audk/UefiCpuPkg/Universal/Acpi/S3Resume2Pei/S3Resume.c

1162 lines
42 KiB
C
Raw Normal View History

/** @file
This module produces the EFI_PEI_S3_RESUME2_PPI.
This module works with StandAloneBootScriptExecutor to S3 resume to OS.
This module will execute the boot script saved during last boot and after that,
control is passed to OS waking up handler.
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions
of the BSD License which accompanies this distribution. The
full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <PiPei.h>
#include <Guid/AcpiS3Context.h>
#include <Guid/BootScriptExecutorVariable.h>
#include <Guid/ExtendedFirmwarePerformance.h>
#include <Guid/EndOfS3Resume.h>
#include <Guid/S3SmmInitDone.h>
#include <Ppi/ReadOnlyVariable2.h>
#include <Ppi/S3Resume2.h>
#include <Ppi/SmmAccess.h>
#include <Ppi/PostBootScriptTable.h>
#include <Ppi/EndOfPeiPhase.h>
#include <Ppi/SmmCommunication.h>
#include <Library/DebugLib.h>
#include <Library/BaseLib.h>
#include <Library/TimerLib.h>
#include <Library/PeimEntryPoint.h>
#include <Library/PeiServicesLib.h>
#include <Library/HobLib.h>
#include <Library/PerformanceLib.h>
#include <Library/PeiServicesTablePointerLib.h>
#include <Library/IoLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/DebugAgentLib.h>
#include <Library/LocalApicLib.h>
#include <Library/ReportStatusCodeLib.h>
#include <Library/PrintLib.h>
#include <Library/HobLib.h>
#include <Library/LockBoxLib.h>
#include <IndustryStandard/Acpi.h>
UefiCpuPkg: S3Resume2Pei: align return stacks explicitly S3RestoreConfig2() can optionally stack-switch to the SMM S3 Resume Entry Point and ask it to transfer to S3ResumeExecuteBootScript(). Similarly, S3ResumeExecuteBootScript() stack-switches explicitly to the boot script executor, and asks it to transfer to S3ResumeBootOs(). Currently the stack pointers specified for the SMM S3 Resume Entry Point and the boot script executor to use for returning are derived from addresses of the first local variables in S3RestoreConfig2() and S3ResumeExecuteBootScript(), respectively. Since (theoretically) the stack grows down as local variables are defined and functions are called, the idea is presumably to allow the respective callee to overwrite the caller's local variables. (The callees in question can never return normally, only by explicit stack switching.) Taking the address of "Status" is less portable than optimal however. Compilers are free to juggle local variables at build time as they please, including order and alignment on the stack. For example, when the code is built for 64-bit PEI with gcc-4.8.2, the address of "Status" trips up the alignment assertion in SwitchStack(). Let's align the address of "Status" down to CPU_STACK_ALIGNMENT explicitly. If a compiler ensures such alignment and places "Status" at the highest address automatically, then this change has no effect. Otherwise, we'll prepare ReturnStackPointer values that (a) are correctly aligned, (b) preserve the same amount or more (but never less) from the caller's local variables than before, which should be safe. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed by: Jiewen Yao <Jiewen.Yao@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14977 6f19259b-4bc3-4df7-8a09-765794883524
2013-12-13 04:22:33 +01:00
/**
This macro aligns the address of a variable with auto storage
duration down to CPU_STACK_ALIGNMENT.
Since the stack grows downward, the result preserves more of the
stack than the original address (or the same amount), not less.
**/
#define STACK_ALIGN_DOWN(Ptr) \
((UINTN)(Ptr) & ~(UINTN)(CPU_STACK_ALIGNMENT - 1))
#define PAGING_1G_ADDRESS_MASK_64 0x000FFFFFC0000000ull
#pragma pack(1)
typedef union {
struct {
UINT32 LimitLow : 16;
UINT32 BaseLow : 16;
UINT32 BaseMid : 8;
UINT32 Type : 4;
UINT32 System : 1;
UINT32 Dpl : 2;
UINT32 Present : 1;
UINT32 LimitHigh : 4;
UINT32 Software : 1;
UINT32 Reserved : 1;
UINT32 DefaultSize : 1;
UINT32 Granularity : 1;
UINT32 BaseHigh : 8;
} Bits;
UINT64 Uint64;
} IA32_GDT;
//
// Page-Map Level-4 Offset (PML4) and
// Page-Directory-Pointer Offset (PDPE) entries 4K & 2MB
//
typedef union {
struct {
UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User
UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Reserved:1; // Reserved
UINT64 MustBeZero:2; // Must Be Zero
UINT64 Available:3; // Available for use by system software
UINT64 PageTableBaseAddress:40; // Page Table Base Address
UINT64 AvabilableHigh:11; // Available for use by system software
UINT64 Nx:1; // No Execute bit
} Bits;
UINT64 Uint64;
} PAGE_MAP_AND_DIRECTORY_POINTER;
//
// Page Table Entry 2MB
//
typedef union {
struct {
UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User
UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Dirty:1; // 0 = Not Dirty, 1 = written by processor on access to page
UINT64 MustBe1:1; // Must be 1
UINT64 Global:1; // 0 = Not global page, 1 = global page TLB not cleared on CR3 write
UINT64 Available:3; // Available for use by system software
UINT64 PAT:1; //
UINT64 MustBeZero:8; // Must be zero;
UINT64 PageTableBaseAddress:31; // Page Table Base Address
UINT64 AvabilableHigh:11; // Available for use by system software
UINT64 Nx:1; // 0 = Execute Code, 1 = No Code Execution
} Bits;
UINT64 Uint64;
} PAGE_TABLE_ENTRY;
//
// Page Table Entry 1GB
//
typedef union {
struct {
UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User
UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Dirty:1; // 0 = Not Dirty, 1 = written by processor on access to page
UINT64 MustBe1:1; // Must be 1
UINT64 Global:1; // 0 = Not global page, 1 = global page TLB not cleared on CR3 write
UINT64 Available:3; // Available for use by system software
UINT64 PAT:1; //
UINT64 MustBeZero:17; // Must be zero;
UINT64 PageTableBaseAddress:22; // Page Table Base Address
UINT64 AvabilableHigh:11; // Available for use by system software
UINT64 Nx:1; // 0 = Execute Code, 1 = No Code Execution
} Bits;
UINT64 Uint64;
} PAGE_TABLE_1G_ENTRY;
//
// Define two type of smm communicate headers.
// One for 32 bits PEI + 64 bits DXE, the other for 32 bits PEI + 32 bits DXE case.
//
typedef struct {
EFI_GUID HeaderGuid;
UINT32 MessageLength;
UINT8 Data[1];
} SMM_COMMUNICATE_HEADER_32;
typedef struct {
EFI_GUID HeaderGuid;
UINT64 MessageLength;
UINT8 Data[1];
} SMM_COMMUNICATE_HEADER_64;
#pragma pack()
//
// Function prototypes
//
/**
a ASM function to transfer control to OS.
@param S3WakingVector The S3 waking up vector saved in ACPI Facs table
@param AcpiLowMemoryBase a buffer under 1M which could be used during the transfer
**/
typedef
VOID
(EFIAPI *ASM_TRANSFER_CONTROL) (
IN UINT32 S3WakingVector,
IN UINT32 AcpiLowMemoryBase
);
/**
Restores the platform to its preboot configuration for an S3 resume and
jumps to the OS waking vector.
This function will restore the platform to its pre-boot configuration that was
pre-stored in the boot script table and transfer control to OS waking vector.
Upon invocation, this function is responsible for locating the following
information before jumping to OS waking vector:
- ACPI tables
- boot script table
- any other information that it needs
The S3RestoreConfig() function then executes the pre-stored boot script table
and transitions the platform to the pre-boot state. The boot script is recorded
during regular boot using the EFI_S3_SAVE_STATE_PROTOCOL.Write() and
EFI_S3_SMM_SAVE_STATE_PROTOCOL.Write() functions. Finally, this function
transfers control to the OS waking vector. If the OS supports only a real-mode
waking vector, this function will switch from flat mode to real mode before
jumping to the waking vector. If all platform pre-boot configurations are
successfully restored and all other necessary information is ready, this
function will never return and instead will directly jump to the OS waking
vector. If this function returns, it indicates that the attempt to resume
from the ACPI S3 sleep state failed.
@param[in] This Pointer to this instance of the PEI_S3_RESUME_PPI
@retval EFI_ABORTED Execution of the S3 resume boot script table failed.
@retval EFI_NOT_FOUND Some necessary information that is used for the S3
resume boot path could not be located.
**/
EFI_STATUS
EFIAPI
S3RestoreConfig2 (
IN EFI_PEI_S3_RESUME2_PPI *This
);
/**
Set data segment selectors value including DS/ES/FS/GS/SS.
@param[in] SelectorValue Segment selector value to be set.
**/
VOID
EFIAPI
AsmSetDataSelectors (
IN UINT16 SelectorValue
);
//
// Globals
//
EFI_PEI_S3_RESUME2_PPI mS3ResumePpi = { S3RestoreConfig2 };
EFI_PEI_PPI_DESCRIPTOR mPpiList = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiPeiS3Resume2PpiGuid,
&mS3ResumePpi
};
EFI_PEI_PPI_DESCRIPTOR mPpiListPostScriptTable = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gPeiPostScriptTablePpiGuid,
0
};
EFI_PEI_PPI_DESCRIPTOR mPpiListEndOfPeiTable = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiEndOfPeiSignalPpiGuid,
0
};
EFI_PEI_PPI_DESCRIPTOR mPpiListS3SmmInitDoneTable = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEdkiiS3SmmInitDoneGuid,
0
};
//
// Global Descriptor Table (GDT)
//
GLOBAL_REMOVE_IF_UNREFERENCED IA32_GDT mGdtEntries[] = {
/* selector { Global Segment Descriptor } */
/* 0x00 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
/* 0x08 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
/* 0x10 */ {{0xFFFF, 0, 0, 0xB, 1, 0, 1, 0xF, 0, 0, 1, 1, 0}},
/* 0x18 */ {{0xFFFF, 0, 0, 0x3, 1, 0, 1, 0xF, 0, 0, 1, 1, 0}},
/* 0x20 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
/* 0x28 */ {{0xFFFF, 0, 0, 0xB, 1, 0, 1, 0xF, 0, 0, 0, 1, 0}},
/* 0x30 */ {{0xFFFF, 0, 0, 0x3, 1, 0, 1, 0xF, 0, 0, 0, 1, 0}},
/* 0x38 */ {{0xFFFF, 0, 0, 0xB, 1, 0, 1, 0xF, 0, 1, 0, 1, 0}},
/* 0x40 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
};
#define DATA_SEGEMENT_SELECTOR 0x18
//
// IA32 Gdt register
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST IA32_DESCRIPTOR mGdt = {
sizeof (mGdtEntries) - 1,
(UINTN) mGdtEntries
};
/**
The function will check if current waking vector is long mode.
@param AcpiS3Context a pointer to a structure of ACPI_S3_CONTEXT
@retval TRUE Current context need long mode waking vector.
@retval FALSE Current context need not long mode waking vector.
**/
BOOLEAN
IsLongModeWakingVector (
IN ACPI_S3_CONTEXT *AcpiS3Context
)
{
EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *Facs;
Facs = (EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *) ((UINTN) (AcpiS3Context->AcpiFacsTable));
if ((Facs == NULL) ||
(Facs->Signature != EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_SIGNATURE) ||
((Facs->FirmwareWakingVector == 0) && (Facs->XFirmwareWakingVector == 0)) ) {
// Something wrong with FACS
return FALSE;
}
if (Facs->XFirmwareWakingVector != 0) {
if ((Facs->Version == EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_VERSION) &&
((Facs->Flags & EFI_ACPI_4_0_64BIT_WAKE_SUPPORTED_F) != 0) &&
((Facs->Flags & EFI_ACPI_4_0_OSPM_64BIT_WAKE__F) != 0)) {
// Both BIOS and OS wants 64bit vector
if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
return TRUE;
}
}
}
return FALSE;
}
/**
Signal to SMM through communication buffer way.
@param[in] HandlerType SMI handler type to be signaled.
**/
VOID
SignalToSmmByCommunication (
IN EFI_GUID *HandlerType
)
{
EFI_STATUS Status;
EFI_PEI_SMM_COMMUNICATION_PPI *SmmCommunicationPpi;
UINTN CommSize;
SMM_COMMUNICATE_HEADER_32 Header32;
SMM_COMMUNICATE_HEADER_64 Header64;
VOID *CommBuffer;
DEBUG ((DEBUG_INFO, "Signal %g to SMM - Enter\n", HandlerType));
//
// This buffer consumed in DXE phase, so base on DXE mode to prepare communicate buffer.
// Detect whether DXE is 64 bits mode.
// if (sizeof(UINTN) == sizeof(UINT64), PEI already 64 bits, assume DXE also 64 bits.
// or (FeaturePcdGet (PcdDxeIplSwitchToLongMode)), DXE will switch to 64 bits.
//
if ((sizeof(UINTN) == sizeof(UINT64)) || (FeaturePcdGet (PcdDxeIplSwitchToLongMode))) {
CommBuffer = &Header64;
Header64.MessageLength = 0;
CommSize = OFFSET_OF (SMM_COMMUNICATE_HEADER_64, Data);
} else {
CommBuffer = &Header32;
Header32.MessageLength = 0;
CommSize = OFFSET_OF (SMM_COMMUNICATE_HEADER_32, Data);
}
CopyGuid (CommBuffer, HandlerType);
Status = PeiServicesLocatePpi (
&gEfiPeiSmmCommunicationPpiGuid,
0,
NULL,
(VOID **)&SmmCommunicationPpi
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Locate Smm Communicate Ppi failed (%r)!\n", Status));
return;
}
Status = SmmCommunicationPpi->Communicate (
SmmCommunicationPpi,
(VOID *)CommBuffer,
&CommSize
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "SmmCommunicationPpi->Communicate return failure (%r)!\n", Status));
}
DEBUG ((DEBUG_INFO, "Signal %g to SMM - Exit (%r)\n", HandlerType, Status));
return;
}
/**
Jump to OS waking vector.
The function will install boot script done PPI, report S3 resume status code, and then jump to OS waking vector.
@param AcpiS3Context a pointer to a structure of ACPI_S3_CONTEXT
@param PeiS3ResumeState a pointer to a structure of PEI_S3_RESUME_STATE
**/
VOID
EFIAPI
S3ResumeBootOs (
IN ACPI_S3_CONTEXT *AcpiS3Context,
IN PEI_S3_RESUME_STATE *PeiS3ResumeState
)
{
EFI_STATUS Status;
EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *Facs;
ASM_TRANSFER_CONTROL AsmTransferControl;
UINTN TempStackTop;
UINTN TempStack[0x10];
//
// Restore IDT
//
AsmWriteIdtr (&PeiS3ResumeState->Idtr);
if (PeiS3ResumeState->ReturnStatus != EFI_SUCCESS) {
//
// Report Status code that boot script execution is failed
//
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MINOR,
(EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_EC_S3_BOOT_SCRIPT_ERROR)
);
}
//
// NOTE: Because Debug Timer interrupt and system interrupts will be disabled
// in BootScriptExecuteDxe, the rest code in S3ResumeBootOs() cannot be halted
// by soft debugger.
//
PERF_END (NULL, "ScriptExec", NULL, 0);
//
// Install BootScriptDonePpi
//
PERF_START_EX (NULL, "BootScriptDonePpi", NULL, 0, PERF_INMODULE_START_ID);
Status = PeiServicesInstallPpi (&mPpiListPostScriptTable);
ASSERT_EFI_ERROR (Status);
PERF_END_EX (NULL, "BootScriptDonePpi", NULL, 0, PERF_INMODULE_END_ID);
//
// Get ACPI Table Address
//
Facs = (EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *) ((UINTN) (AcpiS3Context->AcpiFacsTable));
if ((Facs == NULL) ||
(Facs->Signature != EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_SIGNATURE) ||
((Facs->FirmwareWakingVector == 0) && (Facs->XFirmwareWakingVector == 0)) ) {
//
// Report Status code that no valid vector is found
//
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MAJOR,
(EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_EC_S3_OS_WAKE_ERROR)
);
CpuDeadLoop ();
return ;
}
//
// Install EndOfPeiPpi
//
PERF_START_EX (NULL, "EndOfPeiPpi", NULL, 0, PERF_INMODULE_START_ID);
Status = PeiServicesInstallPpi (&mPpiListEndOfPeiTable);
ASSERT_EFI_ERROR (Status);
PERF_END_EX (NULL, "EndOfPeiPpi", NULL, 0, PERF_INMODULE_END_ID);
PERF_START_EX (NULL, "EndOfS3Resume", NULL, 0, PERF_INMODULE_START_ID);
DEBUG ((DEBUG_INFO, "Signal EndOfS3Resume\n"));
//
// Signal EndOfS3Resume to SMM.
//
SignalToSmmByCommunication (&gEdkiiEndOfS3ResumeGuid);
PERF_END_EX (NULL, "EndOfS3Resume", NULL, 0, PERF_INMODULE_END_ID);
//
// report status code on S3 resume
//
REPORT_STATUS_CODE (EFI_PROGRESS_CODE, EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_PC_OS_WAKE);
AsmTransferControl = (ASM_TRANSFER_CONTROL)(UINTN)PeiS3ResumeState->AsmTransferControl;
if (Facs->XFirmwareWakingVector != 0) {
//
// Switch to native waking vector
//
TempStackTop = (UINTN)&TempStack + sizeof(TempStack);
DEBUG ((
DEBUG_INFO,
"%a() Stack Base: 0x%x, Stack Size: 0x%x\n",
__FUNCTION__,
TempStackTop,
sizeof (TempStack)
));
if ((Facs->Version == EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_VERSION) &&
((Facs->Flags & EFI_ACPI_4_0_64BIT_WAKE_SUPPORTED_F) != 0) &&
((Facs->Flags & EFI_ACPI_4_0_OSPM_64BIT_WAKE__F) != 0)) {
//
// X64 long mode waking vector
//
DEBUG ((DEBUG_INFO, "Transfer to 64bit OS waking vector - %x\r\n", (UINTN)Facs->XFirmwareWakingVector));
if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
AsmEnablePaging64 (
0x38,
Facs->XFirmwareWakingVector,
0,
0,
(UINT64)(UINTN)TempStackTop
);
} else {
//
// Report Status code that no valid waking vector is found
//
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MAJOR,
(EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_EC_S3_OS_WAKE_ERROR)
);
DEBUG (( EFI_D_ERROR, "Unsupported for 32bit DXE transfer to 64bit OS waking vector!\r\n"));
ASSERT (FALSE);
CpuDeadLoop ();
return ;
}
} else {
//
// IA32 protected mode waking vector (Page disabled)
//
DEBUG ((DEBUG_INFO, "Transfer to 32bit OS waking vector - %x\r\n", (UINTN)Facs->XFirmwareWakingVector));
SwitchStack (
(SWITCH_STACK_ENTRY_POINT) (UINTN) Facs->XFirmwareWakingVector,
NULL,
NULL,
(VOID *)(UINTN)TempStackTop
);
}
} else {
//
// 16bit Realmode waking vector
//
DEBUG ((DEBUG_INFO, "Transfer to 16bit OS waking vector - %x\r\n", (UINTN)Facs->FirmwareWakingVector));
AsmTransferControl (Facs->FirmwareWakingVector, 0x0);
}
//
// Report Status code the failure of S3Resume
//
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MAJOR,
(EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_EC_S3_OS_WAKE_ERROR)
);
//
// Never run to here
//
CpuDeadLoop();
}
/**
Restore S3 page table because we do not trust ACPINvs content.
If BootScriptExector driver will not run in 64-bit mode, this function will do nothing.
@param S3NvsPageTableAddress PageTableAddress in ACPINvs
@param Build4GPageTableOnly If BIOS just build 4G page table only
**/
VOID
RestoreS3PageTables (
IN UINTN S3NvsPageTableAddress,
IN BOOLEAN Build4GPageTableOnly
)
{
if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
UINT32 RegEax;
UINT32 RegEdx;
UINT8 PhysicalAddressBits;
EFI_PHYSICAL_ADDRESS PageAddress;
UINTN IndexOfPml4Entries;
UINTN IndexOfPdpEntries;
UINTN IndexOfPageDirectoryEntries;
UINT32 NumberOfPml4EntriesNeeded;
UINT32 NumberOfPdpEntriesNeeded;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel4Entry;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMap;
PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry;
PAGE_TABLE_ENTRY *PageDirectoryEntry;
VOID *Hob;
BOOLEAN Page1GSupport;
PAGE_TABLE_1G_ENTRY *PageDirectory1GEntry;
UINT64 AddressEncMask;
//
// Make sure AddressEncMask is contained to smallest supported address field
//
AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
//
// NOTE: We have to ASSUME the page table generation format, because we do not know whole page table information.
// The whole page table is too large to be saved in SMRAM.
//
// The assumption is : whole page table is allocated in CONTINUOUS memory and CR3 points to TOP page.
//
DEBUG ((DEBUG_INFO, "S3NvsPageTableAddress - %x (%x)\n", (UINTN)S3NvsPageTableAddress, (UINTN)Build4GPageTableOnly));
//
// By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
//
PageMap = (PAGE_MAP_AND_DIRECTORY_POINTER *)S3NvsPageTableAddress;
S3NvsPageTableAddress += SIZE_4KB;
Page1GSupport = FALSE;
if (PcdGetBool(PcdUse1GPageTable)) {
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000001) {
AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
if ((RegEdx & BIT26) != 0) {
Page1GSupport = TRUE;
}
}
}
//
// Get physical address bits supported.
//
Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
if (Hob != NULL) {
PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
} else {
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000008) {
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
PhysicalAddressBits = (UINT8) RegEax;
} else {
PhysicalAddressBits = 36;
}
}
//
// IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
//
ASSERT (PhysicalAddressBits <= 52);
if (PhysicalAddressBits > 48) {
PhysicalAddressBits = 48;
}
//
// NOTE: In order to save time to create full page table, we just create 4G page table by default.
// And let PF handler in BootScript driver to create more on request.
//
if (Build4GPageTableOnly) {
PhysicalAddressBits = 32;
ZeroMem (PageMap, EFI_PAGES_TO_SIZE(2));
}
//
// Calculate the table entries needed.
//
if (PhysicalAddressBits <= 39) {
NumberOfPml4EntriesNeeded = 1;
NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 30));
} else {
NumberOfPml4EntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 39));
NumberOfPdpEntriesNeeded = 512;
}
PageMapLevel4Entry = PageMap;
PageAddress = 0;
for (IndexOfPml4Entries = 0; IndexOfPml4Entries < NumberOfPml4EntriesNeeded; IndexOfPml4Entries++, PageMapLevel4Entry++) {
//
// Each PML4 entry points to a page of Page Directory Pointer entires.
// So lets allocate space for them and fill them in in the IndexOfPdpEntries loop.
//
PageDirectoryPointerEntry = (PAGE_MAP_AND_DIRECTORY_POINTER *)S3NvsPageTableAddress;
S3NvsPageTableAddress += SIZE_4KB;
//
// Make a PML4 Entry
//
PageMapLevel4Entry->Uint64 = (UINT64)(UINTN)PageDirectoryPointerEntry | AddressEncMask;
PageMapLevel4Entry->Bits.ReadWrite = 1;
PageMapLevel4Entry->Bits.Present = 1;
if (Page1GSupport) {
PageDirectory1GEntry = (VOID *) PageDirectoryPointerEntry;
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) {
//
// Fill in the Page Directory entries
//
PageDirectory1GEntry->Uint64 = (UINT64)PageAddress | AddressEncMask;
PageDirectory1GEntry->Bits.ReadWrite = 1;
PageDirectory1GEntry->Bits.Present = 1;
PageDirectory1GEntry->Bits.MustBe1 = 1;
}
} else {
for (IndexOfPdpEntries = 0; IndexOfPdpEntries < NumberOfPdpEntriesNeeded; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
//
// Each Directory Pointer entries points to a page of Page Directory entires.
// So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
//
PageDirectoryEntry = (PAGE_TABLE_ENTRY *)S3NvsPageTableAddress;
S3NvsPageTableAddress += SIZE_4KB;
//
// Fill in a Page Directory Pointer Entries
//
PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry | AddressEncMask;
PageDirectoryPointerEntry->Bits.ReadWrite = 1;
PageDirectoryPointerEntry->Bits.Present = 1;
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) {
//
// Fill in the Page Directory entries
//
PageDirectoryEntry->Uint64 = (UINT64)PageAddress | AddressEncMask;
PageDirectoryEntry->Bits.ReadWrite = 1;
PageDirectoryEntry->Bits.Present = 1;
PageDirectoryEntry->Bits.MustBe1 = 1;
}
}
}
}
return ;
} else {
//
// If DXE is running 32-bit mode, no need to establish page table.
//
return ;
}
}
/**
Jump to boot script executor driver.
The function will close and lock SMRAM and then jump to boot script execute driver to executing S3 boot script table.
@param AcpiS3Context a pointer to a structure of ACPI_S3_CONTEXT
@param EfiBootScriptExecutorVariable The function entry to executing S3 boot Script table. This function is build in
boot script execute driver
**/
VOID
EFIAPI
S3ResumeExecuteBootScript (
IN ACPI_S3_CONTEXT *AcpiS3Context,
IN BOOT_SCRIPT_EXECUTOR_VARIABLE *EfiBootScriptExecutorVariable
)
{
EFI_STATUS Status;
PEI_SMM_ACCESS_PPI *SmmAccess;
UINTN Index;
VOID *GuidHob;
IA32_DESCRIPTOR *IdtDescriptor;
VOID *IdtBuffer;
PEI_S3_RESUME_STATE *PeiS3ResumeState;
BOOLEAN InterruptStatus;
DEBUG ((DEBUG_INFO, "S3ResumeExecuteBootScript()\n"));
//
// Attempt to use content from SMRAM first
//
GuidHob = GetFirstGuidHob (&gEfiAcpiVariableGuid);
if (GuidHob != NULL) {
//
// Last step for SMM - send SMI for initialization
//
//
// Send SMI to APs
//
SendSmiIpiAllExcludingSelf ();
//
// Send SMI to BSP
//
SendSmiIpi (GetApicId ());
Status = PeiServicesLocatePpi (
&gPeiSmmAccessPpiGuid,
0,
NULL,
(VOID **) &SmmAccess
);
if (!EFI_ERROR (Status)) {
DEBUG ((DEBUG_INFO, "Close all SMRAM regions before executing boot script\n"));
for (Index = 0, Status = EFI_SUCCESS; !EFI_ERROR (Status); Index++) {
Status = SmmAccess->Close ((EFI_PEI_SERVICES **)GetPeiServicesTablePointer (), SmmAccess, Index);
}
DEBUG ((DEBUG_INFO, "Lock all SMRAM regions before executing boot script\n"));
for (Index = 0, Status = EFI_SUCCESS; !EFI_ERROR (Status); Index++) {
Status = SmmAccess->Lock ((EFI_PEI_SERVICES **)GetPeiServicesTablePointer (), SmmAccess, Index);
}
}
DEBUG ((DEBUG_INFO, "Signal S3SmmInitDone\n"));
//
// Install S3SmmInitDone PPI.
//
Status = PeiServicesInstallPpi (&mPpiListS3SmmInitDoneTable);
ASSERT_EFI_ERROR (Status);
//
// Signal S3SmmInitDone to SMM.
//
SignalToSmmByCommunication (&gEdkiiS3SmmInitDoneGuid);
}
if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
AsmWriteCr3 ((UINTN)AcpiS3Context->S3NvsPageTableAddress);
}
if (FeaturePcdGet (PcdFrameworkCompatibilitySupport)) {
//
// On some platform, such as ECP, a dispatch node in boot script table may execute a 32-bit PEIM which may need PeiServices
// pointer. So PeiServices need preserve in (IDTBase- sizeof (UINTN)).
//
IdtDescriptor = (IA32_DESCRIPTOR *) (UINTN) (AcpiS3Context->IdtrProfile);
//
// Make sure the newly allocated IDT align with 16-bytes
//
IdtBuffer = AllocatePages (EFI_SIZE_TO_PAGES((IdtDescriptor->Limit + 1) + 16));
if (IdtBuffer == NULL) {
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MAJOR,
(EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_EC_S3_RESUME_FAILED)
);
ASSERT (FALSE);
}
//
// Additional 16 bytes allocated to save IA32 IDT descriptor and Pei Service Table Pointer
// IA32 IDT descriptor will be used to setup IA32 IDT table for 32-bit Framework Boot Script code
//
ZeroMem (IdtBuffer, 16);
AsmReadIdtr ((IA32_DESCRIPTOR *)IdtBuffer);
CopyMem ((VOID*)((UINT8*)IdtBuffer + 16),(VOID*)(IdtDescriptor->Base), (IdtDescriptor->Limit + 1));
IdtDescriptor->Base = (UINTN)((UINT8*)IdtBuffer + 16);
*(UINTN*)(IdtDescriptor->Base - sizeof(UINTN)) = (UINTN)GetPeiServicesTablePointer ();
}
InterruptStatus = SaveAndDisableInterrupts ();
//
// Need to make sure the GDT is loaded with values that support long mode and real mode.
//
AsmWriteGdtr (&mGdt);
//
// update segment selectors per the new GDT.
//
AsmSetDataSelectors (DATA_SEGEMENT_SELECTOR);
//
// Restore interrupt state.
//
SetInterruptState (InterruptStatus);
//
// Prepare data for return back
//
PeiS3ResumeState = AllocatePool (sizeof(*PeiS3ResumeState));
if (PeiS3ResumeState == NULL) {
REPORT_STATUS_CODE (
EFI_ERROR_CODE | EFI_ERROR_MAJOR,
(EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_EC_S3_RESUME_FAILED)
);
ASSERT (FALSE);
}
DEBUG ((DEBUG_INFO, "PeiS3ResumeState - %x\r\n", PeiS3ResumeState));
PeiS3ResumeState->ReturnCs = 0x10;
PeiS3ResumeState->ReturnEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)S3ResumeBootOs;
UefiCpuPkg: S3Resume2Pei: align return stacks explicitly S3RestoreConfig2() can optionally stack-switch to the SMM S3 Resume Entry Point and ask it to transfer to S3ResumeExecuteBootScript(). Similarly, S3ResumeExecuteBootScript() stack-switches explicitly to the boot script executor, and asks it to transfer to S3ResumeBootOs(). Currently the stack pointers specified for the SMM S3 Resume Entry Point and the boot script executor to use for returning are derived from addresses of the first local variables in S3RestoreConfig2() and S3ResumeExecuteBootScript(), respectively. Since (theoretically) the stack grows down as local variables are defined and functions are called, the idea is presumably to allow the respective callee to overwrite the caller's local variables. (The callees in question can never return normally, only by explicit stack switching.) Taking the address of "Status" is less portable than optimal however. Compilers are free to juggle local variables at build time as they please, including order and alignment on the stack. For example, when the code is built for 64-bit PEI with gcc-4.8.2, the address of "Status" trips up the alignment assertion in SwitchStack(). Let's align the address of "Status" down to CPU_STACK_ALIGNMENT explicitly. If a compiler ensures such alignment and places "Status" at the highest address automatically, then this change has no effect. Otherwise, we'll prepare ReturnStackPointer values that (a) are correctly aligned, (b) preserve the same amount or more (but never less) from the caller's local variables than before, which should be safe. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed by: Jiewen Yao <Jiewen.Yao@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14977 6f19259b-4bc3-4df7-8a09-765794883524
2013-12-13 04:22:33 +01:00
PeiS3ResumeState->ReturnStackPointer = (EFI_PHYSICAL_ADDRESS)STACK_ALIGN_DOWN (&Status);
//
// Save IDT
//
AsmReadIdtr (&PeiS3ResumeState->Idtr);
//
// Report Status Code to indicate S3 boot script execution
//
REPORT_STATUS_CODE (EFI_PROGRESS_CODE, EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_PC_S3_BOOT_SCRIPT);
PERF_START (NULL, "ScriptExec", NULL, 0);
if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
//
// X64 S3 Resume
//
DEBUG ((DEBUG_INFO, "Enable X64 and transfer control to Standalone Boot Script Executor\r\n"));
//
// Switch to long mode to complete resume.
//
AsmEnablePaging64 (
0x38,
EfiBootScriptExecutorVariable->BootScriptExecutorEntrypoint,
(UINT64)(UINTN)AcpiS3Context,
(UINT64)(UINTN)PeiS3ResumeState,
(UINT64)(UINTN)(AcpiS3Context->BootScriptStackBase + AcpiS3Context->BootScriptStackSize)
);
} else {
//
// IA32 S3 Resume
//
DEBUG ((DEBUG_INFO, "transfer control to Standalone Boot Script Executor\r\n"));
SwitchStack (
(SWITCH_STACK_ENTRY_POINT) (UINTN) EfiBootScriptExecutorVariable->BootScriptExecutorEntrypoint,
(VOID *)AcpiS3Context,
(VOID *)PeiS3ResumeState,
(VOID *)(UINTN)(AcpiS3Context->BootScriptStackBase + AcpiS3Context->BootScriptStackSize)
);
}
//
// Never run to here
//
CpuDeadLoop();
}
/**
Restores the platform to its preboot configuration for an S3 resume and
jumps to the OS waking vector.
This function will restore the platform to its pre-boot configuration that was
pre-stored in the boot script table and transfer control to OS waking vector.
Upon invocation, this function is responsible for locating the following
information before jumping to OS waking vector:
- ACPI tables
- boot script table
- any other information that it needs
The S3RestoreConfig() function then executes the pre-stored boot script table
and transitions the platform to the pre-boot state. The boot script is recorded
during regular boot using the EFI_S3_SAVE_STATE_PROTOCOL.Write() and
EFI_S3_SMM_SAVE_STATE_PROTOCOL.Write() functions. Finally, this function
transfers control to the OS waking vector. If the OS supports only a real-mode
waking vector, this function will switch from flat mode to real mode before
jumping to the waking vector. If all platform pre-boot configurations are
successfully restored and all other necessary information is ready, this
function will never return and instead will directly jump to the OS waking
vector. If this function returns, it indicates that the attempt to resume
from the ACPI S3 sleep state failed.
@param[in] This Pointer to this instance of the PEI_S3_RESUME_PPI
@retval EFI_ABORTED Execution of the S3 resume boot script table failed.
@retval EFI_NOT_FOUND Some necessary information that is used for the S3
resume boot path could not be located.
**/
EFI_STATUS
EFIAPI
S3RestoreConfig2 (
IN EFI_PEI_S3_RESUME2_PPI *This
)
{
EFI_STATUS Status;
PEI_SMM_ACCESS_PPI *SmmAccess;
UINTN Index;
ACPI_S3_CONTEXT *AcpiS3Context;
EFI_PHYSICAL_ADDRESS TempEfiBootScriptExecutorVariable;
EFI_PHYSICAL_ADDRESS TempAcpiS3Context;
BOOT_SCRIPT_EXECUTOR_VARIABLE *EfiBootScriptExecutorVariable;
UINTN VarSize;
EFI_SMRAM_DESCRIPTOR *SmramDescriptor;
SMM_S3_RESUME_STATE *SmmS3ResumeState;
VOID *GuidHob;
BOOLEAN Build4GPageTableOnly;
BOOLEAN InterruptStatus;
TempAcpiS3Context = 0;
TempEfiBootScriptExecutorVariable = 0;
DEBUG ((DEBUG_INFO, "Enter S3 PEIM\r\n"));
VarSize = sizeof (EFI_PHYSICAL_ADDRESS);
Status = RestoreLockBox (
&gEfiAcpiVariableGuid,
&TempAcpiS3Context,
&VarSize
);
ASSERT_EFI_ERROR (Status);
Status = RestoreLockBox (
&gEfiAcpiS3ContextGuid,
NULL,
NULL
);
ASSERT_EFI_ERROR (Status);
AcpiS3Context = (ACPI_S3_CONTEXT *)(UINTN)TempAcpiS3Context;
ASSERT (AcpiS3Context != NULL);
VarSize = sizeof (EFI_PHYSICAL_ADDRESS);
Status = RestoreLockBox (
&gEfiBootScriptExecutorVariableGuid,
&TempEfiBootScriptExecutorVariable,
&VarSize
);
ASSERT_EFI_ERROR (Status);
Status = RestoreLockBox (
&gEfiBootScriptExecutorContextGuid,
NULL,
NULL
);
ASSERT_EFI_ERROR (Status);
EfiBootScriptExecutorVariable = (BOOT_SCRIPT_EXECUTOR_VARIABLE *) (UINTN) TempEfiBootScriptExecutorVariable;
ASSERT (EfiBootScriptExecutorVariable != NULL);
DEBUG (( DEBUG_INFO, "AcpiS3Context = %x\n", AcpiS3Context));
DEBUG (( DEBUG_INFO, "Waking Vector = %x\n", ((EFI_ACPI_2_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *) ((UINTN) (AcpiS3Context->AcpiFacsTable)))->FirmwareWakingVector));
DEBUG (( DEBUG_INFO, "AcpiS3Context->AcpiFacsTable = %x\n", AcpiS3Context->AcpiFacsTable));
DEBUG (( DEBUG_INFO, "AcpiS3Context->IdtrProfile = %x\n", AcpiS3Context->IdtrProfile));
DEBUG (( DEBUG_INFO, "AcpiS3Context->S3NvsPageTableAddress = %x\n", AcpiS3Context->S3NvsPageTableAddress));
DEBUG (( DEBUG_INFO, "AcpiS3Context->S3DebugBufferAddress = %x\n", AcpiS3Context->S3DebugBufferAddress));
DEBUG (( DEBUG_INFO, "AcpiS3Context->BootScriptStackBase = %x\n", AcpiS3Context->BootScriptStackBase));
DEBUG (( DEBUG_INFO, "AcpiS3Context->BootScriptStackSize = %x\n", AcpiS3Context->BootScriptStackSize));
DEBUG (( DEBUG_INFO, "EfiBootScriptExecutorVariable->BootScriptExecutorEntrypoint = %x\n", EfiBootScriptExecutorVariable->BootScriptExecutorEntrypoint));
//
// Additional step for BootScript integrity - we only handle BootScript and BootScriptExecutor.
// Script dispatch image and context (parameter) are handled by platform.
// We just use restore all lock box in place, no need restore one by one.
//
Status = RestoreAllLockBoxInPlace ();
ASSERT_EFI_ERROR (Status);
if (EFI_ERROR (Status)) {
// Something wrong
CpuDeadLoop ();
}
if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
//
// Need reconstruct page table here, since we do not trust ACPINvs.
//
if (IsLongModeWakingVector (AcpiS3Context)) {
Build4GPageTableOnly = FALSE;
} else {
Build4GPageTableOnly = TRUE;
}
RestoreS3PageTables ((UINTN)AcpiS3Context->S3NvsPageTableAddress, Build4GPageTableOnly);
}
//
// Attempt to use content from SMRAM first
//
GuidHob = GetFirstGuidHob (&gEfiAcpiVariableGuid);
if (GuidHob != NULL) {
Status = PeiServicesLocatePpi (
&gPeiSmmAccessPpiGuid,
0,
NULL,
(VOID **) &SmmAccess
);
for (Index = 0; !EFI_ERROR (Status); Index++) {
Status = SmmAccess->Open ((EFI_PEI_SERVICES **)GetPeiServicesTablePointer (), SmmAccess, Index);
}
SmramDescriptor = (EFI_SMRAM_DESCRIPTOR *) GET_GUID_HOB_DATA (GuidHob);
SmmS3ResumeState = (SMM_S3_RESUME_STATE *)(UINTN)SmramDescriptor->CpuStart;
SmmS3ResumeState->ReturnCs = AsmReadCs ();
SmmS3ResumeState->ReturnEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)S3ResumeExecuteBootScript;
SmmS3ResumeState->ReturnContext1 = (EFI_PHYSICAL_ADDRESS)(UINTN)AcpiS3Context;
SmmS3ResumeState->ReturnContext2 = (EFI_PHYSICAL_ADDRESS)(UINTN)EfiBootScriptExecutorVariable;
UefiCpuPkg: S3Resume2Pei: align return stacks explicitly S3RestoreConfig2() can optionally stack-switch to the SMM S3 Resume Entry Point and ask it to transfer to S3ResumeExecuteBootScript(). Similarly, S3ResumeExecuteBootScript() stack-switches explicitly to the boot script executor, and asks it to transfer to S3ResumeBootOs(). Currently the stack pointers specified for the SMM S3 Resume Entry Point and the boot script executor to use for returning are derived from addresses of the first local variables in S3RestoreConfig2() and S3ResumeExecuteBootScript(), respectively. Since (theoretically) the stack grows down as local variables are defined and functions are called, the idea is presumably to allow the respective callee to overwrite the caller's local variables. (The callees in question can never return normally, only by explicit stack switching.) Taking the address of "Status" is less portable than optimal however. Compilers are free to juggle local variables at build time as they please, including order and alignment on the stack. For example, when the code is built for 64-bit PEI with gcc-4.8.2, the address of "Status" trips up the alignment assertion in SwitchStack(). Let's align the address of "Status" down to CPU_STACK_ALIGNMENT explicitly. If a compiler ensures such alignment and places "Status" at the highest address automatically, then this change has no effect. Otherwise, we'll prepare ReturnStackPointer values that (a) are correctly aligned, (b) preserve the same amount or more (but never less) from the caller's local variables than before, which should be safe. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed by: Jiewen Yao <Jiewen.Yao@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14977 6f19259b-4bc3-4df7-8a09-765794883524
2013-12-13 04:22:33 +01:00
SmmS3ResumeState->ReturnStackPointer = (EFI_PHYSICAL_ADDRESS)STACK_ALIGN_DOWN (&Status);
DEBUG (( DEBUG_INFO, "SMM S3 Signature = %x\n", SmmS3ResumeState->Signature));
DEBUG (( DEBUG_INFO, "SMM S3 Stack Base = %x\n", SmmS3ResumeState->SmmS3StackBase));
DEBUG (( DEBUG_INFO, "SMM S3 Stack Size = %x\n", SmmS3ResumeState->SmmS3StackSize));
DEBUG (( DEBUG_INFO, "SMM S3 Resume Entry Point = %x\n", SmmS3ResumeState->SmmS3ResumeEntryPoint));
DEBUG (( DEBUG_INFO, "SMM S3 CR0 = %x\n", SmmS3ResumeState->SmmS3Cr0));
DEBUG (( DEBUG_INFO, "SMM S3 CR3 = %x\n", SmmS3ResumeState->SmmS3Cr3));
DEBUG (( DEBUG_INFO, "SMM S3 CR4 = %x\n", SmmS3ResumeState->SmmS3Cr4));
DEBUG (( DEBUG_INFO, "SMM S3 Return CS = %x\n", SmmS3ResumeState->ReturnCs));
DEBUG (( DEBUG_INFO, "SMM S3 Return Entry Point = %x\n", SmmS3ResumeState->ReturnEntryPoint));
DEBUG (( DEBUG_INFO, "SMM S3 Return Context1 = %x\n", SmmS3ResumeState->ReturnContext1));
DEBUG (( DEBUG_INFO, "SMM S3 Return Context2 = %x\n", SmmS3ResumeState->ReturnContext2));
DEBUG (( DEBUG_INFO, "SMM S3 Return Stack Pointer = %x\n", SmmS3ResumeState->ReturnStackPointer));
DEBUG (( DEBUG_INFO, "SMM S3 Smst = %x\n", SmmS3ResumeState->Smst));
if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_32) {
SwitchStack (
(SWITCH_STACK_ENTRY_POINT)(UINTN)SmmS3ResumeState->SmmS3ResumeEntryPoint,
(VOID *)AcpiS3Context,
0,
(VOID *)(UINTN)(SmmS3ResumeState->SmmS3StackBase + SmmS3ResumeState->SmmS3StackSize)
);
}
if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
//
// Switch to long mode to complete resume.
//
InterruptStatus = SaveAndDisableInterrupts ();
//
// Need to make sure the GDT is loaded with values that support long mode and real mode.
//
AsmWriteGdtr (&mGdt);
//
// update segment selectors per the new GDT.
//
AsmSetDataSelectors (DATA_SEGEMENT_SELECTOR);
//
// Restore interrupt state.
//
SetInterruptState (InterruptStatus);
AsmWriteCr3 ((UINTN)SmmS3ResumeState->SmmS3Cr3);
//
// Disable interrupt of Debug timer, since IDT table cannot work in long mode.
// NOTE: On x64 platforms, because DisablePaging64() will disable interrupts,
// the code in S3ResumeExecuteBootScript() cannot be halted by soft debugger.
//
SaveAndSetDebugTimerInterrupt (FALSE);
AsmEnablePaging64 (
0x38,
SmmS3ResumeState->SmmS3ResumeEntryPoint,
(UINT64)(UINTN)AcpiS3Context,
0,
SmmS3ResumeState->SmmS3StackBase + SmmS3ResumeState->SmmS3StackSize
);
}
}
S3ResumeExecuteBootScript (AcpiS3Context, EfiBootScriptExecutorVariable );
return EFI_SUCCESS;
}
/**
Main entry for S3 Resume PEIM.
This routine is to install EFI_PEI_S3_RESUME2_PPI.
@param FileHandle Handle of the file being invoked.
@param PeiServices Pointer to PEI Services table.
@retval EFI_SUCCESS S3Resume Ppi is installed successfully.
**/
EFI_STATUS
EFIAPI
PeimS3ResumeEntryPoint (
IN EFI_PEI_FILE_HANDLE FileHandle,
IN CONST EFI_PEI_SERVICES **PeiServices
)
{
EFI_STATUS Status;
//
// Install S3 Resume Ppi
//
Status = (**PeiServices).InstallPpi (PeiServices, &mPpiList);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}