUPT_PENDING The interrupt could not be quiesced.
**/
EFI_STATUS
EFIAPI
SmmS3EntryCallBack (
IN EFI_HANDLE DispatchHandle,
IN CONST VOID *Context OPTIONAL,
IN OUT VOID *CommBuffer OPTIONAL,
IN OUT UINTN *CommBufferSize OPTIONAL
)
{
mDuringS3Resume = TRUE;
return EFI_SUCCESS;
}
/**
Software SMI handler that is called when an Ready To Boot event is signalled.
Then the SMM Core also install SMM Ready To Boot protocol to notify SMM driver
that system enter ready to boot.
@param DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
@param Context Points to an optional handler context which was specified when the handler was registered.
@param CommBuffer A pointer to a collection of data in memory that will
be conveyed from a non-SMM environment into an SMM environment.
@param CommBufferSize The size of the CommBuffer.
@return Status Code
**/
EFI_STATUS
EFIAPI
SmmReadyToBootHandler (
IN EFI_HANDLE DispatchHandle,
IN CONST VOID *Context, OPTIONAL
IN OUT VOID *CommBuffer, OPTIONAL
IN OUT UINTN *CommBufferSize OPTIONAL
)
{
EFI_STATUS Status;
EFI_HANDLE SmmHandle;
EFI_SMM_SX_DISPATCH2_PROTOCOL *SxDispatch;
EFI_SMM_SX_REGISTER_CONTEXT EntryRegisterContext;
EFI_HANDLE S3EntryHandle;
//
// Install SMM Ready To Boot protocol.
//
SmmHandle = NULL;
Status = SmmInstallProtocolInterface (
&SmmHandle,
&gEdkiiSmmReadyToBootProtocolGuid,
EFI_NATIVE_INTERFACE,
NULL
);
SmiHandlerUnRegister (DispatchHandle);
//
// Locate SmmSxDispatch2 protocol.
//
Status = SmmLocateProtocol (
&gEfiSmmSxDispatch2ProtocolGuid,
NULL,
&SxDispatch
);
if (!EFI_ERROR (Status)) {
//
// Register a S3 entry callback function to
// determine if it will be during S3 resume.
//
EntryRegisterContext.Type = SxS3;
EntryRegisterContext.Phase = SxEntry;
Status = SxDispatch->Register (
SxDispatch,
SmmS3EntryCallBack,
&EntryRegisterContext,
&S3EntryHandle
);
ASSERT_EFI_ERROR (Status);
}
return EFI_SUCCESS;
}
/**
Software SMI handler that is called when the DxeSmmReadyToLock protocol is added
or if gEfiEventReadyToBootGuid is signalled. This function unregisters the
Software SMIs that are nor required after SMRAM is locked and installs the
SMM Ready To Lock Protocol so SMM Drivers are informed that SMRAM is about
to be locked. It also verifies the SMM CPU I/O 2 Protocol has been installed
and NULLs gBS and gST because they can not longer be used after SMRAM is locked.
@param DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
@param Context Points to an optional handler context which was specified when the handler was registered.
@param CommBuffer A pointer to a collection of data in memory that will
be conveyed from a non-SMM environment into an SMM environment.
@param CommBufferSize The size of the CommBuffer.
@return Status Code
**/
EFI_STATUS
EFIAPI
SmmReadyToLockHandler (
IN EFI_HANDLE DispatchHandle,
IN CONST VOID *Context, OPTIONAL
IN OUT VOID *CommBuffer, OPTIONAL
IN OUT UINTN *CommBufferSize OPTIONAL
)
{
EFI_STATUS Status;
UINTN Index;
EFI_HANDLE SmmHandle;
VOID *Interface;
//
// Unregister SMI Handlers that are no required after the SMM driver dispatch is stopped
//
for (Index = 0; mSmmCoreSmiHandlers[Index].HandlerType != NULL; Index++) {
if (mSmmCoreSmiHandlers[Index].UnRegister) {
SmiHandlerUnRegister (mSmmCoreSmiHandlers[Index].DispatchHandle);
}
}
//
// Install SMM Ready to lock protocol
//
SmmHandle = NULL;
Status = SmmInstallProtocolInterface (
&SmmHandle,
&gEfiSmmReadyToLockProtocolGuid,
EFI_NATIVE_INTERFACE,
NULL
);
//
// Make sure SMM CPU I/O 2 Procol has been installed into the handle database
//
Status = SmmLocateProtocol (&gEfiSmmCpuIo2ProtocolGuid, NULL, &Interface);
//
// Print a message on a debug build if the SMM CPU I/O 2 Protocol is not installed
//
DEBUG_CODE_BEGIN ();
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "\nSMM: SmmCpuIo Arch Protocol not present!!\n"));
}
DEBUG_CODE_END ();
//
// Assert if the CPU I/O 2 Protocol is not installed
//
ASSERT_EFI_ERROR (Status);
//
// Display any drivers that were not dispatched because dependency expression
// evaluated to false if this is a debug build
//
DEBUG_CODE_BEGIN ();
SmmDisplayDiscoveredNotDispatched ();
DEBUG_CODE_END ();
//
// Not allowed to use gST or gBS after lock
//
gST = NULL;
gBS = NULL;
SmramProfileReadyToLock ();
return Status;
}
/**
Software SMI handler that is called when the EndOfDxe event is signalled.
This function installs the SMM EndOfDxe Protocol so SMM Drivers are informed that
platform code will invoke 3rd part code.
@param DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
@param Context Points to an optional handler context which was specified when the handler was registered.
@param CommBuffer A pointer to a collection of data in memory that will
be conveyed from a non-SMM environment into an SMM environment.
@param CommBufferSize The size of the CommBuffer.
@return Status Code
**/
EFI_STATUS
EFIAPI
SmmEndOfDxeHandler (
IN EFI_HANDLE DispatchHandle,
IN CONST VOID *Context, OPTIONAL
IN OUT VOID *CommBuffer, OPTIONAL
IN OUT UINTN *CommBufferSize OPTIONAL
)
{
EFI_STATUS Status;
EFI_HANDLE SmmHandle;
DEBUG ((EFI_D_INFO, "SmmEndOfDxeHandler\n"));
//
// Install SMM EndOfDxe protocol
//
SmmHandle = NULL;
Status = SmmInstallProtocolInterface (
&SmmHandle,
&gEfiSmmEndOfDxeProtocolGuid,
EFI_NATIVE_INTERFACE,
NULL
);
return Status;
}
/**
Software SMI handler that is called when the EndOfS3Resume signal is triggered.
This function installs the SMM EndOfS3Resume Protocol so SMM Drivers are informed that
S3 resume has finished.
@param DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
@param Context Points to an optional handler context which was specified when the handler was registered.
@param CommBuffer A pointer to a collection of data in memory that will
be conveyed from a non-SMM environment into an SMM environment.
@param CommBufferSize The size of the CommBuffer.
@return Status Code
**/
EFI_STATUS
EFIAPI
SmmEndOfS3ResumeHandler (
IN EFI_HANDLE DispatchHandle,
IN CONST VOID *Context, OPTIONAL
IN OUT VOID *CommBuffer, OPTIONAL
IN OUT UINTN *CommBufferSize OPTIONAL
)
{
EFI_STATUS Status;
EFI_HANDLE SmmHandle;
DEBUG ((DEBUG_INFO, "SmmEndOfS3ResumeHandler\n"));
if (!mDuringS3Resume) {
DEBUG ((DEBUG_ERROR, "It is not during S3 resume\n"));
return EFI_SUCCESS;
}
//
// Install SMM EndOfS3Resume protocol
//
SmmHandle = NULL;
Status = SmmInstallProtocolInterface (
&SmmHandle,
&gEdkiiEndOfS3ResumeGuid,
EFI_NATIVE_INTERFACE,
NULL
);
ASSERT_EFI_ERROR (Status);
//
// Uninstall the protocol here because the comsumer just hook the
// installation event.
//
Status = SmmUninstallProtocolInterface (
SmmHandle,
&gEdkiiEndOfS3ResumeGuid,
NULL
);
ASSERT_EFI_ERROR (Status);
mDuringS3Resume = FALSE;
return Status;
}
/**
Determine if two buffers overlap in memory.
@param[in] Buff1 Pointer to first buffer
@param[in] Size1 Size of Buff1
@param[in] Buff2 Pointer to second buffer
@param[in] Size2 Size of Buff2
@retval TRUE Buffers overlap in memory.
@retval FALSE Buffer doesn't overlap.
**/
BOOLEAN
InternalIsBufferOverlapped (
IN UINT8 *Buff1,
IN UINTN Size1,
IN UINT8 *Buff2,
IN UINTN Size2
)
{
//
// If buff1's end is less than the start of buff2, then it's ok.
// Also, if buff1's start is beyond buff2's end, then it's ok.
//
if (((Buff1 + Size1) <= Buff2) || (Buff1 >= (Buff2 + Size2))) {
return FALSE;
}
return TRUE;
}
/**
The main entry point to SMM Foundation.
Note: This function is only used by SMRAM invocation. It is never used by DXE invocation.
@param SmmEntryContext Processor information and functionality
needed by SMM Foundation.
**/
VOID
EFIAPI
SmmEntryPoint (
IN CONST EFI_SMM_ENTRY_CONTEXT *SmmEntryContext
)
{
EFI_STATUS Status;
EFI_SMM_COMMUNICATE_HEADER *CommunicateHeader;
BOOLEAN InLegacyBoot;
BOOLEAN IsOverlapped;
VOID *CommunicationBuffer;
UINTN BufferSize;
PERF_START (NULL, "SMM", NULL, 0) ;
//
// Update SMST with contents of the SmmEntryContext structure
//
gSmmCoreSmst.SmmStartupThisAp = SmmEntryContext->SmmStartupThisAp;
gSmmCoreSmst.CurrentlyExecutingCpu = SmmEntryContext->CurrentlyExecutingCpu;
gSmmCoreSmst.NumberOfCpus = SmmEntryContext->NumberOfCpus;
gSmmCoreSmst.CpuSaveStateSize = SmmEntryContext->CpuSaveStateSize;
gSmmCoreSmst.CpuSaveState = SmmEntryContext->CpuSaveState;
//
// Call platform hook before Smm Dispatch
//
PlatformHookBeforeSmmDispatch ();
//
// Call memory management hook function
//
SmmEntryPointMemoryManagementHook ();
//
// If a legacy boot has occured, then make sure gSmmCorePrivate is not accessed
//
InLegacyBoot = mInLegacyBoot;
if (!InLegacyBoot) {
//
// Mark the InSmm flag as TRUE, it will be used by SmmBase2 protocol
//
gSmmCorePrivate->InSmm = TRUE;
//
// Check to see if this is a Synchronous SMI sent through the SMM Communication
// Protocol or an Asynchronous SMI
//
CommunicationBuffer = gSmmCorePrivate->CommunicationBuffer;
BufferSize = gSmmCorePrivate->BufferSize;
if (CommunicationBuffer != NULL) {
//
// Synchronous SMI for SMM Core or request from Communicate protocol
//
IsOverlapped = InternalIsBufferOverlapped (
(UINT8 *) CommunicationBuffer,
BufferSize,
(UINT8 *) gSmmCorePrivate,
sizeof (*gSmmCorePrivate)
);
if (!SmmIsBufferOutsideSmmValid ((UINTN)CommunicationBuffer, BufferSize) || IsOverlapped) {
//
// If CommunicationBuffer is not in valid address scope,
// or there is overlap between gSmmCorePrivate and CommunicationBuffer,
// return EFI_INVALID_PARAMETER
//
gSmmCorePrivate->CommunicationBuffer = NULL;
gSmmCorePrivate->ReturnStatus = EFI_ACCESS_DENIED;
} else {
CommunicateHeader = (EFI_SMM_COMMUNICATE_HEADER *)CommunicationBuffer;
BufferSize -= OFFSET_OF (EFI_SMM_COMMUNICATE_HEADER, Data);
Status = SmiManage (
&CommunicateHeader->HeaderGuid,
NULL,
CommunicateHeader->Data,
&BufferSize
);
//
// Update CommunicationBuffer, BufferSize and ReturnStatus
// Communicate service finished, reset the pointer to CommBuffer to NULL
//
gSmmCorePrivate->BufferSize = BufferSize + OFFSET_OF (EFI_SMM_COMMUNICATE_HEADER, Data);
gSmmCorePrivate->CommunicationBuffer = NULL;
gSmmCorePrivate->ReturnStatus = (Status == EFI_SUCCESS) ? EFI_SUCCESS : EFI_NOT_FOUND;
}
}
}
//
// Process Asynchronous SMI sources
//
SmiManage (NULL, NULL, NULL, NULL);
//
// Call platform hook after Smm Dispatch
//
PlatformHookAfterSmmDispatch ();
//
// If a legacy boot has occured, then make sure gSmmCorePrivate is not accessed
//
if (!InLegacyBoot) {
//
// Clear the InSmm flag as we are going to leave SMM
//
gSmmCorePrivate->InSmm = FALSE;
}
PERF_END (NULL, "SMM", NULL, 0) ;
}
/**
Install LoadedImage protocol for SMM Core.
**/
VOID
SmmCoreInstallLoadedImage (
VOID
)
{
EFI_STATUS Status;
EFI_HANDLE Handle;
//
// Allocate a Loaded Image Protocol in EfiBootServicesData
//
Status = gBS->AllocatePool (EfiBootServicesData, sizeof(EFI_LOADED_IMAGE_PROTOCOL), (VOID **)&mSmmCoreLoadedImage);
ASSERT_EFI_ERROR (Status);
ZeroMem (mSmmCoreLoadedImage, sizeof (EFI_LOADED_IMAGE_PROTOCOL));
//
// Fill in the remaining fields of the Loaded Image Protocol instance.
// Note: ImageBase is an SMRAM address that can not be accessed outside of SMRAM if SMRAM window is closed.
//
mSmmCoreLoadedImage->Revision = EFI_LOADED_IMAGE_PROTOCOL_REVISION;
mSmmCoreLoadedImage->ParentHandle = gSmmCorePrivate->SmmIplImageHandle;
mSmmCoreLoadedImage->SystemTable = gST;
mSmmCoreLoadedImage->ImageBase = (VOID *)(UINTN)gSmmCorePrivate->PiSmmCoreImageBase;
mSmmCoreLoadedImage->ImageSize = gSmmCorePrivate->PiSmmCoreImageSize;
mSmmCoreLoadedImage->ImageCodeType = EfiRuntimeServicesCode;
mSmmCoreLoadedImage->ImageDataType = EfiRuntimeServicesData;
//
// Create a new image handle in the UEFI handle database for the SMM Driver
//
Handle = NULL;
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gEfiLoadedImageProtocolGuid, mSmmCoreLoadedImage,
NULL
);
ASSERT_EFI_ERROR (Status);
//
// Allocate a Loaded Image Protocol in SMM
//
Status = SmmAllocatePool (EfiRuntimeServicesData, sizeof(EFI_SMM_DRIVER_ENTRY), (VOID **)&mSmmCoreDriverEntry);
ASSERT_EFI_ERROR(Status);
ZeroMem (mSmmCoreDriverEntry, sizeof(EFI_SMM_DRIVER_ENTRY));
//
// Fill in the remaining fields of the Loaded Image Protocol instance.
//
mSmmCoreDriverEntry->Signature = EFI_SMM_DRIVER_ENTRY_SIGNATURE;
mSmmCoreDriverEntry->SmmLoadedImage.Revision = EFI_LOADED_IMAGE_PROTOCOL_REVISION;
mSmmCoreDriverEntry->SmmLoadedImage.ParentHandle = gSmmCorePrivate->SmmIplImageHandle;
mSmmCoreDriverEntry->SmmLoadedImage.SystemTable = gST;
mSmmCoreDriverEntry->SmmLoadedImage.ImageBase = (VOID *)(UINTN)gSmmCorePrivate->PiSmmCoreImageBase;
mSmmCoreDriverEntry->SmmLoadedImage.ImageSize = gSmmCorePrivate->PiSmmCoreImageSize;
mSmmCoreDriverEntry->SmmLoadedImage.ImageCodeType = EfiRuntimeServicesCode;
mSmmCoreDriverEntry->SmmLoadedImage.ImageDataType = EfiRuntimeServicesData;
mSmmCoreDriverEntry->ImageEntryPoint = gSmmCorePrivate->PiSmmCoreEntryPoint;
mSmmCoreDriverEntry->ImageBuffer = gSmmCorePrivate->PiSmmCoreImageBase;
mSmmCoreDriverEntry->NumberOfPage = EFI_SIZE_TO_PAGES((UINTN)gSmmCorePrivate->PiSmmCoreImageSize);
//
// Create a new image handle in the SMM handle database for the SMM Driver
//
mSmmCoreDriverEntry->SmmImageHandle = NULL;
Status = SmmInstallProtocolInterface (
&mSmmCoreDriverEntry->SmmImageHandle,
&gEfiLoadedImageProtocolGuid,
EFI_NATIVE_INTERFACE,
&mSmmCoreDriverEntry->SmmLoadedImage
);
ASSERT_EFI_ERROR(Status);
return ;
}
/**
The Entry Point for SMM Core
Install DXE Protocols and reload SMM Core into SMRAM and register SMM Core
EntryPoint on the SMI vector.
Note: This function is called for both DXE invocation and SMRAM invocation.
@param ImageHandle The firmware allocated handle for the EFI image.
@param SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
@retval Other Some error occurred when executing this entry point.
**/
EFI_STATUS
EFIAPI
SmmMain (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
UINTN Index;
//
// Get SMM Core Private context passed in from SMM IPL in ImageHandle.
//
gSmmCorePrivate = (SMM_CORE_PRIVATE_DATA *)ImageHandle;
//
// Fill in SMRAM physical address for the SMM Services Table and the SMM Entry Point.
//
gSmmCorePrivate->Smst = &gSmmCoreSmst;
gSmmCorePrivate->SmmEntryPoint = SmmEntryPoint;
//
// No need to initialize memory service.
// It is done in constructor of PiSmmCoreMemoryAllocationLib(),
// so that the library linked with PiSmmCore can use AllocatePool() in constuctor.
//
SmramProfileInit ();
//
// Copy FullSmramRanges to SMRAM
//
MdeModulePkg PiSmmCore: Remove a hidden assumption of SMRAM reservation that assumes the SMRAM reserved range is only at the end of the SMRAM descriptor. // // This range has reserved area, calculate the left free size // gSmmCorePrivate->SmramRanges[Index].PhysicalSize = SmramResRegion->SmramReservedStart - gSmmCorePrivate->SmramRanges[Index].CpuStart; Imagine the following scenario where we just reserve the first page of the SMRAM range: SMRAM Descriptor: Start: 0x80000000 Size: 0x02000000 Reserved Range: Start: 0x80000000 Size: 0x00001000 In this case the adjustment to the SMRAM range size yields zero: ReservedStart - SMRAM Start is 0x80000000 - 0x80000000 = 0. So even though most of the range is still free the IPL code decides its unusable. The problem comes from the email thread: [edk2] PiSmmIpl SMRAM Reservation Logic. http://thread.gmane.org/gmane.comp.bios.tianocore.devel/15268 Also to follow the idea in the email thread, the patch is to 1. Keep only one copy of full SMRAM ranges in gSmmCorePrivate->SmramRanges, split record for SmmConfiguration->SmramReservedRegions and SMM Core that will be marked to be EFI_ALLOCATED in gSmmCorePrivate->SmramRanges. 2. Handle SmmConfiguration->SmramReservedRegions at beginning of, at end of, in the middle of, or cross multiple SmramRanges. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Star Zeng <star.zeng@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18031 6f19259b-4bc3-4df7-8a09-765794883524
2015-07-26 09:38:12 +02:00
mFullSmramRangeCount = gSmmCorePrivate->SmramRangeCount;
mFullSmramRanges = AllocatePool (mFullSmramRangeCount * sizeof (EFI_SMRAM_DESCRIPTOR));
ASSERT (mFullSmramRanges != NULL);
MdeModulePkg PiSmmCore: Remove a hidden assumption of SMRAM reservation that assumes the SMRAM reserved range is only at the end of the SMRAM descriptor. // // This range has reserved area, calculate the left free size // gSmmCorePrivate->SmramRanges[Index].PhysicalSize = SmramResRegion->SmramReservedStart - gSmmCorePrivate->SmramRanges[Index].CpuStart; Imagine the following scenario where we just reserve the first page of the SMRAM range: SMRAM Descriptor: Start: 0x80000000 Size: 0x02000000 Reserved Range: Start: 0x80000000 Size: 0x00001000 In this case the adjustment to the SMRAM range size yields zero: ReservedStart - SMRAM Start is 0x80000000 - 0x80000000 = 0. So even though most of the range is still free the IPL code decides its unusable. The problem comes from the email thread: [edk2] PiSmmIpl SMRAM Reservation Logic. http://thread.gmane.org/gmane.comp.bios.tianocore.devel/15268 Also to follow the idea in the email thread, the patch is to 1. Keep only one copy of full SMRAM ranges in gSmmCorePrivate->SmramRanges, split record for SmmConfiguration->SmramReservedRegions and SMM Core that will be marked to be EFI_ALLOCATED in gSmmCorePrivate->SmramRanges. 2. Handle SmmConfiguration->SmramReservedRegions at beginning of, at end of, in the middle of, or cross multiple SmramRanges. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Star Zeng <star.zeng@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18031 6f19259b-4bc3-4df7-8a09-765794883524
2015-07-26 09:38:12 +02:00
CopyMem (mFullSmramRanges, gSmmCorePrivate->SmramRanges, mFullSmramRangeCount * sizeof (EFI_SMRAM_DESCRIPTOR));
//
// Register all SMI Handlers required by the SMM Core
//
for (Index = 0; mSmmCoreSmiHandlers[Index].HandlerType != NULL; Index++) {
Status = SmiHandlerRegister (
mSmmCoreSmiHandlers[Index].Handler,
mSmmCoreSmiHandlers[Index].HandlerType,
&mSmmCoreSmiHandlers[Index].DispatchHandle
);
ASSERT_EFI_ERROR (Status);
}
RegisterSmramProfileHandler ();
SmramProfileInstallProtocol ();
SmmCoreInstallLoadedImage ();
SmmCoreInitializeMemoryAttributesTable ();
SmmCoreInitializeSmiHandlerProfile ();
return EFI_SUCCESS;
}