audk/OvmfPkg/Library/PlatformBdsLib/QemuBootOrder.c

1282 lines
38 KiB
C
Raw Normal View History

/** @file
Rewrite the BootOrder NvVar based on QEMU's "bootorder" fw_cfg file.
Copyright (C) 2012 - 2013, Red Hat, Inc.
Copyright (c) 2013, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available
under the terms and conditions of the BSD License which accompanies this
distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT
WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Library/QemuFwCfgLib.h>
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/GenericBdsLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiRuntimeServicesTableLib.h>
#include <Library/BaseLib.h>
#include <Library/PrintLib.h>
#include <Library/DevicePathLib.h>
#include <Guid/GlobalVariable.h>
/**
OpenFirmware to UEFI device path translation output buffer size in CHAR16's.
**/
#define TRANSLATION_OUTPUT_SIZE 0x100
/**
Numbers of nodes in OpenFirmware device paths that are required and examined.
**/
#define REQUIRED_OFW_NODES 2
#define EXAMINED_OFW_NODES 4
/**
Simple character classification routines, corresponding to POSIX class names
and ASCII encoding.
**/
STATIC
BOOLEAN
IsAlnum (
IN CHAR8 Chr
)
{
return (('0' <= Chr && Chr <= '9') ||
('A' <= Chr && Chr <= 'Z') ||
('a' <= Chr && Chr <= 'z')
);
}
STATIC
BOOLEAN
IsDriverNamePunct (
IN CHAR8 Chr
)
{
return (Chr == ',' || Chr == '.' || Chr == '_' ||
Chr == '+' || Chr == '-'
);
}
STATIC
BOOLEAN
IsPrintNotDelim (
IN CHAR8 Chr
)
{
return (32 <= Chr && Chr <= 126 &&
Chr != '/' && Chr != '@' && Chr != ':');
}
/**
Utility types and functions.
**/
typedef struct {
CONST CHAR8 *Ptr; // not necessarily NUL-terminated
UINTN Len; // number of non-NUL characters
} SUBSTRING;
/**
Check if Substring and String have identical contents.
The function relies on the restriction that a SUBSTRING cannot have embedded
NULs either.
@param[in] Substring The SUBSTRING input to the comparison.
@param[in] String The ASCII string input to the comparison.
@return Whether the inputs have identical contents.
**/
STATIC
BOOLEAN
SubstringEq (
IN SUBSTRING Substring,
IN CONST CHAR8 *String
)
{
UINTN Pos;
CONST CHAR8 *Chr;
Pos = 0;
Chr = String;
while (Pos < Substring.Len && Substring.Ptr[Pos] == *Chr) {
++Pos;
++Chr;
}
return (BOOLEAN)(Pos == Substring.Len && *Chr == '\0');
}
/**
Parse a comma-separated list of hexadecimal integers into the elements of an
UINT32 array.
Whitespace, "0x" prefixes, leading or trailing commas, sequences of commas,
or an empty string are not allowed; they are rejected.
The function relies on ASCII encoding.
@param[in] UnitAddress The substring to parse.
@param[out] Result The array, allocated by the caller, to receive
the parsed values. This parameter may be NULL if
NumResults is zero on input.
@param[in out] NumResults On input, the number of elements allocated for
Result. On output, the number of elements it has
taken (or would have taken) to parse the string
fully.
@retval RETURN_SUCCESS UnitAddress has been fully parsed.
NumResults is set to the number of parsed
values; the corresponding elements have
been set in Result. The rest of Result's
elements are unchanged.
@retval RETURN_BUFFER_TOO_SMALL UnitAddress has been fully parsed.
NumResults is set to the number of parsed
values, but elements have been stored only
up to the input value of NumResults, which
is less than what has been parsed.
@retval RETURN_INVALID_PARAMETER Parse error. The contents of Results is
indeterminate. NumResults has not been
changed.
**/
STATIC
RETURN_STATUS
ParseUnitAddressHexList (
IN SUBSTRING UnitAddress,
OUT UINT32 *Result,
IN OUT UINTN *NumResults
)
{
UINTN Entry; // number of entry currently being parsed
UINT32 EntryVal; // value being constructed for current entry
CHAR8 PrevChr; // UnitAddress character previously checked
UINTN Pos; // current position within UnitAddress
RETURN_STATUS Status;
Entry = 0;
EntryVal = 0;
PrevChr = ',';
for (Pos = 0; Pos < UnitAddress.Len; ++Pos) {
CHAR8 Chr;
INT8 Val;
Chr = UnitAddress.Ptr[Pos];
Val = ('a' <= Chr && Chr <= 'f') ? (Chr - 'a' + 10) :
('A' <= Chr && Chr <= 'F') ? (Chr - 'A' + 10) :
('0' <= Chr && Chr <= '9') ? (Chr - '0' ) :
-1;
if (Val >= 0) {
if (EntryVal > 0xFFFFFFF) {
return RETURN_INVALID_PARAMETER;
}
EntryVal = (EntryVal << 4) | Val;
} else if (Chr == ',') {
if (PrevChr == ',') {
return RETURN_INVALID_PARAMETER;
}
if (Entry < *NumResults) {
Result[Entry] = EntryVal;
}
++Entry;
EntryVal = 0;
} else {
return RETURN_INVALID_PARAMETER;
}
PrevChr = Chr;
}
if (PrevChr == ',') {
return RETURN_INVALID_PARAMETER;
}
if (Entry < *NumResults) {
Result[Entry] = EntryVal;
Status = RETURN_SUCCESS;
} else {
Status = RETURN_BUFFER_TOO_SMALL;
}
++Entry;
*NumResults = Entry;
return Status;
}
/**
A simple array of Boot Option ID's.
**/
typedef struct {
UINT16 *Data;
UINTN Allocated;
UINTN Produced;
} BOOT_ORDER;
/**
Array element tracking an enumerated boot option that has the
LOAD_OPTION_ACTIVE attribute.
**/
typedef struct {
CONST BDS_COMMON_OPTION *BootOption; // reference only, no ownership
BOOLEAN Appended; // has been added to a BOOT_ORDER?
} ACTIVE_OPTION;
/**
Append an active boot option to BootOrder, reallocating the latter if needed.
@param[in out] BootOrder The structure pointing to the array and holding
allocation and usage counters.
@param[in] ActiveOption The active boot option whose ID should be
appended to the array.
@retval RETURN_SUCCESS ID of ActiveOption appended.
@retval RETURN_OUT_OF_RESOURCES Memory reallocation failed.
**/
STATIC
RETURN_STATUS
BootOrderAppend (
IN OUT BOOT_ORDER *BootOrder,
IN OUT ACTIVE_OPTION *ActiveOption
)
{
if (BootOrder->Produced == BootOrder->Allocated) {
UINTN AllocatedNew;
UINT16 *DataNew;
ASSERT (BootOrder->Allocated > 0);
AllocatedNew = BootOrder->Allocated * 2;
DataNew = ReallocatePool (
BootOrder->Allocated * sizeof (*BootOrder->Data),
AllocatedNew * sizeof (*DataNew),
BootOrder->Data
);
if (DataNew == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
BootOrder->Allocated = AllocatedNew;
BootOrder->Data = DataNew;
}
BootOrder->Data[BootOrder->Produced++] =
ActiveOption->BootOption->BootCurrent;
ActiveOption->Appended = TRUE;
return RETURN_SUCCESS;
}
/**
Create an array of ACTIVE_OPTION elements for a boot option list.
@param[in] BootOptionList A boot option list, created with
BdsLibEnumerateAllBootOption().
@param[out] ActiveOption Pointer to the first element in the new array.
The caller is responsible for freeing the array
with FreePool() after use.
@param[out] Count Number of elements in the new array.
@retval RETURN_SUCCESS The ActiveOption array has been created.
@retval RETURN_NOT_FOUND No active entry has been found in
BootOptionList.
@retval RETURN_OUT_OF_RESOURCES Memory allocation failed.
**/
STATIC
RETURN_STATUS
CollectActiveOptions (
IN CONST LIST_ENTRY *BootOptionList,
OUT ACTIVE_OPTION **ActiveOption,
OUT UINTN *Count
)
{
UINTN ScanMode;
*ActiveOption = NULL;
//
// Scan the list twice:
// - count active entries,
// - store links to active entries.
//
for (ScanMode = 0; ScanMode < 2; ++ScanMode) {
CONST LIST_ENTRY *Link;
Link = BootOptionList->ForwardLink;
*Count = 0;
while (Link != BootOptionList) {
CONST BDS_COMMON_OPTION *Current;
Current = CR (Link, BDS_COMMON_OPTION, Link, BDS_LOAD_OPTION_SIGNATURE);
if (IS_LOAD_OPTION_TYPE (Current->Attribute, LOAD_OPTION_ACTIVE)) {
if (ScanMode == 1) {
(*ActiveOption)[*Count].BootOption = Current;
(*ActiveOption)[*Count].Appended = FALSE;
}
++*Count;
}
Link = Link->ForwardLink;
}
if (ScanMode == 0) {
if (*Count == 0) {
return RETURN_NOT_FOUND;
}
*ActiveOption = AllocatePool (*Count * sizeof **ActiveOption);
if (*ActiveOption == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
}
}
return RETURN_SUCCESS;
}
/**
OpenFirmware device path node
**/
typedef struct {
SUBSTRING DriverName;
SUBSTRING UnitAddress;
SUBSTRING DeviceArguments;
} OFW_NODE;
/**
Parse an OpenFirmware device path node into the caller-allocated OFW_NODE
structure, and advance in the input string.
The node format is mostly parsed after IEEE 1275-1994, 3.2.1.1 "Node names"
(a leading slash is expected and not returned):
/driver-name@unit-address[:device-arguments][<LF>]
A single trailing <LF> character is consumed but not returned. A trailing
<LF> or NUL character terminates the device path.
The function relies on ASCII encoding.
@param[in out] Ptr Address of the pointer pointing to the start of the
node string. After successful parsing *Ptr is set to
the byte immediately following the consumed
characters. On error it points to the byte that
caused the error. The input string is never modified.
@param[out] OfwNode The members of this structure point into the input
string, designating components of the node.
Separators are never included. If "device-arguments"
is missing, then DeviceArguments.Ptr is set to NULL.
All components that are present have nonzero length.
If the call doesn't succeed, the contents of this
structure is indeterminate.
@param[out] IsFinal In case of successul parsing, this parameter signals
whether the node just parsed is the final node in the
device path. The call after a final node will attempt
to start parsing the next path. If the call doesn't
succeed, then this parameter is not changed.
@retval RETURN_SUCCESS Parsing successful.
@retval RETURN_NOT_FOUND Parsing terminated. *Ptr was (and is)
pointing to an empty string.
@retval RETURN_INVALID_PARAMETER Parse error.
**/
STATIC
RETURN_STATUS
ParseOfwNode (
IN OUT CONST CHAR8 **Ptr,
OUT OFW_NODE *OfwNode,
OUT BOOLEAN *IsFinal
)
{
//
// A leading slash is expected. End of string is tolerated.
//
switch (**Ptr) {
case '\0':
return RETURN_NOT_FOUND;
case '/':
++*Ptr;
break;
default:
return RETURN_INVALID_PARAMETER;
}
//
// driver-name
//
OfwNode->DriverName.Ptr = *Ptr;
OfwNode->DriverName.Len = 0;
while (OfwNode->DriverName.Len < 32 &&
(IsAlnum (**Ptr) || IsDriverNamePunct (**Ptr))
) {
++*Ptr;
++OfwNode->DriverName.Len;
}
if (OfwNode->DriverName.Len == 0 || OfwNode->DriverName.Len == 32) {
return RETURN_INVALID_PARAMETER;
}
//
// unit-address
//
if (**Ptr != '@') {
return RETURN_INVALID_PARAMETER;
}
++*Ptr;
OfwNode->UnitAddress.Ptr = *Ptr;
OfwNode->UnitAddress.Len = 0;
while (IsPrintNotDelim (**Ptr)) {
++*Ptr;
++OfwNode->UnitAddress.Len;
}
if (OfwNode->UnitAddress.Len == 0) {
return RETURN_INVALID_PARAMETER;
}
//
// device-arguments, may be omitted
//
OfwNode->DeviceArguments.Len = 0;
if (**Ptr == ':') {
++*Ptr;
OfwNode->DeviceArguments.Ptr = *Ptr;
while (IsPrintNotDelim (**Ptr)) {
++*Ptr;
++OfwNode->DeviceArguments.Len;
}
if (OfwNode->DeviceArguments.Len == 0) {
return RETURN_INVALID_PARAMETER;
}
}
else {
OfwNode->DeviceArguments.Ptr = NULL;
}
switch (**Ptr) {
case '\n':
++*Ptr;
//
// fall through
//
case '\0':
*IsFinal = TRUE;
break;
case '/':
*IsFinal = FALSE;
break;
default:
return RETURN_INVALID_PARAMETER;
}
DEBUG ((
DEBUG_VERBOSE,
"%a: DriverName=\"%.*a\" UnitAddress=\"%.*a\" DeviceArguments=\"%.*a\"\n",
__FUNCTION__,
OfwNode->DriverName.Len, OfwNode->DriverName.Ptr,
OfwNode->UnitAddress.Len, OfwNode->UnitAddress.Ptr,
OfwNode->DeviceArguments.Len,
OfwNode->DeviceArguments.Ptr == NULL ? "" : OfwNode->DeviceArguments.Ptr
));
return RETURN_SUCCESS;
}
/**
Translate an array of OpenFirmware device nodes to a UEFI device path
fragment.
@param[in] OfwNode Array of OpenFirmware device nodes to
translate, constituting the beginning of an
OpenFirmware device path.
@param[in] NumNodes Number of elements in OfwNode.
@param[out] Translated Destination array receiving the UEFI path
fragment, allocated by the caller. If the
return value differs from RETURN_SUCCESS, its
contents is indeterminate.
@param[in out] TranslatedSize On input, the number of CHAR16's in
Translated. On RETURN_SUCCESS this parameter
is assigned the number of non-NUL CHAR16's
written to Translated. In case of other return
values, TranslatedSize is indeterminate.
@retval RETURN_SUCCESS Translation successful.
@retval RETURN_BUFFER_TOO_SMALL The translation does not fit into the number
of bytes provided.
@retval RETURN_UNSUPPORTED The array of OpenFirmware device nodes can't
be translated in the current implementation.
**/
STATIC
RETURN_STATUS
TranslateOfwNodes (
IN CONST OFW_NODE *OfwNode,
IN UINTN NumNodes,
OUT CHAR16 *Translated,
IN OUT UINTN *TranslatedSize
)
{
UINT32 PciDevFun[2];
UINTN NumEntries;
UINTN Written;
//
// Get PCI device and optional PCI function. Assume a single PCI root.
//
if (NumNodes < REQUIRED_OFW_NODES ||
!SubstringEq (OfwNode[0].DriverName, "pci")
) {
return RETURN_UNSUPPORTED;
}
PciDevFun[1] = 0;
NumEntries = sizeof (PciDevFun) / sizeof (PciDevFun[0]);
if (ParseUnitAddressHexList (
OfwNode[1].UnitAddress,
PciDevFun,
&NumEntries
) != RETURN_SUCCESS
) {
return RETURN_UNSUPPORTED;
}
if (NumNodes >= 4 &&
SubstringEq (OfwNode[1].DriverName, "ide") &&
SubstringEq (OfwNode[2].DriverName, "drive") &&
SubstringEq (OfwNode[3].DriverName, "disk")
) {
//
// OpenFirmware device path (IDE disk, IDE CD-ROM):
//
// /pci@i0cf8/ide@1,1/drive@0/disk@0
// ^ ^ ^ ^ ^
// | | | | master or slave
// | | | primary or secondary
// | PCI slot & function holding IDE controller
// PCI root at system bus port, PIO
//
// UEFI device path:
//
// PciRoot(0x0)/Pci(0x1,0x1)/Ata(Primary,Master,0x0)
// ^
// fixed LUN
//
UINT32 Secondary;
UINT32 Slave;
NumEntries = 1;
if (ParseUnitAddressHexList (
OfwNode[2].UnitAddress,
&Secondary,
&NumEntries
) != RETURN_SUCCESS ||
Secondary > 1 ||
ParseUnitAddressHexList (
OfwNode[3].UnitAddress,
&Slave,
&NumEntries // reuse after previous single-element call
) != RETURN_SUCCESS ||
Slave > 1
) {
return RETURN_UNSUPPORTED;
}
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
"PciRoot(0x0)/Pci(0x%x,0x%x)/Ata(%a,%a,0x0)",
PciDevFun[0],
PciDevFun[1],
Secondary ? "Secondary" : "Primary",
Slave ? "Slave" : "Master"
);
} else if (NumNodes >= 4 &&
SubstringEq (OfwNode[1].DriverName, "isa") &&
SubstringEq (OfwNode[2].DriverName, "fdc") &&
SubstringEq (OfwNode[3].DriverName, "floppy")
) {
//
// OpenFirmware device path (floppy disk):
//
// /pci@i0cf8/isa@1/fdc@03f0/floppy@0
// ^ ^ ^ ^
// | | | A: or B:
// | | ISA controller io-port (hex)
// | PCI slot holding ISA controller
// PCI root at system bus port, PIO
//
// UEFI device path:
//
// PciRoot(0x0)/Pci(0x1,0x0)/Floppy(0x0)
// ^
// ACPI UID
//
UINT32 AcpiUid;
NumEntries = 1;
if (ParseUnitAddressHexList (
OfwNode[3].UnitAddress,
&AcpiUid,
&NumEntries
) != RETURN_SUCCESS ||
AcpiUid > 1
) {
return RETURN_UNSUPPORTED;
}
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
"PciRoot(0x0)/Pci(0x%x,0x%x)/Floppy(0x%x)",
PciDevFun[0],
PciDevFun[1],
AcpiUid
);
} else if (NumNodes >= 3 &&
SubstringEq (OfwNode[1].DriverName, "scsi") &&
SubstringEq (OfwNode[2].DriverName, "disk")
) {
//
// OpenFirmware device path (virtio-blk disk):
//
// /pci@i0cf8/scsi@6[,3]/disk@0,0
// ^ ^ ^ ^ ^
// | | | fixed
// | | PCI function corresponding to disk (optional)
// | PCI slot holding disk
// PCI root at system bus port, PIO
//
// UEFI device path prefix:
//
// PciRoot(0x0)/Pci(0x6,0x0)/HD( -- if PCI function is 0 or absent
// PciRoot(0x0)/Pci(0x6,0x3)/HD( -- if PCI function is present and nonzero
//
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
"PciRoot(0x0)/Pci(0x%x,0x%x)/HD(",
PciDevFun[0],
PciDevFun[1]
);
} else if (NumNodes >= 4 &&
SubstringEq (OfwNode[1].DriverName, "scsi") &&
SubstringEq (OfwNode[2].DriverName, "channel") &&
SubstringEq (OfwNode[3].DriverName, "disk")
) {
//
// OpenFirmware device path (virtio-scsi disk):
//
// /pci@i0cf8/scsi@7[,3]/channel@0/disk@2,3
// ^ ^ ^ ^ ^
// | | | | LUN
// | | | target
// | | channel (unused, fixed 0)
// | PCI slot[, function] holding SCSI controller
// PCI root at system bus port, PIO
//
// UEFI device path prefix:
//
// PciRoot(0x0)/Pci(0x7,0x0)/Scsi(0x2,0x3)
// -- if PCI function is 0 or absent
// PciRoot(0x0)/Pci(0x7,0x3)/Scsi(0x2,0x3)
// -- if PCI function is present and nonzero
//
UINT32 TargetLun[2];
TargetLun[1] = 0;
NumEntries = sizeof (TargetLun) / sizeof (TargetLun[0]);
if (ParseUnitAddressHexList (
OfwNode[3].UnitAddress,
TargetLun,
&NumEntries
) != RETURN_SUCCESS
) {
return RETURN_UNSUPPORTED;
}
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
"PciRoot(0x0)/Pci(0x%x,0x%x)/Scsi(0x%x,0x%x)",
PciDevFun[0],
PciDevFun[1],
TargetLun[0],
TargetLun[1]
);
} else if (NumNodes >= 3 &&
SubstringEq (OfwNode[1].DriverName, "ethernet") &&
SubstringEq (OfwNode[2].DriverName, "ethernet-phy")
) {
//
// OpenFirmware device path (Ethernet NIC):
//
// /pci@i0cf8/ethernet@3[,2]/ethernet-phy@0
// ^ ^ ^
// | | fixed
// | PCI slot[, function] holding Ethernet card
// PCI root at system bus port, PIO
//
// UEFI device path prefix (dependent on presence of nonzero PCI function):
//
// PciRoot(0x0)/Pci(0x3,0x0)/MAC(525400E15EEF,0x1)
// PciRoot(0x0)/Pci(0x3,0x2)/MAC(525400E15EEF,0x1)
// ^ ^
// MAC address IfType (1 == Ethernet)
//
// (Some UEFI NIC drivers don't set 0x1 for IfType.)
//
Written = UnicodeSPrintAsciiFormat (
Translated,
*TranslatedSize * sizeof (*Translated), // BufferSize in bytes
"PciRoot(0x0)/Pci(0x%x,0x%x)/MAC",
PciDevFun[0],
PciDevFun[1]
);
} else {
return RETURN_UNSUPPORTED;
}
//
// There's no way to differentiate between "completely used up without
// truncation" and "truncated", so treat the former as the latter, and return
// success only for "some room left unused".
//
if (Written + 1 < *TranslatedSize) {
*TranslatedSize = Written;
return RETURN_SUCCESS;
}
return RETURN_BUFFER_TOO_SMALL;
}
/**
Translate an OpenFirmware device path fragment to a UEFI device path
fragment, and advance in the input string.
@param[in out] Ptr Address of the pointer pointing to the start
of the path string. After successful
translation (RETURN_SUCCESS) or at least
successful parsing (RETURN_UNSUPPORTED,
RETURN_BUFFER_TOO_SMALL), *Ptr is set to the
byte immediately following the consumed
characters. In other error cases, it points to
the byte that caused the error.
@param[out] Translated Destination array receiving the UEFI path
fragment, allocated by the caller. If the
return value differs from RETURN_SUCCESS, its
contents is indeterminate.
@param[in out] TranslatedSize On input, the number of CHAR16's in
Translated. On RETURN_SUCCESS this parameter
is assigned the number of non-NUL CHAR16's
written to Translated. In case of other return
values, TranslatedSize is indeterminate.
@retval RETURN_SUCCESS Translation successful.
@retval RETURN_BUFFER_TOO_SMALL The OpenFirmware device path was parsed
successfully, but its translation did not
fit into the number of bytes provided.
Further calls to this function are
possible.
@retval RETURN_UNSUPPORTED The OpenFirmware device path was parsed
successfully, but it can't be translated in
the current implementation. Further calls
to this function are possible.
@retval RETURN_NOT_FOUND Translation terminated, *Ptr was (and is)
pointing to an empty string.
@retval RETURN_INVALID_PARAMETER Parse error. This is a permanent error.
**/
STATIC
RETURN_STATUS
TranslateOfwPath (
IN OUT CONST CHAR8 **Ptr,
OUT CHAR16 *Translated,
IN OUT UINTN *TranslatedSize
)
{
UINTN NumNodes;
RETURN_STATUS Status;
OFW_NODE Node[EXAMINED_OFW_NODES];
BOOLEAN IsFinal;
OFW_NODE Skip;
NumNodes = 0;
Status = ParseOfwNode (Ptr, &Node[NumNodes], &IsFinal);
if (Status == RETURN_NOT_FOUND) {
DEBUG ((DEBUG_VERBOSE, "%a: no more nodes\n", __FUNCTION__));
return RETURN_NOT_FOUND;
}
while (Status == RETURN_SUCCESS && !IsFinal) {
++NumNodes;
Status = ParseOfwNode (
Ptr,
(NumNodes < EXAMINED_OFW_NODES) ? &Node[NumNodes] : &Skip,
&IsFinal
);
}
switch (Status) {
case RETURN_SUCCESS:
++NumNodes;
break;
case RETURN_INVALID_PARAMETER:
DEBUG ((DEBUG_VERBOSE, "%a: parse error\n", __FUNCTION__));
return RETURN_INVALID_PARAMETER;
default:
ASSERT (0);
}
Status = TranslateOfwNodes (
Node,
NumNodes < EXAMINED_OFW_NODES ? NumNodes : EXAMINED_OFW_NODES,
Translated,
TranslatedSize);
switch (Status) {
case RETURN_SUCCESS:
DEBUG ((DEBUG_VERBOSE, "%a: success: \"%s\"\n", __FUNCTION__, Translated));
break;
case RETURN_BUFFER_TOO_SMALL:
DEBUG ((DEBUG_VERBOSE, "%a: buffer too small\n", __FUNCTION__));
break;
case RETURN_UNSUPPORTED:
DEBUG ((DEBUG_VERBOSE, "%a: unsupported\n", __FUNCTION__));
break;
default:
ASSERT (0);
}
return Status;
}
/**
Convert the UEFI DevicePath to full text representation with DevPathToText,
then match the UEFI device path fragment in Translated against it.
@param[in] Translated UEFI device path fragment, translated from
OpenFirmware format, to search for.
@param[in] TranslatedLength The length of Translated in CHAR16's.
@param[in] DevicePath Boot option device path whose textual rendering
to search in.
@param[in] DevPathToText Binary-to-text conversion protocol for DevicePath.
@retval TRUE If Translated was found at the beginning of DevicePath after
converting the latter to text.
@retval FALSE If DevicePath was NULL, or it could not be converted, or there
was no match.
**/
STATIC
BOOLEAN
Match (
IN CONST CHAR16 *Translated,
IN UINTN TranslatedLength,
IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
)
{
CHAR16 *Converted;
BOOLEAN Result;
Converted = ConvertDevicePathToText (
DevicePath,
FALSE, // DisplayOnly
FALSE // AllowShortcuts
);
if (Converted == NULL) {
return FALSE;
}
OvmfPkg: QemuBootOrder: expand relative device paths in UEFI boot options The prefix matching logic in Match() [OvmfPkg/Library/PlatformBdsLib/QemuBootOrder.c] expects UEFI boot options to specify full (absolute) device paths. However, partial (relative) device paths starting with a HD() node are valid for booting. By not recognizing them, QemuBootOrder.c misses (and deletes) valid boot options that would otherwise match the user's preference. Just like BdsLibBootViaBootOption() expands such paths with the BdsExpandPartitionPartialDevicePathToFull() function for booting, do the same in QemuBootOrder.c for prefix matching. This moves the very first call to BdsExpandPartitionPartialDevicePathToFull() to an earlier point. The following call tree explains it: BdsEntry() [IntelFrameworkModulePkg/Universal/BdsDxe/BdsEntry.c] PlatformBdsPolicyBehavior() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c] SetBootOrderFromQemu() [OvmfPkg/Library/PlatformBdsLib/QemuBootOrder.c] Match() [OvmfPkg/Library/PlatformBdsLib/QemuBootOrder.c] BdsExpandPartitionPartialDevicePathToFull() [IntelFrameworkModulePkg/Library/GenericBdsLib/BdsBoot.c] BdsBootDeviceSelect() [IntelFrameworkModulePkg/Universal/BdsDxe/BdsEntry.c] BdsLibBootViaBootOption() [IntelFrameworkModulePkg/Library/GenericBdsLib/BdsBoot.c] BdsExpandPartitionPartialDevicePathToFull() [IntelFrameworkModulePkg/Library/GenericBdsLib/BdsBoot.c] This should be fine, for two reasons: - the new, earlier call is still under BdsEntry(), - BdsExpandPartitionPartialDevicePathToFull() expects to be called repeatedly, even with the same set of HD() device paths. This function implements its own caching for device paths, likely for performance reasons. That fits this patch well because whatever device paths we expand under PlatformBdsPolicyBehavior() can be quickly looked up in BdsBootDeviceSelect(), so no work (ie. BdsLibConnectAllDriversToAllControllers()) should be wasted. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Tested-by: Michael Chang <mchang@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14665 6f19259b-4bc3-4df7-8a09-765794883524
2013-09-13 10:14:36 +02:00
//
// Attempt to expand any relative UEFI device path starting with HD() to an
// absolute device path first. The logic imitates BdsLibBootViaBootOption().
// We don't have to free the absolute device path,
// BdsExpandPartitionPartialDevicePathToFull() has internal caching.
//
Result = FALSE;
if (DevicePathType (DevicePath) == MEDIA_DEVICE_PATH &&
DevicePathSubType (DevicePath) == MEDIA_HARDDRIVE_DP) {
EFI_DEVICE_PATH_PROTOCOL *AbsDevicePath;
CHAR16 *AbsConverted;
AbsDevicePath = BdsExpandPartitionPartialDevicePathToFull (
(HARDDRIVE_DEVICE_PATH *) DevicePath);
if (AbsDevicePath == NULL) {
goto Exit;
}
AbsConverted = ConvertDevicePathToText (AbsDevicePath, FALSE, FALSE);
if (AbsConverted == NULL) {
goto Exit;
}
DEBUG ((DEBUG_VERBOSE,
"%a: expanded relative device path \"%s\" for prefix matching\n",
__FUNCTION__, Converted));
FreePool (Converted);
Converted = AbsConverted;
}
//
// Is Translated a prefix of Converted?
//
Result = (BOOLEAN)(StrnCmp (Converted, Translated, TranslatedLength) == 0);
DEBUG ((
DEBUG_VERBOSE,
"%a: against \"%s\": %a\n",
__FUNCTION__,
Converted,
Result ? "match" : "no match"
));
OvmfPkg: QemuBootOrder: expand relative device paths in UEFI boot options The prefix matching logic in Match() [OvmfPkg/Library/PlatformBdsLib/QemuBootOrder.c] expects UEFI boot options to specify full (absolute) device paths. However, partial (relative) device paths starting with a HD() node are valid for booting. By not recognizing them, QemuBootOrder.c misses (and deletes) valid boot options that would otherwise match the user's preference. Just like BdsLibBootViaBootOption() expands such paths with the BdsExpandPartitionPartialDevicePathToFull() function for booting, do the same in QemuBootOrder.c for prefix matching. This moves the very first call to BdsExpandPartitionPartialDevicePathToFull() to an earlier point. The following call tree explains it: BdsEntry() [IntelFrameworkModulePkg/Universal/BdsDxe/BdsEntry.c] PlatformBdsPolicyBehavior() [OvmfPkg/Library/PlatformBdsLib/BdsPlatform.c] SetBootOrderFromQemu() [OvmfPkg/Library/PlatformBdsLib/QemuBootOrder.c] Match() [OvmfPkg/Library/PlatformBdsLib/QemuBootOrder.c] BdsExpandPartitionPartialDevicePathToFull() [IntelFrameworkModulePkg/Library/GenericBdsLib/BdsBoot.c] BdsBootDeviceSelect() [IntelFrameworkModulePkg/Universal/BdsDxe/BdsEntry.c] BdsLibBootViaBootOption() [IntelFrameworkModulePkg/Library/GenericBdsLib/BdsBoot.c] BdsExpandPartitionPartialDevicePathToFull() [IntelFrameworkModulePkg/Library/GenericBdsLib/BdsBoot.c] This should be fine, for two reasons: - the new, earlier call is still under BdsEntry(), - BdsExpandPartitionPartialDevicePathToFull() expects to be called repeatedly, even with the same set of HD() device paths. This function implements its own caching for device paths, likely for performance reasons. That fits this patch well because whatever device paths we expand under PlatformBdsPolicyBehavior() can be quickly looked up in BdsBootDeviceSelect(), so no work (ie. BdsLibConnectAllDriversToAllControllers()) should be wasted. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Tested-by: Michael Chang <mchang@suse.com> Reviewed-by: Jordan Justen <jordan.l.justen@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14665 6f19259b-4bc3-4df7-8a09-765794883524
2013-09-13 10:14:36 +02:00
Exit:
FreePool (Converted);
return Result;
}
/**
Append some of the unselected active boot options to the boot order.
This function should accommodate any further policy changes in "boot option
survival". Currently we're adding back everything that starts with neither
PciRoot() nor HD().
@param[in,out] BootOrder The structure holding the boot order to
complete. The caller is responsible for
initializing (and potentially populating) it
before calling this function.
@param[in,out] ActiveOption The array of active boot options to scan.
Entries marked as Appended will be skipped.
Those of the rest that satisfy the survival
policy will be added to BootOrder with
BootOrderAppend().
@param[in] ActiveCount Number of elements in ActiveOption.
@retval RETURN_SUCCESS BootOrder has been extended with any eligible boot
options.
@return Error codes returned by BootOrderAppend().
**/
STATIC
RETURN_STATUS
BootOrderComplete (
IN OUT BOOT_ORDER *BootOrder,
IN OUT ACTIVE_OPTION *ActiveOption,
IN UINTN ActiveCount
)
{
RETURN_STATUS Status;
UINTN Idx;
Status = RETURN_SUCCESS;
Idx = 0;
while (!RETURN_ERROR (Status) && Idx < ActiveCount) {
if (!ActiveOption[Idx].Appended) {
CONST BDS_COMMON_OPTION *Current;
CONST EFI_DEVICE_PATH_PROTOCOL *FirstNode;
Current = ActiveOption[Idx].BootOption;
FirstNode = Current->DevicePath;
if (FirstNode != NULL) {
CHAR16 *Converted;
STATIC CHAR16 ConvFallBack[] = L"<unable to convert>";
BOOLEAN Keep;
Converted = ConvertDevicePathToText (FirstNode, FALSE, FALSE);
if (Converted == NULL) {
Converted = ConvFallBack;
}
Keep = TRUE;
if (DevicePathType(FirstNode) == MEDIA_DEVICE_PATH &&
DevicePathSubType(FirstNode) == MEDIA_HARDDRIVE_DP) {
//
// drop HD()
//
Keep = FALSE;
} else if (DevicePathType(FirstNode) == ACPI_DEVICE_PATH &&
DevicePathSubType(FirstNode) == ACPI_DP) {
ACPI_HID_DEVICE_PATH *Acpi;
Acpi = (ACPI_HID_DEVICE_PATH *) FirstNode;
if ((Acpi->HID & PNP_EISA_ID_MASK) == PNP_EISA_ID_CONST &&
EISA_ID_TO_NUM (Acpi->HID) == 0x0a03) {
//
// drop PciRoot()
//
Keep = FALSE;
}
}
if (Keep) {
Status = BootOrderAppend (BootOrder, &ActiveOption[Idx]);
if (!RETURN_ERROR (Status)) {
DEBUG ((DEBUG_VERBOSE, "%a: keeping \"%s\"\n", __FUNCTION__,
Converted));
}
} else {
DEBUG ((DEBUG_VERBOSE, "%a: dropping \"%s\"\n", __FUNCTION__,
Converted));
}
if (Converted != ConvFallBack) {
FreePool (Converted);
}
}
}
++Idx;
}
return Status;
}
/**
Set the boot order based on configuration retrieved from QEMU.
Attempt to retrieve the "bootorder" fw_cfg file from QEMU. Translate the
OpenFirmware device paths therein to UEFI device path fragments. Match the
translated fragments against BootOptionList, and rewrite the BootOrder NvVar
so that it corresponds to the order described in fw_cfg.
@param[in] BootOptionList A boot option list, created with
BdsLibEnumerateAllBootOption ().
@retval RETURN_SUCCESS BootOrder NvVar rewritten.
@retval RETURN_UNSUPPORTED QEMU's fw_cfg is not supported.
@retval RETURN_NOT_FOUND Empty or nonexistent "bootorder" fw_cfg
file, or no match found between the
"bootorder" fw_cfg file and BootOptionList.
@retval RETURN_INVALID_PARAMETER Parse error in the "bootorder" fw_cfg file.
@retval RETURN_OUT_OF_RESOURCES Memory allocation failed.
@return Values returned by gBS->LocateProtocol ()
or gRT->SetVariable ().
**/
RETURN_STATUS
SetBootOrderFromQemu (
IN CONST LIST_ENTRY *BootOptionList
)
{
RETURN_STATUS Status;
FIRMWARE_CONFIG_ITEM FwCfgItem;
UINTN FwCfgSize;
CHAR8 *FwCfg;
CONST CHAR8 *FwCfgPtr;
BOOT_ORDER BootOrder;
ACTIVE_OPTION *ActiveOption;
UINTN ActiveCount;
UINTN TranslatedSize;
CHAR16 Translated[TRANSLATION_OUTPUT_SIZE];
Status = QemuFwCfgFindFile ("bootorder", &FwCfgItem, &FwCfgSize);
if (Status != RETURN_SUCCESS) {
return Status;
}
if (FwCfgSize == 0) {
return RETURN_NOT_FOUND;
}
FwCfg = AllocatePool (FwCfgSize);
if (FwCfg == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
QemuFwCfgSelectItem (FwCfgItem);
QemuFwCfgReadBytes (FwCfgSize, FwCfg);
if (FwCfg[FwCfgSize - 1] != '\0') {
Status = RETURN_INVALID_PARAMETER;
goto ErrorFreeFwCfg;
}
DEBUG ((DEBUG_VERBOSE, "%a: FwCfg:\n", __FUNCTION__));
DEBUG ((DEBUG_VERBOSE, "%a\n", FwCfg));
DEBUG ((DEBUG_VERBOSE, "%a: FwCfg: <end>\n", __FUNCTION__));
FwCfgPtr = FwCfg;
BootOrder.Produced = 0;
BootOrder.Allocated = 1;
BootOrder.Data = AllocatePool (
BootOrder.Allocated * sizeof (*BootOrder.Data)
);
if (BootOrder.Data == NULL) {
Status = RETURN_OUT_OF_RESOURCES;
goto ErrorFreeFwCfg;
}
Status = CollectActiveOptions (BootOptionList, &ActiveOption, &ActiveCount);
if (RETURN_ERROR (Status)) {
goto ErrorFreeBootOrder;
}
//
// translate each OpenFirmware path
//
TranslatedSize = sizeof (Translated) / sizeof (Translated[0]);
Status = TranslateOfwPath (&FwCfgPtr, Translated, &TranslatedSize);
while (Status == RETURN_SUCCESS ||
Status == RETURN_UNSUPPORTED ||
Status == RETURN_BUFFER_TOO_SMALL) {
if (Status == RETURN_SUCCESS) {
UINTN Idx;
//
// match translated OpenFirmware path against all active boot options
//
for (Idx = 0; Idx < ActiveCount; ++Idx) {
if (Match (
Translated,
TranslatedSize, // contains length, not size, in CHAR16's here
ActiveOption[Idx].BootOption->DevicePath
)
) {
//
// match found, store ID and continue with next OpenFirmware path
//
Status = BootOrderAppend (&BootOrder, &ActiveOption[Idx]);
if (Status != RETURN_SUCCESS) {
goto ErrorFreeActiveOption;
}
break;
}
} // scanned all active boot options
} // translation successful
TranslatedSize = sizeof (Translated) / sizeof (Translated[0]);
Status = TranslateOfwPath (&FwCfgPtr, Translated, &TranslatedSize);
} // scanning of OpenFirmware paths done
if (Status == RETURN_NOT_FOUND && BootOrder.Produced > 0) {
//
// No more OpenFirmware paths, some matches found: rewrite BootOrder NvVar.
// Some of the active boot options that have not been selected over fw_cfg
// should be preserved at the end of the boot order.
//
Status = BootOrderComplete (&BootOrder, ActiveOption, ActiveCount);
if (RETURN_ERROR (Status)) {
goto ErrorFreeActiveOption;
}
//
// See Table 10 in the UEFI Spec 2.3.1 with Errata C for the required
// attributes.
//
Status = gRT->SetVariable (
L"BootOrder",
&gEfiGlobalVariableGuid,
EFI_VARIABLE_NON_VOLATILE |
EFI_VARIABLE_BOOTSERVICE_ACCESS |
EFI_VARIABLE_RUNTIME_ACCESS,
BootOrder.Produced * sizeof (*BootOrder.Data),
BootOrder.Data
);
DEBUG ((
DEBUG_INFO,
"%a: setting BootOrder: %a\n",
__FUNCTION__,
Status == EFI_SUCCESS ? "success" : "error"
));
}
ErrorFreeActiveOption:
FreePool (ActiveOption);
ErrorFreeBootOrder:
FreePool (BootOrder.Data);
ErrorFreeFwCfg:
FreePool (FwCfg);
return Status;
}