audk/Nt32Pkg/WinNtSerialIoDxe/WinNtSerialIo.c

1702 lines
49 KiB
C
Raw Normal View History

/**@file
Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
Module Name:
WinNtSerialIo.c
Abstract:
Our DriverBinding member functions operate on the handles
created by the NT Bus driver.
Handle(1) - WinNtIo - DevicePath(1)
If a serial port is added to the system this driver creates a new handle.
The new handle is required, since the serial device must add an UART device
pathnode.
Handle(2) - SerialIo - DevicePath(1)\UART
The driver then adds a gEfiWinNtSerialPortGuid as a protocol to Handle(1).
The instance data for this protocol is the private data used to create
Handle(2).
Handle(1) - WinNtIo - DevicePath(1) - WinNtSerialPort
If the driver is unloaded Handle(2) is removed from the system and
gEfiWinNtSerialPortGuid is removed from Handle(1).
Note: Handle(1) is any handle created by the Win NT Bus driver that is passed
into the DriverBinding member functions of this driver. This driver requires
a Handle(1) to contain a WinNtIo protocol, a DevicePath protocol, and
the TypeGuid in the WinNtIo must be gEfiWinNtSerialPortGuid.
If Handle(1) contains a gEfiWinNtSerialPortGuid protocol then the driver is
loaded on the device.
**/
#include "WinNtSerialIo.h"
EFI_DRIVER_BINDING_PROTOCOL gWinNtSerialIoDriverBinding = {
WinNtSerialIoDriverBindingSupported,
WinNtSerialIoDriverBindingStart,
WinNtSerialIoDriverBindingStop,
0xa,
NULL,
NULL
};
//
// List of supported baud rate
//
UINT64 mBaudRateCurrentSupport[] = {50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600, 19200, 38400, 57600, 115200, SERIAL_PORT_MAX_BAUD_RATE + 1};
/**
Check the device path node whether it's the Flow Control node or not.
@param[in] FlowControl The device path node to be checked.
@retval TRUE It's the Flow Control node.
@retval FALSE It's not.
**/
BOOLEAN
IsUartFlowControlNode (
IN UART_FLOW_CONTROL_DEVICE_PATH *FlowControl
)
{
return (BOOLEAN) (
(DevicePathType (FlowControl) == MESSAGING_DEVICE_PATH) &&
(DevicePathSubType (FlowControl) == MSG_VENDOR_DP) &&
(CompareGuid (&FlowControl->Guid, &gEfiUartDevicePathGuid))
);
}
/**
Check the device path node whether it contains Flow Control node or not.
@param[in] DevicePath The device path to be checked.
@retval TRUE It contains the Flow Control node.
@retval FALSE It doesn't.
**/
BOOLEAN
ContainsFlowControl (
IN EFI_DEVICE_PATH_PROTOCOL *DevicePath
)
{
while (!IsDevicePathEnd (DevicePath)) {
if (IsUartFlowControlNode ((UART_FLOW_CONTROL_DEVICE_PATH *) DevicePath)) {
return TRUE;
}
DevicePath = NextDevicePathNode (DevicePath);
}
return FALSE;
}
/**
The user Entry Point for module WinNtSerialIo. The user code starts with this function.
@param[in] ImageHandle The firmware allocated handle for the EFI image.
@param[in] SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
@retval other Some error occurs when executing this entry point.
**/
EFI_STATUS
EFIAPI
InitializeWinNtSerialIo(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
//
// Install driver model protocol(s).
//
Status = EfiLibInstallDriverBindingComponentName2 (
ImageHandle,
SystemTable,
&gWinNtSerialIoDriverBinding,
ImageHandle,
&gWinNtSerialIoComponentName,
&gWinNtSerialIoComponentName2
);
ASSERT_EFI_ERROR (Status);
return Status;
}
EFI_STATUS
EFIAPI
WinNtSerialIoDriverBindingSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Handle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
/*++
Routine Description:
Arguments:
Returns:
None
--*/
// TODO: This - add argument and description to function comment
// TODO: Handle - add argument and description to function comment
// TODO: RemainingDevicePath - add argument and description to function comment
// TODO: EFI_SUCCESS - add return value to function comment
// TODO: EFI_SUCCESS - add return value to function comment
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath;
EFI_WIN_NT_IO_PROTOCOL *WinNtIo;
UART_DEVICE_PATH *UartNode;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
UART_FLOW_CONTROL_DEVICE_PATH *FlowControlNode;
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfoBuffer;
UINTN EntryCount;
UINTN Index;
BOOLEAN RemainingDevicePathContainsFlowControl;
//
// Check RemainingDevicePath validation
//
if (RemainingDevicePath != NULL) {
//
// Check if RemainingDevicePath is the End of Device Path Node,
// if yes, go on checking other conditions
//
if (!IsDevicePathEnd (RemainingDevicePath)) {
//
// If RemainingDevicePath isn't the End of Device Path Node,
// check its validation
//
Status = EFI_UNSUPPORTED;
UartNode = (UART_DEVICE_PATH *) RemainingDevicePath;
if (UartNode->Header.Type != MESSAGING_DEVICE_PATH ||
UartNode->Header.SubType != MSG_UART_DP ||
DevicePathNodeLength((EFI_DEVICE_PATH_PROTOCOL *)UartNode) != sizeof(UART_DEVICE_PATH)) {
goto Error;
}
if ( UartNode->BaudRate > SERIAL_PORT_MAX_BAUD_RATE) {
goto Error;
}
if (UartNode->Parity < NoParity || UartNode->Parity > SpaceParity) {
goto Error;
}
if (UartNode->DataBits < 5 || UartNode->DataBits > 8) {
goto Error;
}
if (UartNode->StopBits < OneStopBit || UartNode->StopBits > TwoStopBits) {
goto Error;
}
if ((UartNode->DataBits == 5) && (UartNode->StopBits == TwoStopBits)) {
goto Error;
}
if ((UartNode->DataBits >= 6) && (UartNode->DataBits <= 8) && (UartNode->StopBits == OneFiveStopBits)) {
goto Error;
}
FlowControlNode = (UART_FLOW_CONTROL_DEVICE_PATH *) NextDevicePathNode (UartNode);
if (IsUartFlowControlNode (FlowControlNode)) {
//
// If the second node is Flow Control Node,
// return error when it request other than hardware flow control.
//
if ((FlowControlNode->FlowControlMap & ~UART_FLOW_CONTROL_HARDWARE) != 0) {
goto Error;
}
}
}
}
//
// Open the IO Abstraction(s) needed to perform the supported test
//
Status = gBS->OpenProtocol (
Handle,
&gEfiWinNtIoProtocolGuid,
(VOID **) &WinNtIo,
This->DriverBindingHandle,
Handle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (Status == EFI_ALREADY_STARTED) {
if (RemainingDevicePath == NULL || IsDevicePathEnd (RemainingDevicePath)) {
//
// If RemainingDevicePath is NULL or is the End of Device Path Node
//
return EFI_SUCCESS;
}
//
// When the driver has produced device path with flow control node but RemainingDevicePath only contains UART node,
// return unsupported, and vice versa.
//
Status = gBS->OpenProtocolInformation (
Handle,
&gEfiWinNtIoProtocolGuid,
&OpenInfoBuffer,
&EntryCount
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// See if RemainingDevicePath has a Flow Control device path node
//
RemainingDevicePathContainsFlowControl = ContainsFlowControl (RemainingDevicePath);
for (Index = 0; Index < EntryCount; Index++) {
if ((OpenInfoBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) != 0) {
Status = gBS->OpenProtocol (
OpenInfoBuffer[Index].ControllerHandle,
&gEfiDevicePathProtocolGuid,
(VOID **) &DevicePath,
This->DriverBindingHandle,
Handle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (!EFI_ERROR (Status)) {
if (RemainingDevicePathContainsFlowControl ^ ContainsFlowControl (DevicePath)) {
Status = EFI_UNSUPPORTED;
}
}
break;
}
}
FreePool (OpenInfoBuffer);
return Status;
}
if (EFI_ERROR (Status)) {
return Status;
}
//
// Close the I/O Abstraction(s) used to perform the supported test
//
gBS->CloseProtocol (
Handle,
&gEfiWinNtIoProtocolGuid,
This->DriverBindingHandle,
Handle
);
//
// Open the EFI Device Path protocol needed to perform the supported test
//
Status = gBS->OpenProtocol (
Handle,
&gEfiDevicePathProtocolGuid,
(VOID **) &ParentDevicePath,
This->DriverBindingHandle,
Handle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (Status == EFI_ALREADY_STARTED) {
return EFI_SUCCESS;
}
if (EFI_ERROR (Status)) {
return Status;
}
//
// Close protocol, don't use device path protocol in the Support() function
//
gBS->CloseProtocol (
Handle,
&gEfiDevicePathProtocolGuid,
This->DriverBindingHandle,
Handle
);
//
// Make sure that the WinNt Thunk Protocol is valid
//
if (WinNtIo->WinNtThunk->Signature != EFI_WIN_NT_THUNK_PROTOCOL_SIGNATURE) {
Status = EFI_UNSUPPORTED;
goto Error;
}
//
// Check the GUID to see if this is a handle type the driver supports
//
if (!CompareGuid (WinNtIo->TypeGuid, &gEfiWinNtSerialPortGuid)) {
Status = EFI_UNSUPPORTED;
goto Error;
}
return EFI_SUCCESS;
Error:
return Status;
}
EFI_STATUS
EFIAPI
WinNtSerialIoDriverBindingStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Handle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
/*++
Routine Description:
Arguments:
Returns:
None
--*/
// TODO: This - add argument and description to function comment
// TODO: Handle - add argument and description to function comment
// TODO: RemainingDevicePath - add argument and description to function comment
// TODO: EFI_SUCCESS - add return value to function comment
// TODO: EFI_SUCCESS - add return value to function comment
{
EFI_STATUS Status;
EFI_WIN_NT_IO_PROTOCOL *WinNtIo;
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
HANDLE NtHandle;
UART_DEVICE_PATH UartNode;
EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath;
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfoBuffer;
UINTN EntryCount;
UINTN Index;
EFI_SERIAL_IO_PROTOCOL *SerialIo;
UART_DEVICE_PATH *Uart;
UINT32 FlowControlMap;
UART_FLOW_CONTROL_DEVICE_PATH *FlowControl;
EFI_DEVICE_PATH_PROTOCOL *TempDevicePath;
UINT32 Control;
Private = NULL;
NtHandle = INVALID_HANDLE_VALUE;
//
// Get the Parent Device Path
//
Status = gBS->OpenProtocol (
Handle,
&gEfiDevicePathProtocolGuid,
(VOID **) &ParentDevicePath,
This->DriverBindingHandle,
Handle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status) && Status != EFI_ALREADY_STARTED) {
return Status;
}
//
// Grab the IO abstraction we need to get any work done
//
Status = gBS->OpenProtocol (
Handle,
&gEfiWinNtIoProtocolGuid,
(VOID **) &WinNtIo,
This->DriverBindingHandle,
Handle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status) && Status != EFI_ALREADY_STARTED) {
gBS->CloseProtocol (
Handle,
&gEfiDevicePathProtocolGuid,
This->DriverBindingHandle,
Handle
);
return Status;
}
if (Status == EFI_ALREADY_STARTED) {
if (RemainingDevicePath == NULL || IsDevicePathEnd (RemainingDevicePath)) {
//
// If RemainingDevicePath is NULL or is the End of Device Path Node
//
return EFI_SUCCESS;
}
//
// Make sure a child handle does not already exist. This driver can only
// produce one child per serial port.
//
Status = gBS->OpenProtocolInformation (
Handle,
&gEfiWinNtIoProtocolGuid,
&OpenInfoBuffer,
&EntryCount
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = EFI_ALREADY_STARTED;
for (Index = 0; Index < EntryCount; Index++) {
if ((OpenInfoBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) != 0) {
Status = gBS->OpenProtocol (
OpenInfoBuffer[Index].ControllerHandle,
&gEfiSerialIoProtocolGuid,
(VOID **) &SerialIo,
This->DriverBindingHandle,
Handle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (!EFI_ERROR (Status)) {
Uart = (UART_DEVICE_PATH *) RemainingDevicePath;
Status = SerialIo->SetAttributes (
SerialIo,
Uart->BaudRate,
SerialIo->Mode->ReceiveFifoDepth,
SerialIo->Mode->Timeout,
(EFI_PARITY_TYPE) Uart->Parity,
Uart->DataBits,
(EFI_STOP_BITS_TYPE) Uart->StopBits
);
FlowControl = (UART_FLOW_CONTROL_DEVICE_PATH *) NextDevicePathNode (Uart);
if (!EFI_ERROR (Status) && IsUartFlowControlNode (FlowControl)) {
Status = SerialIo->GetControl (SerialIo, &Control);
if (!EFI_ERROR (Status)) {
if (FlowControl->FlowControlMap == UART_FLOW_CONTROL_HARDWARE) {
Control |= EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE;
} else {
Control &= ~EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE;
}
//
// Clear the bits that are not allowed to pass to SetControl
//
Control &= (EFI_SERIAL_REQUEST_TO_SEND | EFI_SERIAL_DATA_TERMINAL_READY |
EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE | EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE |
EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE);
Status = SerialIo->SetControl (SerialIo, Control);
}
}
}
break;
}
}
FreePool (OpenInfoBuffer);
return Status;
}
FlowControl = NULL;
FlowControlMap = 0;
if (RemainingDevicePath == NULL) {
//
// Build the device path by appending the UART node to the ParentDevicePath
// from the WinNtIo handle. The Uart setings are zero here, since
// SetAttribute() will update them to match the default setings.
//
ZeroMem (&UartNode, sizeof (UART_DEVICE_PATH));
UartNode.Header.Type = MESSAGING_DEVICE_PATH;
UartNode.Header.SubType = MSG_UART_DP;
SetDevicePathNodeLength ((EFI_DEVICE_PATH_PROTOCOL *) &UartNode, sizeof (UART_DEVICE_PATH));
} else if (!IsDevicePathEnd (RemainingDevicePath)) {
//
// If RemainingDevicePath isn't the End of Device Path Node,
// only scan the specified device by RemainingDevicePath
//
//
// Match the configuration of the RemainingDevicePath. IsHandleSupported()
// already checked to make sure the RemainingDevicePath contains settings
// that we can support.
//
CopyMem (&UartNode, RemainingDevicePath, sizeof (UART_DEVICE_PATH));
FlowControl = (UART_FLOW_CONTROL_DEVICE_PATH *) NextDevicePathNode (RemainingDevicePath);
if (IsUartFlowControlNode (FlowControl)) {
FlowControlMap = FlowControl->FlowControlMap;
} else {
FlowControl = NULL;
}
} else {
//
// If RemainingDevicePath is the End of Device Path Node,
// skip enumerate any device and return EFI_SUCESSS
//
return EFI_SUCCESS;
}
//
// Check to see if we can access the hardware device. If it's Open in NT we
// will not get access.
//
NtHandle = WinNtIo->WinNtThunk->CreateFile (
WinNtIo->EnvString,
GENERIC_READ | GENERIC_WRITE,
0,
NULL,
OPEN_EXISTING,
0,
NULL
);
if (NtHandle == INVALID_HANDLE_VALUE) {
Status = EFI_DEVICE_ERROR;
goto Error;
}
//
// Construct Private data
//
Private = AllocatePool (sizeof (WIN_NT_SERIAL_IO_PRIVATE_DATA));
if (Private == NULL) {
goto Error;
}
//
// This signature must be valid before any member function is called
//
Private->Signature = WIN_NT_SERIAL_IO_PRIVATE_DATA_SIGNATURE;
Private->NtHandle = NtHandle;
Private->ControllerHandle = Handle;
Private->Handle = NULL;
Private->WinNtThunk = WinNtIo->WinNtThunk;
Private->ParentDevicePath = ParentDevicePath;
Private->ControllerNameTable = NULL;
Private->SoftwareLoopbackEnable = FALSE;
Private->HardwareLoopbackEnable = FALSE;
Private->HardwareFlowControl = (BOOLEAN) (FlowControlMap == UART_FLOW_CONTROL_HARDWARE);
Private->Fifo.First = 0;
Private->Fifo.Last = 0;
Private->Fifo.Surplus = SERIAL_MAX_BUFFER_SIZE;
CopyMem (&Private->UartDevicePath, &UartNode, sizeof (UART_DEVICE_PATH));
AddUnicodeString2 (
"eng",
gWinNtSerialIoComponentName.SupportedLanguages,
&Private->ControllerNameTable,
WinNtIo->EnvString,
TRUE
);
AddUnicodeString2 (
"en",
gWinNtSerialIoComponentName2.SupportedLanguages,
&Private->ControllerNameTable,
WinNtIo->EnvString,
FALSE
);
Private->SerialIo.Revision = SERIAL_IO_INTERFACE_REVISION;
Private->SerialIo.Reset = WinNtSerialIoReset;
Private->SerialIo.SetAttributes = WinNtSerialIoSetAttributes;
Private->SerialIo.SetControl = WinNtSerialIoSetControl;
Private->SerialIo.GetControl = WinNtSerialIoGetControl;
Private->SerialIo.Write = WinNtSerialIoWrite;
Private->SerialIo.Read = WinNtSerialIoRead;
Private->SerialIo.Mode = &Private->SerialIoMode;
//
// Build the device path by appending the UART node to the ParentDevicePath
// from the WinNtIo handle. The Uart setings are zero here, since
// SetAttribute() will update them to match the current setings.
//
Private->DevicePath = AppendDevicePathNode (
ParentDevicePath,
(EFI_DEVICE_PATH_PROTOCOL *) &Private->UartDevicePath
);
//
// Only produce the FlowControl node when remaining device path has it
//
if (FlowControl != NULL) {
TempDevicePath = Private->DevicePath;
if (TempDevicePath != NULL) {
Private->DevicePath = AppendDevicePathNode (
TempDevicePath,
(EFI_DEVICE_PATH_PROTOCOL *) FlowControl
);
FreePool (TempDevicePath);
}
}
if (Private->DevicePath == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
//
// Fill in Serial I/O Mode structure based on either the RemainingDevicePath or defaults.
//
Private->SerialIoMode.ControlMask = SERIAL_CONTROL_MASK;
Private->SerialIoMode.Timeout = SERIAL_TIMEOUT_DEFAULT;
Private->SerialIoMode.BaudRate = Private->UartDevicePath.BaudRate;
Private->SerialIoMode.ReceiveFifoDepth = SERIAL_FIFO_DEFAULT;
Private->SerialIoMode.DataBits = Private->UartDevicePath.DataBits;
Private->SerialIoMode.Parity = Private->UartDevicePath.Parity;
Private->SerialIoMode.StopBits = Private->UartDevicePath.StopBits;
//
// Issue a reset to initialize the COM port
//
Status = Private->SerialIo.Reset (&Private->SerialIo);
if (EFI_ERROR (Status)) {
goto Error;
}
//
// Create new child handle
//
Status = gBS->InstallMultipleProtocolInterfaces (
&Private->Handle,
&gEfiSerialIoProtocolGuid,
&Private->SerialIo,
&gEfiDevicePathProtocolGuid,
Private->DevicePath,
NULL
);
if (EFI_ERROR (Status)) {
goto Error;
}
//
// Open For Child Device
//
Status = gBS->OpenProtocol (
Handle,
&gEfiWinNtIoProtocolGuid,
(VOID **) &WinNtIo,
This->DriverBindingHandle,
Private->Handle,
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
if (EFI_ERROR (Status)) {
goto Error;
}
return EFI_SUCCESS;
Error:
//
// Use the Stop() function to free all resources allocated in Start()
//
if (Private != NULL) {
if (Private->Handle != NULL) {
This->Stop (This, Handle, 1, &Private->Handle);
} else {
if (NtHandle != INVALID_HANDLE_VALUE) {
Private->WinNtThunk->CloseHandle (NtHandle);
}
if (Private->DevicePath != NULL) {
FreePool (Private->DevicePath);
}
FreeUnicodeStringTable (Private->ControllerNameTable);
FreePool (Private);
}
}
This->Stop (This, Handle, 0, NULL);
return Status;
}
EFI_STATUS
EFIAPI
WinNtSerialIoDriverBindingStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Handle,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer
)
/*++
Routine Description:
TODO: Add function description
Arguments:
This - TODO: add argument description
Handle - TODO: add argument description
NumberOfChildren - TODO: add argument description
ChildHandleBuffer - TODO: add argument description
Returns:
EFI_DEVICE_ERROR - TODO: Add description for return value
EFI_SUCCESS - TODO: Add description for return value
--*/
{
EFI_STATUS Status;
UINTN Index;
BOOLEAN AllChildrenStopped;
EFI_SERIAL_IO_PROTOCOL *SerialIo;
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
EFI_WIN_NT_IO_PROTOCOL *WinNtIo;
//
// Complete all outstanding transactions to Controller.
// Don't allow any new transaction to Controller to be started.
//
if (NumberOfChildren == 0) {
//
// Close the bus driver
//
Status = gBS->CloseProtocol (
Handle,
&gEfiWinNtIoProtocolGuid,
This->DriverBindingHandle,
Handle
);
Status = gBS->CloseProtocol (
Handle,
&gEfiDevicePathProtocolGuid,
This->DriverBindingHandle,
Handle
);
return Status;
}
AllChildrenStopped = TRUE;
for (Index = 0; Index < NumberOfChildren; Index++) {
Status = gBS->OpenProtocol (
ChildHandleBuffer[Index],
&gEfiSerialIoProtocolGuid,
(VOID **) &SerialIo,
This->DriverBindingHandle,
Handle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (!EFI_ERROR (Status)) {
Private = WIN_NT_SERIAL_IO_PRIVATE_DATA_FROM_THIS (SerialIo);
ASSERT (Private->Handle == ChildHandleBuffer[Index]);
Status = gBS->CloseProtocol (
Handle,
&gEfiWinNtIoProtocolGuid,
This->DriverBindingHandle,
ChildHandleBuffer[Index]
);
Status = gBS->UninstallMultipleProtocolInterfaces (
ChildHandleBuffer[Index],
&gEfiSerialIoProtocolGuid,
&Private->SerialIo,
&gEfiDevicePathProtocolGuid,
Private->DevicePath,
NULL
);
if (EFI_ERROR (Status)) {
gBS->OpenProtocol (
Handle,
&gEfiWinNtIoProtocolGuid,
(VOID **) &WinNtIo,
This->DriverBindingHandle,
ChildHandleBuffer[Index],
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
} else {
Private->WinNtThunk->CloseHandle (Private->NtHandle);
FreePool (Private->DevicePath);
FreeUnicodeStringTable (Private->ControllerNameTable);
FreePool (Private);
}
}
if (EFI_ERROR (Status)) {
AllChildrenStopped = FALSE;
}
}
if (!AllChildrenStopped) {
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
//
// Serial IO Protocol member functions
//
EFI_STATUS
EFIAPI
WinNtSerialIoReset (
IN EFI_SERIAL_IO_PROTOCOL *This
)
/*++
Routine Description:
TODO: Add function description
Arguments:
This - TODO: add argument description
Returns:
TODO: add return values
--*/
{
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
Private = WIN_NT_SERIAL_IO_PRIVATE_DATA_FROM_THIS (This);
Private->WinNtThunk->PurgeComm (
Private->NtHandle,
PURGE_TXCLEAR | PURGE_RXCLEAR
);
gBS->RestoreTPL (Tpl);
return This->SetAttributes (
This,
This->Mode->BaudRate,
This->Mode->ReceiveFifoDepth,
This->Mode->Timeout,
(EFI_PARITY_TYPE)This->Mode->Parity,
(UINT8) This->Mode->DataBits,
(EFI_STOP_BITS_TYPE)This->Mode->StopBits
);
}
EFI_STATUS
EFIAPI
WinNtSerialIoSetAttributes (
IN EFI_SERIAL_IO_PROTOCOL *This,
IN UINT64 BaudRate,
IN UINT32 ReceiveFifoDepth,
IN UINT32 Timeout,
IN EFI_PARITY_TYPE Parity,
IN UINT8 DataBits,
IN EFI_STOP_BITS_TYPE StopBits
)
/*++
Routine Description:
This function is used to set the attributes.
Arguments:
This - A pointer to the EFI_SERIAL_IO_PROTOCOL structrue.
BaudRate - The Baud rate of the serial device.
ReceiveFifoDepth - The request depth of fifo on receive side.
Timeout - the request timeout for a single charact.
Parity - The type of parity used in serial device.
DataBits - Number of deata bits used in serial device.
StopBits - Number of stop bits used in serial device.
Returns:
Status code
None
--*/
// TODO: EFI_SUCCESS - add return value to function comment
// TODO: EFI_DEVICE_ERROR - add return value to function comment
// TODO: EFI_DEVICE_ERROR - add return value to function comment
// TODO: EFI_DEVICE_ERROR - add return value to function comment
// TODO: EFI_SUCCESS - add return value to function comment
// TODO: EFI_DEVICE_ERROR - add return value to function comment
// TODO: EFI_SUCCESS - add return value to function comment
{
EFI_STATUS Status;
UINTN Index;
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
COMMTIMEOUTS PortTimeOuts;
DWORD ConvertedTime;
BOOL Result;
UART_DEVICE_PATH *Uart;
EFI_TPL Tpl;
Private = WIN_NT_SERIAL_IO_PRIVATE_DATA_FROM_THIS (This);
//
// Some of our arguments have defaults if a null value is passed in, and
// we must set the default values if a null argument is passed in.
//
if (BaudRate == 0) {
BaudRate = PcdGet64 (PcdUartDefaultBaudRate);
}
if (ReceiveFifoDepth == 0) {
ReceiveFifoDepth = SERIAL_FIFO_DEFAULT;
}
if (Timeout == 0) {
Timeout = SERIAL_TIMEOUT_DEFAULT;
}
if (Parity == DefaultParity) {
Parity = (EFI_PARITY_TYPE) (PcdGet8 (PcdUartDefaultParity));
}
if (DataBits == 0) {
DataBits = PcdGet8 (PcdUartDefaultDataBits);
}
if (StopBits == DefaultStopBits) {
StopBits = (EFI_STOP_BITS_TYPE) PcdGet8 (PcdUartDefaultStopBits);
}
//
// Make sure all parameters are valid
//
if ((BaudRate > SERIAL_PORT_MAX_BAUD_RATE) || (BaudRate < SERIAL_PORT_MIN_BAUD_RATE)) {
return EFI_INVALID_PARAMETER;
}
//
//The lower baud rate supported by the serial device will be selected without exceeding the unsupported BaudRate parameter
//
for (Index = 1; Index < (ARRAY_SIZE (mBaudRateCurrentSupport)); Index++) {
if (BaudRate < mBaudRateCurrentSupport[Index]) {
BaudRate = mBaudRateCurrentSupport[Index-1];
break;
}
}
if ((ReceiveFifoDepth < 1) || (ReceiveFifoDepth > SERIAL_PORT_MAX_RECEIVE_FIFO_DEPTH)) {
return EFI_INVALID_PARAMETER;
}
if ((Timeout < SERIAL_PORT_MIN_TIMEOUT) || (Timeout > SERIAL_PORT_MAX_TIMEOUT)) {
return EFI_INVALID_PARAMETER;
}
if ((Parity < NoParity) || (Parity > SpaceParity)) {
return EFI_INVALID_PARAMETER;
}
if ((StopBits < OneStopBit) || (StopBits > TwoStopBits)) {
return EFI_INVALID_PARAMETER;
}
//
// Now we only support DataBits=7,8.
//
if ((DataBits < 7) || (DataBits > 8)) {
return EFI_INVALID_PARAMETER;
}
//
// Now we only support DataBits=7,8.
// for DataBits = 6,7,8, StopBits can not set OneFiveStopBits.
//
if (StopBits == OneFiveStopBits) {
return EFI_INVALID_PARAMETER;
}
//
// See if the new attributes already match the current attributes
//
if (Private->UartDevicePath.BaudRate == BaudRate &&
Private->UartDevicePath.DataBits == DataBits &&
Private->UartDevicePath.Parity == Parity &&
Private->UartDevicePath.StopBits == StopBits &&
Private->SerialIoMode.ReceiveFifoDepth == ReceiveFifoDepth &&
Private->SerialIoMode.Timeout == Timeout ) {
return EFI_SUCCESS;
}
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
//
// Get current values from NT
//
ZeroMem (&Private->NtDCB, sizeof (DCB));
Private->NtDCB.DCBlength = sizeof (DCB);
if (!Private->WinNtThunk->GetCommState (Private->NtHandle, &Private->NtDCB)) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialSetAttributes: GetCommState %d\n", Private->NtError));
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
//
// Map EFI com setting to NT
//
Private->NtDCB.BaudRate = ConvertBaud2Nt (BaudRate);
Private->NtDCB.ByteSize = ConvertData2Nt (DataBits);
Private->NtDCB.Parity = ConvertParity2Nt (Parity);
Private->NtDCB.StopBits = ConvertStop2Nt (StopBits);
Private->NtDCB.fBinary = TRUE;
Private->NtDCB.fParity = Private->NtDCB.Parity == NOPARITY ? FALSE : TRUE;
Private->NtDCB.fOutxCtsFlow = FALSE;
Private->NtDCB.fOutxDsrFlow = FALSE;
Private->NtDCB.fDtrControl = DTR_CONTROL_ENABLE;
Private->NtDCB.fDsrSensitivity = FALSE;
Private->NtDCB.fOutX = FALSE;
Private->NtDCB.fInX = FALSE;
Private->NtDCB.fRtsControl = RTS_CONTROL_ENABLE;
Private->NtDCB.fNull = FALSE;
//
// Set new values
//
Result = Private->WinNtThunk->SetCommState (Private->NtHandle, &Private->NtDCB);
if (!Result) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialSetAttributes: SetCommState %d\n", Private->NtError));
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
//
// Set com port read/write timeout values
//
ConvertedTime = ConvertTime2Nt (Timeout);
PortTimeOuts.ReadIntervalTimeout = MAXDWORD;
PortTimeOuts.ReadTotalTimeoutMultiplier = 0;
PortTimeOuts.ReadTotalTimeoutConstant = ConvertedTime;
PortTimeOuts.WriteTotalTimeoutMultiplier = ConvertedTime == 0 ? 1 : ConvertedTime;
PortTimeOuts.WriteTotalTimeoutConstant = 0;
if (!Private->WinNtThunk->SetCommTimeouts (Private->NtHandle, &PortTimeOuts)) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialSetAttributes: SetCommTimeouts %d\n", Private->NtError));
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
//
// Update mode
//
Private->SerialIoMode.BaudRate = BaudRate;
Private->SerialIoMode.ReceiveFifoDepth = ReceiveFifoDepth;
Private->SerialIoMode.Timeout = Timeout;
Private->SerialIoMode.Parity = Parity;
Private->SerialIoMode.DataBits = DataBits;
Private->SerialIoMode.StopBits = StopBits;
//
// See if Device Path Node has actually changed
//
if (Private->UartDevicePath.BaudRate == BaudRate &&
Private->UartDevicePath.DataBits == DataBits &&
Private->UartDevicePath.Parity == Parity &&
Private->UartDevicePath.StopBits == StopBits ) {
gBS->RestoreTPL(Tpl);
return EFI_SUCCESS;
}
//
// Update the device path
//
Private->UartDevicePath.BaudRate = BaudRate;
Private->UartDevicePath.DataBits = DataBits;
Private->UartDevicePath.Parity = (UINT8) Parity;
Private->UartDevicePath.StopBits = (UINT8) StopBits;
Status = EFI_SUCCESS;
if (Private->Handle != NULL) {
Uart = (UART_DEVICE_PATH *) (
(UINTN) Private->DevicePath
+ GetDevicePathSize (Private->ParentDevicePath)
- END_DEVICE_PATH_LENGTH
);
CopyMem (Uart, &Private->UartDevicePath, sizeof (UART_DEVICE_PATH));
Status = gBS->ReinstallProtocolInterface (
Private->Handle,
&gEfiDevicePathProtocolGuid,
Private->DevicePath,
Private->DevicePath
);
}
gBS->RestoreTPL (Tpl);
return Status;
}
EFI_STATUS
EFIAPI
WinNtSerialIoSetControl (
IN EFI_SERIAL_IO_PROTOCOL *This,
IN UINT32 Control
)
/*++
Routine Description:
TODO: Add function description
Arguments:
This - TODO: add argument description
Control - TODO: add argument description
Returns:
EFI_DEVICE_ERROR - TODO: Add description for return value
EFI_DEVICE_ERROR - TODO: Add description for return value
EFI_SUCCESS - TODO: Add description for return value
--*/
{
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
BOOL Result;
DCB Dcb;
EFI_TPL Tpl;
UART_FLOW_CONTROL_DEVICE_PATH *FlowControl;
EFI_STATUS Status;
//
// first determine the parameter is invalid
//
if (Control & (~(EFI_SERIAL_REQUEST_TO_SEND | EFI_SERIAL_DATA_TERMINAL_READY |
EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE | EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE |
EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE))) {
return EFI_UNSUPPORTED;
}
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
Private = WIN_NT_SERIAL_IO_PRIVATE_DATA_FROM_THIS (This);
Result = Private->WinNtThunk->GetCommState (Private->NtHandle, &Dcb);
if (!Result) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialSetControl: GetCommState %d\n", Private->NtError));
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
Dcb.fRtsControl = RTS_CONTROL_DISABLE;
Dcb.fDtrControl = DTR_CONTROL_DISABLE;
Private->HardwareFlowControl = FALSE;
Private->SoftwareLoopbackEnable = FALSE;
Private->HardwareLoopbackEnable = FALSE;
if (Control & EFI_SERIAL_REQUEST_TO_SEND) {
Dcb.fRtsControl = RTS_CONTROL_ENABLE;
}
if (Control & EFI_SERIAL_DATA_TERMINAL_READY) {
Dcb.fDtrControl = DTR_CONTROL_ENABLE;
}
if (Control & EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE) {
Private->HardwareFlowControl = TRUE;
}
if (Control & EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE) {
Private->SoftwareLoopbackEnable = TRUE;
}
if (Control & EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE) {
Private->HardwareLoopbackEnable = TRUE;
}
Result = Private->WinNtThunk->SetCommState (
Private->NtHandle,
&Dcb
);
if (!Result) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialSetControl: SetCommState %d\n", Private->NtError));
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
Status = EFI_SUCCESS;
if (Private->Handle != NULL) {
FlowControl = (UART_FLOW_CONTROL_DEVICE_PATH *) (
(UINTN) Private->DevicePath
+ GetDevicePathSize (Private->ParentDevicePath)
- END_DEVICE_PATH_LENGTH
+ sizeof (UART_DEVICE_PATH)
);
if (IsUartFlowControlNode (FlowControl) &&
((FlowControl->FlowControlMap == UART_FLOW_CONTROL_HARDWARE) ^ Private->HardwareFlowControl)) {
//
// Flow Control setting is changed, need to reinstall device path protocol
//
FlowControl->FlowControlMap = Private->HardwareFlowControl ? UART_FLOW_CONTROL_HARDWARE : 0;
Status = gBS->ReinstallProtocolInterface (
Private->Handle,
&gEfiDevicePathProtocolGuid,
Private->DevicePath,
Private->DevicePath
);
}
}
gBS->RestoreTPL (Tpl);
return Status;
}
EFI_STATUS
EFIAPI
WinNtSerialIoGetControl (
IN EFI_SERIAL_IO_PROTOCOL *This,
OUT UINT32 *Control
)
/*++
Routine Description:
TODO: Add function description
Arguments:
This - TODO: add argument description
Control - TODO: add argument description
Returns:
EFI_DEVICE_ERROR - TODO: Add description for return value
EFI_DEVICE_ERROR - TODO: Add description for return value
EFI_DEVICE_ERROR - TODO: Add description for return value
EFI_SUCCESS - TODO: Add description for return value
--*/
{
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
DWORD ModemStatus;
DWORD Errors;
UINT32 Bits;
DCB Dcb;
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
Private = WIN_NT_SERIAL_IO_PRIVATE_DATA_FROM_THIS (This);
//
// Get modem status
//
if (!Private->WinNtThunk->GetCommModemStatus (Private->NtHandle, &ModemStatus)) {
Private->NtError = Private->WinNtThunk->GetLastError ();
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
Bits = 0;
if (ModemStatus & MS_CTS_ON) {
Bits |= EFI_SERIAL_CLEAR_TO_SEND;
}
if (ModemStatus & MS_DSR_ON) {
Bits |= EFI_SERIAL_DATA_SET_READY;
}
if (ModemStatus & MS_RING_ON) {
Bits |= EFI_SERIAL_RING_INDICATE;
}
if (ModemStatus & MS_RLSD_ON) {
Bits |= EFI_SERIAL_CARRIER_DETECT;
}
//
// Get ctrl status
//
if (!Private->WinNtThunk->GetCommState (Private->NtHandle, &Dcb)) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialGetControl: GetCommState %d\n", Private->NtError));
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
if (Dcb.fDtrControl == DTR_CONTROL_ENABLE) {
Bits |= EFI_SERIAL_DATA_TERMINAL_READY;
}
if (Dcb.fRtsControl == RTS_CONTROL_ENABLE) {
Bits |= EFI_SERIAL_REQUEST_TO_SEND;
}
if (Private->HardwareFlowControl) {
Bits |= EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE;
}
if (Private->SoftwareLoopbackEnable) {
Bits |= EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE;
}
if (Private->HardwareLoopbackEnable) {
Bits |= EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE;
}
//
// Get input buffer status
//
if (!Private->WinNtThunk->ClearCommError (Private->NtHandle, &Errors, &Private->NtComStatus)) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialGetControl: ClearCommError %d\n", Private->NtError));
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
if (Private->NtComStatus.cbInQue == 0) {
Bits |= EFI_SERIAL_INPUT_BUFFER_EMPTY;
}
*Control = Bits;
gBS->RestoreTPL (Tpl);
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
WinNtSerialIoWrite (
IN EFI_SERIAL_IO_PROTOCOL *This,
IN OUT UINTN *BufferSize,
IN VOID *Buffer
)
/*++
Routine Description:
TODO: Add function description
Arguments:
This - TODO: add argument description
BufferSize - TODO: add argument description
Buffer - TODO: add argument description
Returns:
EFI_DEVICE_ERROR - TODO: Add description for return value
EFI_SUCCESS - TODO: Add description for return value
--*/
{
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
UINT8 *ByteBuffer;
UINTN TotalBytesWritten;
DWORD BytesToGo;
DWORD BytesWritten;
BOOL Result;
UINT32 Index;
UINT32 Control;
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
Private = WIN_NT_SERIAL_IO_PRIVATE_DATA_FROM_THIS (This);
ByteBuffer = (UINT8 *) Buffer;
TotalBytesWritten = 0;
if (Private->SoftwareLoopbackEnable || Private->HardwareLoopbackEnable) {
for (Index = 0; Index < *BufferSize; Index++) {
if (IsaSerialFifoAdd (&Private->Fifo, ByteBuffer[Index]) == EFI_SUCCESS) {
TotalBytesWritten++;
} else {
break;
}
}
} else {
BytesToGo = (DWORD) (*BufferSize);
do {
if (Private->HardwareFlowControl) {
//
// Send RTS
//
WinNtSerialIoGetControl (&Private->SerialIo, &Control);
Control |= EFI_SERIAL_REQUEST_TO_SEND;
WinNtSerialIoSetControl (&Private->SerialIo, Control);
}
//
// Do the write
//
Result = Private->WinNtThunk->WriteFile (
Private->NtHandle,
&ByteBuffer[TotalBytesWritten],
BytesToGo,
&BytesWritten,
NULL
);
if (Private->HardwareFlowControl) {
//
// Assert RTS
//
WinNtSerialIoGetControl (&Private->SerialIo, &Control);
Control &= ~ (UINT32) EFI_SERIAL_REQUEST_TO_SEND;
WinNtSerialIoSetControl (&Private->SerialIo, Control);
}
TotalBytesWritten += BytesWritten;
BytesToGo -= BytesWritten;
if (!Result) {
Private->NtError = Private->WinNtThunk->GetLastError ();
DEBUG ((EFI_D_ERROR, "SerialWrite: FileWrite %d\n", Private->NtError));
*BufferSize = TotalBytesWritten;
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
} while (BytesToGo > 0);
}
*BufferSize = TotalBytesWritten;
gBS->RestoreTPL (Tpl);
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
WinNtSerialIoRead (
IN EFI_SERIAL_IO_PROTOCOL *This,
IN OUT UINTN *BufferSize,
OUT VOID *Buffer
)
/*++
Routine Description:
TODO: Add function description
Arguments:
This - TODO: add argument description
BufferSize - TODO: add argument description
Buffer - TODO: add argument description
Returns:
EFI_DEVICE_ERROR - TODO: Add description for return value
--*/
{
WIN_NT_SERIAL_IO_PRIVATE_DATA *Private;
BOOL Result;
DWORD BytesRead;
EFI_STATUS Status;
UINT32 Index;
UINT8 Data;
UINT32 Control;
EFI_TPL Tpl;
Tpl = gBS->RaiseTPL (TPL_NOTIFY);
Private = WIN_NT_SERIAL_IO_PRIVATE_DATA_FROM_THIS (This);
//
// Do the read
//
if (Private->SoftwareLoopbackEnable || Private->HardwareLoopbackEnable) {
for (Index = 0, BytesRead = 0; Index < *BufferSize; Index++) {
if (IsaSerialFifoRemove (&Private->Fifo, &Data) == EFI_SUCCESS) {
((UINT8 *) Buffer)[Index] = Data;
BytesRead++;
} else {
break;
}
}
} else {
if (Private->HardwareFlowControl) {
WinNtSerialIoGetControl (&Private->SerialIo, &Control);
Control |= EFI_SERIAL_DATA_TERMINAL_READY;
WinNtSerialIoSetControl (&Private->SerialIo, Control);
}
Result = Private->WinNtThunk->ReadFile (
Private->NtHandle,
Buffer,
(DWORD) *BufferSize,
&BytesRead,
NULL
);
if (Private->HardwareFlowControl) {
WinNtSerialIoGetControl (&Private->SerialIo, &Control);
Control &= ~ (UINT32) EFI_SERIAL_DATA_TERMINAL_READY;
WinNtSerialIoSetControl (&Private->SerialIo, Control);
}
if (!Result) {
Private->NtError = Private->WinNtThunk->GetLastError ();
gBS->RestoreTPL (Tpl);
return EFI_DEVICE_ERROR;
}
}
if (BytesRead != *BufferSize) {
Status = EFI_TIMEOUT;
} else {
Status = EFI_SUCCESS;
}
*BufferSize = (UINTN) BytesRead;
gBS->RestoreTPL (Tpl);
return Status;
}
BOOLEAN
IsaSerialFifoFull (
IN SERIAL_DEV_FIFO *Fifo
)
/*++
Routine Description:
Detect whether specific FIFO is full or not
Arguments:
Fifo SERIAL_DEV_FIFO *: A pointer to the Data Structure SERIAL_DEV_FIFO
Returns:
TRUE: the FIFO is full
FALSE: the FIFO is not full
--*/
{
if (Fifo->Surplus == 0) {
return TRUE;
}
return FALSE;
}
BOOLEAN
IsaSerialFifoEmpty (
IN SERIAL_DEV_FIFO *Fifo
)
/*++
Routine Description:
Detect whether specific FIFO is empty or not
Arguments:
Fifo SERIAL_DEV_FIFO *: A pointer to the Data Structure SERIAL_DEV_FIFO
Returns:
TRUE: the FIFO is empty
FALSE: the FIFO is not empty
--*/
{
if (Fifo->Surplus == SERIAL_MAX_BUFFER_SIZE) {
return TRUE;
}
return FALSE;
}
EFI_STATUS
IsaSerialFifoAdd (
IN SERIAL_DEV_FIFO *Fifo,
IN UINT8 Data
)
/*++
Routine Description:
Add data to specific FIFO
Arguments:
Fifo SERIAL_DEV_FIFO *: A pointer to the Data Structure SERIAL_DEV_FIFO
Data UINT8: the data added to FIFO
Returns:
EFI_SUCCESS: Add data to specific FIFO successfully
EFI_OUT_RESOURCE: Failed to add data because FIFO is already full
--*/
// TODO: EFI_OUT_OF_RESOURCES - add return value to function comment
{
//
// if FIFO full can not add data
//
if (IsaSerialFifoFull (Fifo)) {
return EFI_OUT_OF_RESOURCES;
}
//
// FIFO is not full can add data
//
Fifo->Data[Fifo->Last] = Data;
Fifo->Surplus--;
Fifo->Last++;
if (Fifo->Last >= SERIAL_MAX_BUFFER_SIZE) {
Fifo->Last = 0;
}
return EFI_SUCCESS;
}
EFI_STATUS
IsaSerialFifoRemove (
IN SERIAL_DEV_FIFO *Fifo,
OUT UINT8 *Data
)
/*++
Routine Description:
Remove data from specific FIFO
Arguments:
Fifo SERIAL_DEV_FIFO *: A pointer to the Data Structure SERIAL_DEV_FIFO
Data UINT8*: the data removed from FIFO
Returns:
EFI_SUCCESS: Remove data from specific FIFO successfully
EFI_OUT_RESOURCE: Failed to remove data because FIFO is empty
--*/
// TODO: EFI_OUT_OF_RESOURCES - add return value to function comment
{
//
// if FIFO is empty, no data can remove
//
if (IsaSerialFifoEmpty (Fifo)) {
return EFI_OUT_OF_RESOURCES;
}
//
// FIFO is not empty, can remove data
//
*Data = Fifo->Data[Fifo->First];
Fifo->Surplus++;
Fifo->First++;
if (Fifo->First >= SERIAL_MAX_BUFFER_SIZE) {
Fifo->First = 0;
}
return EFI_SUCCESS;
}