audk/EdkModulePkg/Universal/DevicePath/Dxe/DevicePathFromText.c

2435 lines
61 KiB
C
Raw Normal View History

/*++
Copyright (c) 2006, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
DevicePathFromText.c
Abstract:
DevicePathFromText protocol as defined in the UEFI 2.0 specification.
--*/
#include <protocol/DevicePathFromText.h>
#include "DevicePath.h"
CHAR16 *
StrDuplicate (
IN CONST CHAR16 *Src
)
/*++
Routine Description:
Duplicate a string
Arguments:
Src - Source string
Returns:
Duplicated string
--*/
{
UINTN Length;
CHAR16 *ReturnStr;
Length = StrLen ((CHAR16 *) Src);
ReturnStr = AllocateCopyPool ((Length + 1) * sizeof (CHAR16), (VOID *) Src);
return ReturnStr;
}
CHAR16 *
GetParamByNodeName (
IN CHAR16 *Str,
IN CHAR16 *NodeName
)
/*++
Routine Description:
Get parameter in a pair of parentheses follow the given node name.
For example, given the "Pci(0,1)" and NodeName "Pci", it returns "0,1".
Arguments:
Str - Device Path Text
NodeName - Name of the node
Returns:
Parameter text for the node
--*/
{
CHAR16 *ParamStr;
CHAR16 *StrPointer;
UINTN NodeNameLength;
UINTN ParameterLength;
//
// Check whether the node name matchs
//
NodeNameLength = StrLen (NodeName);
if (CompareMem (Str, NodeName, NodeNameLength * sizeof (CHAR16)) != 0) {
return NULL;
}
ParamStr = Str + NodeNameLength;
if (!IS_LEFT_PARENTH (*ParamStr)) {
return NULL;
}
//
// Skip the found '(' and find first occurrence of ')'
//
ParamStr++;
ParameterLength = 0;
StrPointer = ParamStr;
while (!IS_NULL (*StrPointer)) {
if (IS_RIGHT_PARENTH (*StrPointer)) {
break;
}
StrPointer++;
ParameterLength++;
}
if (IS_NULL (*StrPointer)) {
//
// ')' not found
//
return NULL;
}
ParamStr = AllocateCopyPool ((ParameterLength + 1) * sizeof (CHAR16), ParamStr);
if (ParamStr == NULL) {
return NULL;
}
//
// Terminate the parameter string
//
ParamStr[ParameterLength] = L'\0';
return ParamStr;
}
CHAR16 *
SplitStr (
IN OUT CHAR16 **List,
IN CHAR16 Separator
)
/*++
Routine Description:
Get current sub-string from a string list, before return
the list header is moved to next sub-string. The sub-string is separated
by the specified character. For example, the separator is ',', the string
list is "2,0,3", it returns "2", the remain list move to "2,3"
Arguments:
List - A string list separated by the specified separator
Separator - The separator character
Returns:
pointer - The current sub-string
--*/
{
CHAR16 *Str;
CHAR16 *ReturnStr;
Str = *List;
ReturnStr = Str;
if (IS_NULL (*Str)) {
return ReturnStr;
}
//
// Find first occurrence of the separator
//
while (!IS_NULL (*Str)) {
if (*Str == Separator) {
break;
}
Str++;
}
if (*Str == Separator) {
//
// Find a sub-string, terminate it
//
*Str = L'\0';
Str++;
}
//
// Move to next sub-string
//
*List = Str;
return ReturnStr;
}
CHAR16 *
GetNextParamStr (
IN OUT CHAR16 **List
)
{
//
// The separator is comma
//
return SplitStr (List, L',');
}
CHAR16 *
GetNextDeviceNodeStr (
IN OUT CHAR16 **DevicePath,
OUT BOOLEAN *IsInstanceEnd
)
/*++
Routine Description:
Get one device node from entire device path text.
Arguments:
Str - The entire device path text string
IsInstanceEnd - This node is the end of a device path instance
Returns:
a pointer - A device node text
NULL - No more device node available
--*/
{
CHAR16 *Str;
CHAR16 *ReturnStr;
UINTN ParenthesesStack;
Str = *DevicePath;
if (IS_NULL (*Str)) {
return NULL;
}
//
// Skip the leading '/', '(', ')' and ','
//
while (!IS_NULL (*Str)) {
if (!IS_SLASH (*Str) &&
!IS_COMMA (*Str) &&
!IS_LEFT_PARENTH (*Str) &&
!IS_RIGHT_PARENTH (*Str)) {
break;
}
Str++;
}
ReturnStr = Str;
//
// Scan for the separator of this device node, '/' or ','
//
ParenthesesStack = 0;
while (!IS_NULL (*Str)) {
if ((IS_COMMA (*Str) || IS_SLASH (*Str)) && (ParenthesesStack == 0)) {
break;
}
if (IS_LEFT_PARENTH (*Str)) {
ParenthesesStack++;
} else if (IS_RIGHT_PARENTH (*Str)) {
ParenthesesStack--;
}
Str++;
}
if (ParenthesesStack != 0) {
//
// The '(' doesn't pair with ')', invalid device path text
//
return NULL;
}
if (IS_COMMA (*Str)) {
*IsInstanceEnd = TRUE;
*Str = L'\0';
Str++;
} else {
*IsInstanceEnd = FALSE;
if (!IS_NULL (*Str)) {
*Str = L'\0';
Str++;
}
}
*DevicePath = Str;
return ReturnStr;
}
BOOLEAN
IsHexDigit (
OUT UINT8 *Digit,
IN CHAR16 Char
)
/*++
Routine Description:
Determines if a Unicode character is a hexadecimal digit.
The test is case insensitive.
Arguments:
Digit - Pointer to byte that receives the value of the hex character.
Char - Unicode character to test.
Returns:
TRUE - If the character is a hexadecimal digit.
FALSE - Otherwise.
--*/
{
if ((Char >= L'0') && (Char <= L'9')) {
*Digit = (UINT8) (Char - L'0');
return TRUE;
}
if ((Char >= L'A') && (Char <= L'F')) {
*Digit = (UINT8) (Char - L'A' + 0x0A);
return TRUE;
}
if ((Char >= L'a') && (Char <= L'f')) {
*Digit = (UINT8) (Char - L'a' + 0x0A);
return TRUE;
}
return FALSE;
}
CHAR16
NibbleToHexChar (
IN UINT8 Nibble
)
/*++
Routine Description:
Converts the low nibble of a byte to hex unicode character.
Arguments:
Nibble - lower nibble of a byte.
Returns:
Hex unicode character.
--*/
{
Nibble &= 0x0F;
if (Nibble <= 0x9) {
return (CHAR16)(Nibble + L'0');
}
return (CHAR16)(Nibble - 0xA + L'A');
}
EFI_STATUS
HexStringToBuf (
IN OUT UINT8 *Buf,
IN OUT UINTN *Len,
IN CHAR16 *Str,
OUT UINTN *ConvertedStrLen OPTIONAL
)
/*++
Routine Description:
Converts Unicode string to binary buffer.
The conversion may be partial.
The first character in the string that is not hex digit stops the conversion.
At a minimum, any blob of data could be represented as a hex string.
Arguments:
Buf - Pointer to buffer that receives the data.
Len - Length in bytes of the buffer to hold converted data.
If routine return with EFI_SUCCESS, containing length of converted data.
If routine return with EFI_BUFFER_TOO_SMALL, containg length of buffer desired.
Str - String to be converted from.
ConvertedStrLen - Length of the Hex String consumed.
Returns:
EFI_SUCCESS: Routine Success.
EFI_BUFFER_TOO_SMALL: The buffer is too small to hold converted data.
EFI_
--*/
{
UINTN HexCnt;
UINTN Idx;
UINTN BufferLength;
UINT8 Digit;
UINT8 Byte;
//
// Find out how many hex characters the string has.
//
for (Idx = 0, HexCnt = 0; IsHexDigit (&Digit, Str[Idx]); Idx++, HexCnt++);
if (HexCnt == 0) {
*Len = 0;
return EFI_SUCCESS;
}
//
// Two Unicode characters make up 1 buffer byte. Round up.
//
BufferLength = (HexCnt + 1) / 2;
//
// Test if buffer is passed enough.
//
if (BufferLength > (*Len)) {
*Len = BufferLength;
return EFI_BUFFER_TOO_SMALL;
}
*Len = BufferLength;
for (Idx = 0; Idx < HexCnt; Idx++) {
IsHexDigit (&Digit, Str[HexCnt - 1 - Idx]);
//
// For odd charaters, write the lower nibble for each buffer byte,
// and for even characters, the upper nibble.
//
if ((Idx & 1) == 0) {
Byte = Digit;
} else {
Byte = Buf[Idx / 2];
Byte &= 0x0F;
Byte |= Digit << 4;
}
Buf[Idx / 2] = Byte;
}
if (ConvertedStrLen != NULL) {
*ConvertedStrLen = HexCnt;
}
return EFI_SUCCESS;
}
EFI_STATUS
BufToHexString (
IN OUT CHAR16 *Str,
IN OUT UINTN *HexStringBufferLength,
IN UINT8 *Buf,
IN UINTN Len
)
/*++
Routine Description:
Converts binary buffer to Unicode string.
At a minimum, any blob of data could be represented as a hex string.
Arguments:
Str - Pointer to the string.
HexStringBufferLength - Length in bytes of buffer to hold the hex string. Includes tailing '\0' character.
If routine return with EFI_SUCCESS, containing length of hex string buffer.
If routine return with EFI_BUFFER_TOO_SMALL, containg length of hex string buffer desired.
Buf - Buffer to be converted from.
Len - Length in bytes of the buffer to be converted.
Returns:
EFI_SUCCESS: Routine success.
EFI_BUFFER_TOO_SMALL: The hex string buffer is too small.
--*/
{
UINTN Idx;
UINT8 Byte;
UINTN StrLen;
//
// Make sure string is either passed or allocate enough.
// It takes 2 Unicode characters (4 bytes) to represent 1 byte of the binary buffer.
// Plus the Unicode termination character.
//
StrLen = Len * 2;
if (StrLen > ((*HexStringBufferLength) - 1)) {
*HexStringBufferLength = StrLen + 1;
return EFI_BUFFER_TOO_SMALL;
}
*HexStringBufferLength = StrLen + 1;
//
// Ends the string.
//
Str[StrLen] = L'\0';
for (Idx = 0; Idx < Len; Idx++) {
Byte = Buf[Idx];
Str[StrLen - 1 - Idx * 2] = NibbleToHexChar (Byte);
Str[StrLen - 2 - Idx * 2] = NibbleToHexChar ((UINT8)(Byte >> 4));
}
return EFI_SUCCESS;
}
CHAR16 *
TrimHexStr (
IN CHAR16 *Str
)
/*++
Routine Description:
Skip the leading white space and '0x' or '0X' of a hex string
Arguments:
Str - The hex string
Returns:
--*/
{
//
// skip preceeding white space
//
while (*Str && *Str == ' ') {
Str += 1;
}
//
// skip preceeding zeros
//
while (*Str && *Str == '0') {
Str += 1;
}
//
// skip preceeding white space
//
if (*Str && (*Str == 'x' || *Str == 'X')) {
Str += 1;
}
return Str;
}
UINTN
Xtoi (
IN CHAR16 *Str
)
/*++
Routine Description:
Convert hex string to uint
Arguments:
Str - The string
Returns:
--*/
{
UINTN Rvalue;
UINTN Length;
ASSERT (Str != NULL);
//
// convert hex digits
//
Rvalue = 0;
Length = sizeof (UINTN);
HexStringToBuf ((UINT8 *) &Rvalue, &Length, TrimHexStr (Str), NULL);
return Rvalue;
}
VOID
Xtoi64 (
IN CHAR16 *Str,
IN UINT64 *Data
)
/*++
Routine Description:
Convert hex string to 64 bit data.
Arguments:
Str - The string
Returns:
--*/
{
UINTN Length;
Length = sizeof (UINT64);
HexStringToBuf ((UINT8 *) Data, &Length, TrimHexStr (Str), NULL);
}
UINTN
Atoi (
IN CHAR16 *str
)
/*++
Routine Description:
Convert decimal string to uint
Arguments:
Str - The string
Returns:
--*/
{
UINTN Rvalue;
CHAR16 Char;
UINTN High;
UINTN Low;
ASSERT (str != NULL);
High = (UINTN) -1 / 10;
Low = (UINTN) -1 % 10;
//
// skip preceeding white space
//
while (*str && *str == ' ') {
str += 1;
}
//
// convert digits
//
Rvalue = 0;
Char = *(str++);
while (Char) {
if (Char >= '0' && Char <= '9') {
if (Rvalue > High || Rvalue == High && Char - '0' > (INTN) Low) {
return (UINTN) -1;
}
Rvalue = (Rvalue * 10) + Char - '0';
} else {
break;
}
Char = *(str++);
}
return Rvalue;
}
EFI_STATUS
StrToBuf (
OUT UINT8 *Buf,
IN UINTN BufferLength,
IN CHAR16 *Str
)
{
UINTN Index;
UINTN StrLength;
UINT8 Digit;
UINT8 Byte;
//
// Two hex char make up one byte
//
StrLength = BufferLength * sizeof (CHAR16);
for(Index = 0; Index < StrLength; Index++, Str++) {
IsHexDigit (&Digit, *Str);
//
// For odd charaters, write the upper nibble for each buffer byte,
// and for even characters, the lower nibble.
//
if ((Index & 1) == 0) {
Byte = Digit << 4;
} else {
Byte = Buf[Index / 2];
Byte &= 0xF0;
Byte |= Digit;
}
Buf[Index / 2] = Byte;
}
return EFI_SUCCESS;
}
EFI_STATUS
StrToGuid (
IN CHAR16 *Str,
OUT EFI_GUID *Guid
)
{
UINTN BufferLength;
UINTN ConvertedStrLen;
EFI_STATUS Status;
BufferLength = sizeof (Guid->Data1);
Status = HexStringToBuf ((UINT8 *) &Guid->Data1, &BufferLength, Str, &ConvertedStrLen);
if (EFI_ERROR (Status)) {
return Status;
}
Str += ConvertedStrLen;
if (IS_HYPHEN (*Str)) {
Str++;
} else {
return EFI_UNSUPPORTED;
}
BufferLength = sizeof (Guid->Data2);
Status = HexStringToBuf ((UINT8 *) &Guid->Data2, &BufferLength, Str, &ConvertedStrLen);
if (EFI_ERROR (Status)) {
return Status;
}
Str += ConvertedStrLen;
if (IS_HYPHEN (*Str)) {
Str++;
} else {
return EFI_UNSUPPORTED;
}
BufferLength = sizeof (Guid->Data3);
Status = HexStringToBuf ((UINT8 *) &Guid->Data3, &BufferLength, Str, &ConvertedStrLen);
if (EFI_ERROR (Status)) {
return Status;
}
Str += ConvertedStrLen;
if (IS_HYPHEN (*Str)) {
Str++;
} else {
return EFI_UNSUPPORTED;
}
StrToBuf (&Guid->Data4[0], 2, Str);
//
// Skip 2 byte hex chars
//
Str += 2 * 2;
if (IS_HYPHEN (*Str)) {
Str++;
} else {
return EFI_UNSUPPORTED;
}
StrToBuf (&Guid->Data4[2], 6, Str);
return EFI_SUCCESS;
}
VOID
StrToIPv4Addr (
IN OUT CHAR16 **Str,
OUT EFI_IPv4_ADDRESS *IPv4Addr
)
{
UINTN Index;
for (Index = 0; Index < 4; Index++) {
IPv4Addr->Addr[Index] = (UINT8) Atoi (SplitStr (Str, L'.'));
}
}
VOID
StrToIPv6Addr (
IN OUT CHAR16 **Str,
OUT EFI_IPv6_ADDRESS *IPv6Addr
)
{
UINTN Index;
UINT16 Data;
for (Index = 0; Index < 8; Index++) {
Data = (UINT16) Xtoi (SplitStr (Str, L':'));
IPv6Addr->Addr[Index * 2] = (UINT8) (Data >> 8);
IPv6Addr->Addr[Index * 2 + 1] = (UINT8) (Data & 0xff);
}
}
VOID
StrToAscii (
IN CHAR16 *Str,
IN OUT CHAR8 **AsciiStr
)
{
CHAR8 *Dest;
Dest = *AsciiStr;
while (!IS_NULL (*Str)) {
*(Dest++) = (CHAR8) *(Str++);
}
*Dest = 0;
//
// Return the string next to it
//
*AsciiStr = Dest + 1;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextPci (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *FunctionStr;
CHAR16 *DeviceStr;
PCI_DEVICE_PATH *Pci;
FunctionStr = GetNextParamStr (&TextDeviceNode);
DeviceStr = GetNextParamStr (&TextDeviceNode);
Pci = (PCI_DEVICE_PATH *) CreateDeviceNode (
HARDWARE_DEVICE_PATH,
HW_PCI_DP,
sizeof (PCI_DEVICE_PATH)
);
Pci->Function = (UINT8) Xtoi (FunctionStr);
Pci->Device = (UINT8) Xtoi (DeviceStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Pci;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextPcCard (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *FunctionNumberStr;
PCCARD_DEVICE_PATH *Pccard;
FunctionNumberStr = GetNextParamStr (&TextDeviceNode);
Pccard = (PCCARD_DEVICE_PATH *) CreateDeviceNode (
HARDWARE_DEVICE_PATH,
HW_PCCARD_DP,
sizeof (PCCARD_DEVICE_PATH)
);
Pccard->FunctionNumber = (UINT8) Xtoi (FunctionNumberStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Pccard;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextMemoryMapped (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *StartingAddressStr;
CHAR16 *EndingAddressStr;
MEMMAP_DEVICE_PATH *MemMap;
StartingAddressStr = GetNextParamStr (&TextDeviceNode);
EndingAddressStr = GetNextParamStr (&TextDeviceNode);
MemMap = (MEMMAP_DEVICE_PATH *) CreateDeviceNode (
HARDWARE_DEVICE_PATH,
HW_MEMMAP_DP,
sizeof (MEMMAP_DEVICE_PATH)
);
MemMap->MemoryType = 0;
Xtoi64 (StartingAddressStr, &MemMap->StartingAddress);
Xtoi64 (EndingAddressStr, &MemMap->EndingAddress);
return (EFI_DEVICE_PATH_PROTOCOL *) MemMap;
}
EFI_DEVICE_PATH_PROTOCOL *
ConvertFromTextVendor (
IN CHAR16 *TextDeviceNode,
IN UINT8 Type,
IN UINT8 SubType
)
{
CHAR16 *GuidStr;
CHAR16 *DataStr;
UINTN Length;
VENDOR_DEVICE_PATH *Vendor;
GuidStr = GetNextParamStr (&TextDeviceNode);
DataStr = GetNextParamStr (&TextDeviceNode);
Length = StrLen (DataStr);
//
// Two hex characters make up 1 buffer byte
//
Length = (Length + 1) / 2;
Vendor = (VENDOR_DEVICE_PATH *) CreateDeviceNode (
Type,
SubType,
sizeof (VENDOR_DEVICE_PATH) + (UINT16) Length
);
StrToGuid (GuidStr, &Vendor->Guid);
StrToBuf (((UINT8 *) Vendor) + sizeof (VENDOR_DEVICE_PATH), Length, DataStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Vendor;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextVenHw (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextVendor (
TextDeviceNode,
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP
);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextCtrl (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *ControllerStr;
CONTROLLER_DEVICE_PATH *Controller;
ControllerStr = GetNextParamStr (&TextDeviceNode);
Controller = (CONTROLLER_DEVICE_PATH *) CreateDeviceNode (
HARDWARE_DEVICE_PATH,
HW_CONTROLLER_DP,
sizeof (CONTROLLER_DEVICE_PATH)
);
Controller->ControllerNumber = (UINT32) Xtoi (ControllerStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Controller;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextAcpi (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *HIDStr;
CHAR16 *UIDStr;
ACPI_HID_DEVICE_PATH *Acpi;
HIDStr = GetNextParamStr (&TextDeviceNode);
UIDStr = GetNextParamStr (&TextDeviceNode);
Acpi = (ACPI_HID_DEVICE_PATH *) CreateDeviceNode (
ACPI_DEVICE_PATH,
ACPI_DP,
sizeof (ACPI_HID_DEVICE_PATH)
);
if ((HIDStr[0] == L'P') && (HIDStr[1] == L'N') && (HIDStr[2] == L'P')) {
HIDStr += 3;
}
Acpi->HID = EISA_PNP_ID (Xtoi (HIDStr));
Acpi->UID = (UINT32) Xtoi (UIDStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Acpi;
}
EFI_DEVICE_PATH_PROTOCOL *
ConvertFromTextAcpi (
IN CHAR16 *TextDeviceNode,
IN UINT32 Hid
)
{
CHAR16 *UIDStr;
ACPI_HID_DEVICE_PATH *Acpi;
UIDStr = GetNextParamStr (&TextDeviceNode);
Acpi = (ACPI_HID_DEVICE_PATH *) CreateDeviceNode (
ACPI_DEVICE_PATH,
ACPI_DP,
sizeof (ACPI_HID_DEVICE_PATH)
);
Acpi->HID = Hid;
Acpi->UID = (UINT32) Xtoi (UIDStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Acpi;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextPciRoot (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextAcpi (TextDeviceNode, 0x0a0341d0);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextFloppy (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextAcpi (TextDeviceNode, 0x060441d0);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextKeyboard (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextAcpi (TextDeviceNode, 0x030141d0);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextSerial (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextAcpi (TextDeviceNode, 0x050141d0);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextParallelPort (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextAcpi (TextDeviceNode, 0x040141d0);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextAcpiEx (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *HIDStr;
CHAR16 *CIDStr;
CHAR16 *UIDStr;
CHAR16 *HIDSTRStr;
CHAR16 *CIDSTRStr;
CHAR16 *UIDSTRStr;
CHAR8 *AsciiStr;
UINT16 Length;
ACPI_EXTENDED_HID_DEVICE_PATH_WITH_STR *AcpiExt;
HIDStr = GetNextParamStr (&TextDeviceNode);
CIDStr = GetNextParamStr (&TextDeviceNode);
UIDStr = GetNextParamStr (&TextDeviceNode);
HIDSTRStr = GetNextParamStr (&TextDeviceNode);
CIDSTRStr = GetNextParamStr (&TextDeviceNode);
UIDSTRStr = GetNextParamStr (&TextDeviceNode);
Length = sizeof (ACPI_EXTENDED_HID_DEVICE_PATH) +
(UINT16) StrLen (HIDSTRStr) + 1 +
(UINT16) StrLen (UIDSTRStr) + 1 +
(UINT16) StrLen (CIDSTRStr) + 1;
AcpiExt = (ACPI_EXTENDED_HID_DEVICE_PATH_WITH_STR *) CreateDeviceNode (
ACPI_DEVICE_PATH,
ACPI_EXTENDED_DP,
Length
);
if ((HIDStr[0] == L'P') && (HIDStr[1] == L'N') && (HIDStr[2] == L'P')) {
HIDStr += 3;
AcpiExt->HID = EISA_PNP_ID (Xtoi (HIDStr));
} else {
AcpiExt->HID = (UINT32) Xtoi (HIDStr);
}
AcpiExt->UID = (UINT32) Xtoi (UIDStr);
AcpiExt->CID = (UINT32) Xtoi (CIDStr);
AsciiStr = AcpiExt->HidUidCidStr;
StrToAscii (HIDSTRStr, &AsciiStr);
StrToAscii (UIDSTRStr, &AsciiStr);
StrToAscii (CIDSTRStr, &AsciiStr);
return (EFI_DEVICE_PATH_PROTOCOL *) AcpiExt;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextAcpiExp (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *HIDStr;
CHAR16 *CIDStr;
CHAR16 *UIDSTRStr;
CHAR8 *AsciiStr;
UINT16 Length;
ACPI_EXTENDED_HID_DEVICE_PATH_WITH_STR *AcpiExt;
HIDStr = GetNextParamStr (&TextDeviceNode);
CIDStr = GetNextParamStr (&TextDeviceNode);
UIDSTRStr = GetNextParamStr (&TextDeviceNode);
Length = sizeof (ACPI_EXTENDED_HID_DEVICE_PATH) + (UINT16) StrLen (UIDSTRStr) + 3;
AcpiExt = (ACPI_EXTENDED_HID_DEVICE_PATH_WITH_STR *) CreateDeviceNode (
ACPI_DEVICE_PATH,
ACPI_EXTENDED_DP,
Length
);
if ((HIDStr[0] == L'P') && (HIDStr[1] == L'N') && (HIDStr[2] == L'P')) {
HIDStr += 3;
AcpiExt->HID = EISA_PNP_ID (Xtoi (HIDStr));
} else {
AcpiExt->HID = (UINT32) Xtoi (HIDStr);
}
AcpiExt->UID = 0;
AcpiExt->CID = (UINT32) Xtoi (CIDStr);
AsciiStr = AcpiExt->HidUidCidStr;
//
// HID string is NULL
//
*AsciiStr = 0;
//
// Convert UID string
//
AsciiStr++;
StrToAscii (UIDSTRStr, &AsciiStr);
//
// CID string is NULL
//
*AsciiStr = 0;
return (EFI_DEVICE_PATH_PROTOCOL *) AcpiExt;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextAta (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *PrimarySecondaryStr;
CHAR16 *SlaveMasterStr;
CHAR16 *LunStr;
ATAPI_DEVICE_PATH *Atapi;
Atapi = (ATAPI_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_ATAPI_DP,
sizeof (ATAPI_DEVICE_PATH)
);
PrimarySecondaryStr = GetNextParamStr (&TextDeviceNode);
SlaveMasterStr = GetNextParamStr (&TextDeviceNode);
LunStr = GetNextParamStr (&TextDeviceNode);
Atapi->PrimarySecondary = (StrCmp (PrimarySecondaryStr, L"Primary") == 0) ? (UINT8) 0 : (UINT8) 1;
Atapi->SlaveMaster = (StrCmp (SlaveMasterStr, L"Master") == 0) ? (UINT8) 0 : (UINT8) 1;
Atapi->Lun = (UINT16) Xtoi (LunStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Atapi;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextScsi (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *PunStr;
CHAR16 *LunStr;
SCSI_DEVICE_PATH *Scsi;
PunStr = GetNextParamStr (&TextDeviceNode);
LunStr = GetNextParamStr (&TextDeviceNode);
Scsi = (SCSI_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_SCSI_DP,
sizeof (SCSI_DEVICE_PATH)
);
Scsi->Pun = (UINT16) Xtoi (PunStr);
Scsi->Lun = (UINT16) Xtoi (LunStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Scsi;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextFibre (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *WWNStr;
CHAR16 *LunStr;
FIBRECHANNEL_DEVICE_PATH *Fibre;
WWNStr = GetNextParamStr (&TextDeviceNode);
LunStr = GetNextParamStr (&TextDeviceNode);
Fibre = (FIBRECHANNEL_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_FIBRECHANNEL_DP,
sizeof (FIBRECHANNEL_DEVICE_PATH)
);
Fibre->Reserved = 0;
Xtoi64 (WWNStr, &Fibre->WWN);
Xtoi64 (LunStr, &Fibre->Lun);
return (EFI_DEVICE_PATH_PROTOCOL *) Fibre;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromText1394 (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *GuidStr;
F1394_DEVICE_PATH *F1394;
GuidStr = GetNextParamStr (&TextDeviceNode);
F1394 = (F1394_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_1394_DP,
sizeof (F1394_DEVICE_PATH)
);
F1394->Reserved = 0;
Xtoi64 (GuidStr, &F1394->Guid);
return (EFI_DEVICE_PATH_PROTOCOL *) F1394;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsb (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *PortStr;
CHAR16 *InterfaceStr;
USB_DEVICE_PATH *Usb;
PortStr = GetNextParamStr (&TextDeviceNode);
InterfaceStr = GetNextParamStr (&TextDeviceNode);
Usb = (USB_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_USB_DP,
sizeof (USB_DEVICE_PATH)
);
Usb->ParentPortNumber = (UINT8) Xtoi (PortStr);
Usb->InterfaceNumber = (UINT8) Xtoi (InterfaceStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Usb;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextI2O (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *TIDStr;
I2O_DEVICE_PATH *I2O;
TIDStr = GetNextParamStr (&TextDeviceNode);
I2O = (I2O_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_I2O_DP,
sizeof (I2O_DEVICE_PATH)
);
I2O->Tid = (UINT32) Xtoi (TIDStr);
return (EFI_DEVICE_PATH_PROTOCOL *) I2O;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextInfiniband (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *FlagsStr;
CHAR16 *GuidStr;
CHAR16 *SidStr;
CHAR16 *TidStr;
CHAR16 *DidStr;
EFI_GUID PortGid;
INFINIBAND_DEVICE_PATH *InfiniBand;
FlagsStr = GetNextParamStr (&TextDeviceNode);
GuidStr = GetNextParamStr (&TextDeviceNode);
SidStr = GetNextParamStr (&TextDeviceNode);
TidStr = GetNextParamStr (&TextDeviceNode);
DidStr = GetNextParamStr (&TextDeviceNode);
InfiniBand = (INFINIBAND_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_INFINIBAND_DP,
sizeof (INFINIBAND_DEVICE_PATH)
);
InfiniBand->ResourceFlags = (UINT32) Xtoi (FlagsStr);
StrToGuid (GuidStr, &PortGid);
CopyMem (InfiniBand->PortGid, &PortGid, sizeof (EFI_GUID));
Xtoi64 (SidStr, &InfiniBand->ServiceId);
Xtoi64 (TidStr, &InfiniBand->TargetPortId);
Xtoi64 (DidStr, &InfiniBand->DeviceId);
return (EFI_DEVICE_PATH_PROTOCOL *) InfiniBand;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextVenMsg (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextVendor (
TextDeviceNode,
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP
);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextVenPcAnsi (
IN CHAR16 *TextDeviceNode
)
{
VENDOR_DEVICE_PATH *Vendor;
Vendor = (VENDOR_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP,
sizeof (VENDOR_DEVICE_PATH));
Vendor->Guid = gEfiPcAnsiGuid;
return (EFI_DEVICE_PATH_PROTOCOL *) Vendor;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextVenVt100 (
IN CHAR16 *TextDeviceNode
)
{
VENDOR_DEVICE_PATH *Vendor;
Vendor = (VENDOR_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP,
sizeof (VENDOR_DEVICE_PATH));
Vendor->Guid = gEfiVT100Guid;
return (EFI_DEVICE_PATH_PROTOCOL *) Vendor;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextVenVt100Plus (
IN CHAR16 *TextDeviceNode
)
{
VENDOR_DEVICE_PATH *Vendor;
Vendor = (VENDOR_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP,
sizeof (VENDOR_DEVICE_PATH));
Vendor->Guid = gEfiVT100PlusGuid;
return (EFI_DEVICE_PATH_PROTOCOL *) Vendor;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextVenUtf8 (
IN CHAR16 *TextDeviceNode
)
{
VENDOR_DEVICE_PATH *Vendor;
Vendor = (VENDOR_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP,
sizeof (VENDOR_DEVICE_PATH));
Vendor->Guid = gEfiVTUTF8Guid;
return (EFI_DEVICE_PATH_PROTOCOL *) Vendor;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUartFlowCtrl (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *ValueStr;
UART_FLOW_CONTROL_DEVICE_PATH *UartFlowControl;
ValueStr = GetNextParamStr (&TextDeviceNode);
UartFlowControl = (UART_FLOW_CONTROL_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP,
sizeof (UART_FLOW_CONTROL_DEVICE_PATH)
);
UartFlowControl->Guid = mEfiDevicePathMessagingUartFlowControlGuid;
if (StrCmp (ValueStr, L"XonXoff") == 0) {
UartFlowControl->FlowControlMap = 2;
} else if (StrCmp (ValueStr, L"Hardware") == 0) {
UartFlowControl->FlowControlMap = 1;
} else {
UartFlowControl->FlowControlMap = 0;
}
return (EFI_DEVICE_PATH_PROTOCOL *) UartFlowControl;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextSAS (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *AddressStr;
CHAR16 *LunStr;
CHAR16 *RTPStr;
CHAR16 *SASSATAStr;
CHAR16 *LocationStr;
CHAR16 *ConnectStr;
CHAR16 *DriveBayStr;
CHAR16 *ReservedStr;
UINT16 Info;
SAS_DEVICE_PATH *Sas;
AddressStr = GetNextParamStr (&TextDeviceNode);
LunStr = GetNextParamStr (&TextDeviceNode);
RTPStr = GetNextParamStr (&TextDeviceNode);
SASSATAStr = GetNextParamStr (&TextDeviceNode);
LocationStr = GetNextParamStr (&TextDeviceNode);
ConnectStr = GetNextParamStr (&TextDeviceNode);
DriveBayStr = GetNextParamStr (&TextDeviceNode);
ReservedStr = GetNextParamStr (&TextDeviceNode);
Info = 0x0000;
Sas = (SAS_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP,
sizeof (SAS_DEVICE_PATH)
);
Sas->Guid = mEfiDevicePathMessagingSASGuid;
Xtoi64 (AddressStr, &Sas->SasAddress);
Xtoi64 (LunStr, &Sas->Lun);
Sas->RelativeTargetPort = (UINT16) Xtoi (RTPStr);
if (StrCmp (SASSATAStr, L"NoTopology") == 0)
;
else {
if (StrCmp (DriveBayStr, L"0") == 0) {
Info |= 0x0001;
} else {
Info |= 0x0002;
Info |= (Xtoi (DriveBayStr) << 8);
}
if (StrCmp (SASSATAStr, L"SATA") == 0) {
Info |= 0x0010;
}
if (StrCmp (LocationStr, L"External") == 0) {
Info |= 0x0020;
}
if (StrCmp (ConnectStr, L"Expanded") == 0) {
Info |= 0x0040;
}
}
Sas->DeviceTopology = Info;
Sas->Reserved = (UINT32) Xtoi (ReservedStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Sas;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextDebugPort (
IN CHAR16 *TextDeviceNode
)
{
VENDOR_DEFINED_MESSAGING_DEVICE_PATH *Vend;
Vend = (VENDOR_DEFINED_MESSAGING_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_VENDOR_DP,
sizeof (VENDOR_DEFINED_MESSAGING_DEVICE_PATH)
);
Vend->Guid = gEfiDebugPortProtocolGuid;
return (EFI_DEVICE_PATH_PROTOCOL *) Vend;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextMAC (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *AddressStr;
CHAR16 *IfTypeStr;
UINTN Length;
MAC_ADDR_DEVICE_PATH *MAC;
AddressStr = GetNextParamStr (&TextDeviceNode);
IfTypeStr = GetNextParamStr (&TextDeviceNode);
MAC = (MAC_ADDR_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_MAC_ADDR_DP,
sizeof (MAC_ADDR_DEVICE_PATH)
);
MAC->IfType = (UINT8) Xtoi (IfTypeStr);
Length = sizeof (EFI_MAC_ADDRESS);
StrToBuf (&MAC->MacAddress.Addr[0], Length, AddressStr);
return (EFI_DEVICE_PATH_PROTOCOL *) MAC;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextIPv4 (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *RemoteIPStr;
CHAR16 *ProtocolStr;
CHAR16 *TypeStr;
CHAR16 *LocalIPStr;
IPv4_DEVICE_PATH *IPv4;
RemoteIPStr = GetNextParamStr (&TextDeviceNode);
ProtocolStr = GetNextParamStr (&TextDeviceNode);
TypeStr = GetNextParamStr (&TextDeviceNode);
LocalIPStr = GetNextParamStr (&TextDeviceNode);
IPv4 = (IPv4_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_IPv4_DP,
sizeof (IPv4_DEVICE_PATH)
);
StrToIPv4Addr (&RemoteIPStr, &IPv4->RemoteIpAddress);
IPv4->Protocol = (StrCmp (ProtocolStr, L"UDP") == 0) ? (UINT16) 0 : (UINT16) 1;
if (StrCmp (TypeStr, L"Static") == 0) {
IPv4->StaticIpAddress = TRUE;
} else {
IPv4->StaticIpAddress = FALSE;
}
StrToIPv4Addr (&LocalIPStr, &IPv4->LocalIpAddress);
IPv4->LocalPort = 0;
IPv4->RemotePort = 0;
return (EFI_DEVICE_PATH_PROTOCOL *) IPv4;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextIPv6 (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *RemoteIPStr;
CHAR16 *ProtocolStr;
CHAR16 *TypeStr;
CHAR16 *LocalIPStr;
IPv6_DEVICE_PATH *IPv6;
RemoteIPStr = GetNextParamStr (&TextDeviceNode);
ProtocolStr = GetNextParamStr (&TextDeviceNode);
TypeStr = GetNextParamStr (&TextDeviceNode);
LocalIPStr = GetNextParamStr (&TextDeviceNode);
IPv6 = (IPv6_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_IPv6_DP,
sizeof (IPv6_DEVICE_PATH)
);
StrToIPv6Addr (&RemoteIPStr, &IPv6->RemoteIpAddress);
IPv6->Protocol = (StrCmp (ProtocolStr, L"UDP") == 0) ? (UINT16) 0 : (UINT16) 1;
if (StrCmp (TypeStr, L"Static") == 0) {
IPv6->StaticIpAddress = TRUE;
} else {
IPv6->StaticIpAddress = FALSE;
}
StrToIPv6Addr (&LocalIPStr, &IPv6->LocalIpAddress);
IPv6->LocalPort = 0;
IPv6->RemotePort = 0;
return (EFI_DEVICE_PATH_PROTOCOL *) IPv6;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUart (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *BaudStr;
CHAR16 *DataBitsStr;
CHAR16 *ParityStr;
CHAR16 *StopBitsStr;
UART_DEVICE_PATH *Uart;
BaudStr = GetNextParamStr (&TextDeviceNode);
DataBitsStr = GetNextParamStr (&TextDeviceNode);
ParityStr = GetNextParamStr (&TextDeviceNode);
StopBitsStr = GetNextParamStr (&TextDeviceNode);
Uart = (UART_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_UART_DP,
sizeof (UART_DEVICE_PATH)
);
Uart->BaudRate = (StrCmp (BaudStr, L"DEFAULT") == 0) ? 115200 : Atoi (BaudStr);
Uart->DataBits = (StrCmp (DataBitsStr, L"DEFAULT") == 0) ? (UINT8) 8 : (UINT8) Atoi (DataBitsStr);
switch (*ParityStr) {
case L'D':
Uart->Parity = 0;
break;
case L'N':
Uart->Parity = 1;
break;
case L'E':
Uart->Parity = 2;
break;
case L'O':
Uart->Parity = 3;
break;
case L'M':
Uart->Parity = 4;
break;
case L'S':
Uart->Parity = 5;
default:
Uart->Parity = 0xff;
}
if (StrCmp (StopBitsStr, L"D") == 0) {
Uart->StopBits = (UINT8) 0;
} else if (StrCmp (StopBitsStr, L"1") == 0) {
Uart->StopBits = (UINT8) 1;
} else if (StrCmp (StopBitsStr, L"1.5") == 0) {
Uart->StopBits = (UINT8) 2;
} else if (StrCmp (StopBitsStr, L"2") == 0) {
Uart->StopBits = (UINT8) 3;
} else {
Uart->StopBits = 0xff;
}
return (EFI_DEVICE_PATH_PROTOCOL *) Uart;
}
EFI_DEVICE_PATH_PROTOCOL *
ConvertFromTextUsbClass (
IN CHAR16 *TextDeviceNode,
IN USB_CLASS_TEXT *UsbClassText
)
{
CHAR16 *VIDStr;
CHAR16 *PIDStr;
CHAR16 *ClassStr;
CHAR16 *SubClassStr;
CHAR16 *ProtocolStr;
USB_CLASS_DEVICE_PATH *UsbClass;
UsbClass = (USB_CLASS_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_USB_CLASS_DP,
sizeof (USB_CLASS_DEVICE_PATH)
);
VIDStr = GetNextParamStr (&TextDeviceNode);
PIDStr = GetNextParamStr (&TextDeviceNode);
if (UsbClassText->ClassExist) {
ClassStr = GetNextParamStr (&TextDeviceNode);
UsbClass->DeviceClass = (UINT8) Xtoi (ClassStr);
} else {
UsbClass->DeviceClass = UsbClassText->Class;
}
if (UsbClassText->SubClassExist) {
SubClassStr = GetNextParamStr (&TextDeviceNode);
UsbClass->DeviceSubClass = (UINT8) Xtoi (SubClassStr);
} else {
UsbClass->DeviceSubClass = UsbClassText->SubClass;
}
ProtocolStr = GetNextParamStr (&TextDeviceNode);
UsbClass->VendorId = (UINT16) Xtoi (VIDStr);
UsbClass->ProductId = (UINT16) Xtoi (PIDStr);
UsbClass->DeviceProtocol = (UINT8) Xtoi (ProtocolStr);
return (EFI_DEVICE_PATH_PROTOCOL *) UsbClass;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbClass (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = TRUE;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbAudio (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_AUDIO;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbCDCControl (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_CDCCONTROL;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbHID (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_HID;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbImage (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_IMAGE;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbPrinter (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_PRINTER;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbMassStorage (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_MASS_STORAGE;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbHub (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_HUB;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbCDCData (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_CDCDATA;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbSmartCard (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_SMART_CARD;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbVideo (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_VIDEO;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbDiagnostic (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_DIAGNOSTIC;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbWireless (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_WIRELESS;
UsbClassText.SubClassExist = TRUE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbDeviceFirmwareUpdate (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_RESERVE;
UsbClassText.SubClassExist = FALSE;
UsbClassText.SubClass = USB_SUBCLASS_FW_UPDATE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbIrdaBridge (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_RESERVE;
UsbClassText.SubClassExist = FALSE;
UsbClassText.SubClass = USB_SUBCLASS_IRDA_BRIDGE;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbTestAndMeasurement (
IN CHAR16 *TextDeviceNode
)
{
USB_CLASS_TEXT UsbClassText;
UsbClassText.ClassExist = FALSE;
UsbClassText.Class = USB_CLASS_RESERVE;
UsbClassText.SubClassExist = FALSE;
UsbClassText.SubClass = USB_SUBCLASS_TEST;
return ConvertFromTextUsbClass (TextDeviceNode, &UsbClassText);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUsbWwid (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *VIDStr;
CHAR16 *PIDStr;
CHAR16 *InterfaceNumStr;
USB_WWID_DEVICE_PATH *UsbWwid;
VIDStr = GetNextParamStr (&TextDeviceNode);
PIDStr = GetNextParamStr (&TextDeviceNode);
InterfaceNumStr = GetNextParamStr (&TextDeviceNode);
UsbWwid = (USB_WWID_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_USB_WWID_DP,
sizeof (USB_WWID_DEVICE_PATH)
);
UsbWwid->VendorId = (UINT16) Xtoi (VIDStr);
UsbWwid->ProductId = (UINT16) Xtoi (PIDStr);
UsbWwid->InterfaceNumber = (UINT16) Xtoi (InterfaceNumStr);
return (EFI_DEVICE_PATH_PROTOCOL *) UsbWwid;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextUnit (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *LunStr;
DEVICE_LOGICAL_UNIT_DEVICE_PATH *LogicalUnit;
LunStr = GetNextParamStr (&TextDeviceNode);
LogicalUnit = (DEVICE_LOGICAL_UNIT_DEVICE_PATH *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_DEVICE_LOGICAL_UNIT_DP,
sizeof (DEVICE_LOGICAL_UNIT_DEVICE_PATH)
);
LogicalUnit->Lun = (UINT8) Xtoi (LunStr);
return (EFI_DEVICE_PATH_PROTOCOL *) LogicalUnit;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextiSCSI (
IN CHAR16 *TextDeviceNode
)
{
UINT16 Options;
CHAR16 *NameStr;
CHAR16 *PortalGroupStr;
CHAR16 *LunStr;
CHAR16 *HeaderDigestStr;
CHAR16 *DataDigestStr;
CHAR16 *AuthenticationStr;
CHAR16 *ProtocolStr;
ISCSI_DEVICE_PATH_WITH_NAME *iSCSI;
NameStr = GetNextParamStr (&TextDeviceNode);
PortalGroupStr = GetNextParamStr (&TextDeviceNode);
LunStr = GetNextParamStr (&TextDeviceNode);
HeaderDigestStr = GetNextParamStr (&TextDeviceNode);
DataDigestStr = GetNextParamStr (&TextDeviceNode);
AuthenticationStr = GetNextParamStr (&TextDeviceNode);
ProtocolStr = GetNextParamStr (&TextDeviceNode);
iSCSI = (ISCSI_DEVICE_PATH_WITH_NAME *) CreateDeviceNode (
MESSAGING_DEVICE_PATH,
MSG_ISCSI_DP,
sizeof (ISCSI_DEVICE_PATH_WITH_NAME) + (UINT16) (StrLen (NameStr) * 2)
);
StrCpy (iSCSI->iSCSITargetName, NameStr);
iSCSI->TargetPortalGroupTag = (UINT16) Xtoi (PortalGroupStr);
Xtoi64 (LunStr, &iSCSI->Lun);
Options = 0x0000;
if (StrCmp (HeaderDigestStr, L"CRC32C") == 0) {
Options |= 0x0002;
}
if (StrCmp (DataDigestStr, L"CRC32C") == 0) {
Options |= 0x0008;
}
if (StrCmp (AuthenticationStr, L"None") == 0) {
Options |= 0x0800;
}
if (StrCmp (AuthenticationStr, L"CHAP_UNI") == 0) {
Options |= 0x1000;
}
iSCSI->LoginOption = (UINT16) Options;
iSCSI->NetworkProtocol = (UINT16) StrCmp (ProtocolStr, L"TCP");
iSCSI->Reserved = (UINT16) 0;
return (EFI_DEVICE_PATH_PROTOCOL *) iSCSI;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextHD (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *PartitionStr;
CHAR16 *TypeStr;
CHAR16 *SignatureStr;
CHAR16 *StartStr;
CHAR16 *SizeStr;
UINT32 Signature32;
EFI_GUID SignatureGuid;
HARDDRIVE_DEVICE_PATH *Hd;
PartitionStr = GetNextParamStr (&TextDeviceNode);
TypeStr = GetNextParamStr (&TextDeviceNode);
SignatureStr = GetNextParamStr (&TextDeviceNode);
StartStr = GetNextParamStr (&TextDeviceNode);
SizeStr = GetNextParamStr (&TextDeviceNode);
Hd = (HARDDRIVE_DEVICE_PATH *) CreateDeviceNode (
MEDIA_DEVICE_PATH,
MEDIA_HARDDRIVE_DP,
sizeof (HARDDRIVE_DEVICE_PATH)
);
Hd->PartitionNumber = (UINT32) Atoi (PartitionStr);
ZeroMem (Hd->Signature, 16);
Hd->MBRType = (UINT8) 0;
if (StrCmp (TypeStr, L"None") == 0) {
Hd->SignatureType = (UINT8) 0;
} else if (StrCmp (TypeStr, L"MBR") == 0) {
Hd->SignatureType = SIGNATURE_TYPE_MBR;
Hd->MBRType = 0x01;
Signature32 = (UINT32) Xtoi (SignatureStr);
CopyMem (Hd->Signature, &Signature32, sizeof (UINT32));
} else if (StrCmp (TypeStr, L"GUID") == 0) {
Hd->SignatureType = SIGNATURE_TYPE_GUID;
Hd->MBRType = 0x02;
StrToGuid (SignatureStr, &SignatureGuid);
CopyMem (Hd->Signature, &SignatureGuid, sizeof (EFI_GUID));
} else {
Hd->SignatureType = 0xff;
}
Xtoi64 (StartStr, &Hd->PartitionStart);
Xtoi64 (SizeStr, &Hd->PartitionSize);
return (EFI_DEVICE_PATH_PROTOCOL *) Hd;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextCDROM (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *EntryStr;
CHAR16 *StartStr;
CHAR16 *SizeStr;
CDROM_DEVICE_PATH *CDROM;
EntryStr = GetNextParamStr (&TextDeviceNode);
StartStr = GetNextParamStr (&TextDeviceNode);
SizeStr = GetNextParamStr (&TextDeviceNode);
CDROM = (CDROM_DEVICE_PATH *) CreateDeviceNode (
MEDIA_DEVICE_PATH,
MEDIA_CDROM_DP,
sizeof (CDROM_DEVICE_PATH)
);
CDROM->BootEntry = (UINT32) Xtoi (EntryStr);
Xtoi64 (StartStr, &CDROM->PartitionStart);
Xtoi64 (SizeStr, &CDROM->PartitionSize);
return (EFI_DEVICE_PATH_PROTOCOL *) CDROM;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextVenMEDIA (
IN CHAR16 *TextDeviceNode
)
{
return ConvertFromTextVendor (
TextDeviceNode,
MEDIA_DEVICE_PATH,
MEDIA_VENDOR_DP
);
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextFilePath (
IN CHAR16 *TextDeviceNode
)
{
FILEPATH_DEVICE_PATH *File;
File = (FILEPATH_DEVICE_PATH *) CreateDeviceNode (
MEDIA_DEVICE_PATH,
MEDIA_FILEPATH_DP,
sizeof (FILEPATH_DEVICE_PATH) + (UINT16) (StrLen (TextDeviceNode) * 2)
);
StrCpy (File->PathName, TextDeviceNode);
return (EFI_DEVICE_PATH_PROTOCOL *) File;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextMedia (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *GuidStr;
MEDIA_PROTOCOL_DEVICE_PATH *Media;
GuidStr = GetNextParamStr (&TextDeviceNode);
Media = (MEDIA_PROTOCOL_DEVICE_PATH *) CreateDeviceNode (
MEDIA_DEVICE_PATH,
MEDIA_PROTOCOL_DP,
sizeof (MEDIA_PROTOCOL_DEVICE_PATH)
);
StrToGuid (GuidStr, &Media->Protocol);
return (EFI_DEVICE_PATH_PROTOCOL *) Media;
}
EFI_DEVICE_PATH_PROTOCOL *
DevPathFromTextBBS (
IN CHAR16 *TextDeviceNode
)
{
CHAR16 *TypeStr;
CHAR16 *IdStr;
CHAR16 *FlagsStr;
UINT8 *AsciiStr;
BBS_BBS_DEVICE_PATH *Bbs;
TypeStr = GetNextParamStr (&TextDeviceNode);
IdStr = GetNextParamStr (&TextDeviceNode);
FlagsStr = GetNextParamStr (&TextDeviceNode);
Bbs = (BBS_BBS_DEVICE_PATH *) CreateDeviceNode (
BBS_DEVICE_PATH,
BBS_BBS_DP,
sizeof (BBS_BBS_DEVICE_PATH) + (UINT16) (StrLen (IdStr))
);
if (StrCmp (TypeStr, L"Floppy") == 0) {
Bbs->DeviceType = BBS_TYPE_FLOPPY;
} else if (StrCmp (TypeStr, L"HD") == 0) {
Bbs->DeviceType = BBS_TYPE_HARDDRIVE;
} else if (StrCmp (TypeStr, L"CDROM") == 0) {
Bbs->DeviceType = BBS_TYPE_CDROM;
} else if (StrCmp (TypeStr, L"PCMCIA") == 0) {
Bbs->DeviceType = BBS_TYPE_PCMCIA;
} else if (StrCmp (TypeStr, L"USB") == 0) {
Bbs->DeviceType = BBS_TYPE_USB;
} else if (StrCmp (TypeStr, L"Network") == 0) {
Bbs->DeviceType = BBS_TYPE_EMBEDDED_NETWORK;
} else {
Bbs->DeviceType = BBS_TYPE_UNKNOWN;
}
AsciiStr = Bbs->String;
StrToAscii (IdStr, &AsciiStr);
Bbs->StatusFlag = (UINT16) Xtoi (FlagsStr);
return (EFI_DEVICE_PATH_PROTOCOL *) Bbs;
}
DEVICE_PATH_FROM_TEXT_TABLE DevPathFromTextTable[] = {
L"Pci",
DevPathFromTextPci,
L"PcCard",
DevPathFromTextPcCard,
L"MemoryMapped",
DevPathFromTextMemoryMapped,
L"VenHw",
DevPathFromTextVenHw,
L"Ctrl",
DevPathFromTextCtrl,
L"Acpi",
DevPathFromTextAcpi,
L"PciRoot",
DevPathFromTextPciRoot,
L"Floppy",
DevPathFromTextFloppy,
L"Keyboard",
DevPathFromTextKeyboard,
L"Serial",
DevPathFromTextSerial,
L"ParallelPort",
DevPathFromTextParallelPort,
L"AcpiEx",
DevPathFromTextAcpiEx,
L"AcpiExp",
DevPathFromTextAcpiExp,
L"Ata",
DevPathFromTextAta,
L"Scsi",
DevPathFromTextScsi,
L"Fibre",
DevPathFromTextFibre,
L"I1394",
DevPathFromText1394,
L"USB",
DevPathFromTextUsb,
L"I2O",
DevPathFromTextI2O,
L"Infiniband",
DevPathFromTextInfiniband,
L"VenMsg",
DevPathFromTextVenMsg,
L"VenPcAnsi",
DevPathFromTextVenPcAnsi,
L"VenVt100",
DevPathFromTextVenVt100,
L"VenVt100Plus",
DevPathFromTextVenVt100Plus,
L"VenUtf8",
DevPathFromTextVenUtf8,
L"UartFlowCtrl",
DevPathFromTextUartFlowCtrl,
L"SAS",
DevPathFromTextSAS,
L"DebugPort",
DevPathFromTextDebugPort,
L"MAC",
DevPathFromTextMAC,
L"IPv4",
DevPathFromTextIPv4,
L"IPv6",
DevPathFromTextIPv6,
L"Uart",
DevPathFromTextUart,
L"UsbClass",
DevPathFromTextUsbClass,
L"UsbAudio",
DevPathFromTextUsbAudio,
L"UsbCDCControl",
DevPathFromTextUsbCDCControl,
L"UsbHID",
DevPathFromTextUsbHID,
L"UsbImage",
DevPathFromTextUsbImage,
L"UsbPrinter",
DevPathFromTextUsbPrinter,
L"UsbMassStorage",
DevPathFromTextUsbMassStorage,
L"UsbHub",
DevPathFromTextUsbHub,
L"UsbCDCData",
DevPathFromTextUsbCDCData,
L"UsbSmartCard",
DevPathFromTextUsbSmartCard,
L"UsbVideo",
DevPathFromTextUsbVideo,
L"UsbDiagnostic",
DevPathFromTextUsbDiagnostic,
L"UsbWireless",
DevPathFromTextUsbWireless,
L"UsbDeviceFirmwareUpdate",
DevPathFromTextUsbDeviceFirmwareUpdate,
L"UsbIrdaBridge",
DevPathFromTextUsbIrdaBridge,
L"UsbTestAndMeasurement",
DevPathFromTextUsbTestAndMeasurement,
L"UsbWwid",
DevPathFromTextUsbWwid,
L"Unit",
DevPathFromTextUnit,
L"iSCSI",
DevPathFromTextiSCSI,
L"HD",
DevPathFromTextHD,
L"CDROM",
DevPathFromTextCDROM,
L"VenMEDIA",
DevPathFromTextVenMEDIA,
L"Media",
DevPathFromTextMedia,
L"BBS",
DevPathFromTextBBS,
NULL,
NULL
};
EFI_DEVICE_PATH_PROTOCOL *
ConvertTextToDeviceNode (
IN CONST CHAR16 *TextDeviceNode
)
/*++
Routine Description:
Convert text to the binary representation of a device node.
Arguments:
TextDeviceNode - TextDeviceNode points to the text representation of a device
node. Conversion starts with the first character and continues
until the first non-device node character.
Returns:
A pointer - Pointer to the EFI device node.
NULL - If TextDeviceNode is NULL or there was insufficient memory or text unsupported.
--*/
{
EFI_DEVICE_PATH_PROTOCOL * (*DumpNode) (CHAR16 *);
CHAR16 *ParamStr;
EFI_DEVICE_PATH_PROTOCOL *DeviceNode;
CHAR16 *DeviceNodeStr;
UINTN Index;
if ((TextDeviceNode == NULL) || (IS_NULL (*TextDeviceNode))) {
return NULL;
}
ParamStr = NULL;
DumpNode = NULL;
DeviceNodeStr = StrDuplicate (TextDeviceNode);
for (Index = 0; DevPathFromTextTable[Index].Function; Index++) {
ParamStr = GetParamByNodeName (DeviceNodeStr, DevPathFromTextTable[Index].DevicePathNodeText);
if (ParamStr != NULL) {
DumpNode = DevPathFromTextTable[Index].Function;
break;
}
}
if (DumpNode == NULL) {
//
// A file path
//
DumpNode = DevPathFromTextFilePath;
DeviceNode = DumpNode (DeviceNodeStr);
} else {
DeviceNode = DumpNode (ParamStr);
gBS->FreePool (ParamStr);
}
gBS->FreePool (DeviceNodeStr);
return DeviceNode;
}
EFI_DEVICE_PATH_PROTOCOL *
ConvertTextToDevicePath (
IN CONST CHAR16 *TextDevicePath
)
/*++
Routine Description:
Convert text to the binary representation of a device path.
Arguments:
TextDevicePath - TextDevicePath points to the text representation of a device
path. Conversion starts with the first character and continues
until the first non-device node character.
Returns:
A pointer - Pointer to the allocated device path.
NULL - If TextDeviceNode is NULL or there was insufficient memory.
--*/
{
EFI_DEVICE_PATH_PROTOCOL * (*DumpNode) (CHAR16 *);
CHAR16 *ParamStr;
EFI_DEVICE_PATH_PROTOCOL *DeviceNode;
UINTN Index;
EFI_DEVICE_PATH_PROTOCOL *NewDevicePath;
CHAR16 *DevicePathStr;
CHAR16 *Str;
CHAR16 *DeviceNodeStr;
UINT8 IsInstanceEnd;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
if ((TextDevicePath == NULL) || (IS_NULL (*TextDevicePath))) {
return NULL;
}
DevicePath = (EFI_DEVICE_PATH_PROTOCOL *) AllocatePool (END_DEVICE_PATH_LENGTH);
SetDevicePathEndNode (DevicePath);
ParamStr = NULL;
DeviceNodeStr = NULL;
DevicePathStr = StrDuplicate (TextDevicePath);
Str = DevicePathStr;
while ((DeviceNodeStr = GetNextDeviceNodeStr (&Str, &IsInstanceEnd)) != NULL) {
DumpNode = NULL;
for (Index = 0; DevPathFromTextTable[Index].Function; Index++) {
ParamStr = GetParamByNodeName (DeviceNodeStr, DevPathFromTextTable[Index].DevicePathNodeText);
if (ParamStr != NULL) {
DumpNode = DevPathFromTextTable[Index].Function;
break;
}
}
if (DumpNode == NULL) {
//
// A file path
//
DumpNode = DevPathFromTextFilePath;
DeviceNode = DumpNode (DeviceNodeStr);
} else {
DeviceNode = DumpNode (ParamStr);
gBS->FreePool (ParamStr);
}
NewDevicePath = AppendDeviceNode (DevicePath, DeviceNode);
gBS->FreePool (DevicePath);
gBS->FreePool (DeviceNode);
DevicePath = NewDevicePath;
if (IsInstanceEnd) {
DeviceNode = (EFI_DEVICE_PATH_PROTOCOL *) AllocatePool (END_DEVICE_PATH_LENGTH);
SetDevicePathInstanceEndNode (DeviceNode);
NewDevicePath = AppendDeviceNode (DevicePath, DeviceNode);
gBS->FreePool (DevicePath);
gBS->FreePool (DeviceNode);
DevicePath = NewDevicePath;
}
}
gBS->FreePool (DevicePathStr);
return DevicePath;
}