2014-11-13 19:24:25 +01:00
|
|
|
/** @file
|
|
|
|
CPU DXE Module.
|
|
|
|
|
2015-06-16 04:55:54 +02:00
|
|
|
Copyright (c) 2008 - 2015, Intel Corporation. All rights reserved.<BR>
|
2014-11-13 19:24:25 +01:00
|
|
|
This program and the accompanying materials
|
|
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
|
|
|
|
**/
|
|
|
|
|
|
|
|
#include "CpuDxe.h"
|
|
|
|
#include "CpuMp.h"
|
|
|
|
|
2014-11-13 19:25:48 +01:00
|
|
|
UINTN gMaxLogicalProcessorNumber;
|
|
|
|
UINTN gApStackSize;
|
2014-11-13 19:27:21 +01:00
|
|
|
UINTN gPollInterval = 100; // 100 microseconds
|
2014-11-13 19:25:48 +01:00
|
|
|
|
2014-11-13 19:26:23 +01:00
|
|
|
MP_SYSTEM_DATA mMpSystemData;
|
2014-11-17 15:54:09 +01:00
|
|
|
EFI_HANDLE mMpServiceHandle = NULL;
|
|
|
|
EFI_EVENT mExitBootServicesEvent = (EFI_EVENT)NULL;
|
2014-11-13 19:26:23 +01:00
|
|
|
|
2014-11-13 19:24:59 +01:00
|
|
|
VOID *mCommonStack = 0;
|
|
|
|
VOID *mTopOfApCommonStack = 0;
|
2014-11-13 19:25:48 +01:00
|
|
|
VOID *mApStackStart = 0;
|
2014-11-13 19:24:59 +01:00
|
|
|
|
2014-11-13 19:29:31 +01:00
|
|
|
volatile BOOLEAN mAPsAlreadyInitFinished = FALSE;
|
2014-11-13 19:28:20 +01:00
|
|
|
volatile BOOLEAN mStopCheckAllAPsStatus = TRUE;
|
|
|
|
|
2014-11-13 19:26:13 +01:00
|
|
|
EFI_MP_SERVICES_PROTOCOL mMpServicesTemplate = {
|
2014-11-13 19:26:42 +01:00
|
|
|
GetNumberOfProcessors,
|
2014-11-13 19:26:53 +01:00
|
|
|
GetProcessorInfo,
|
2014-11-13 19:27:34 +01:00
|
|
|
StartupAllAPs,
|
2014-11-13 19:27:21 +01:00
|
|
|
StartupThisAP,
|
2014-11-13 19:27:52 +01:00
|
|
|
SwitchBSP,
|
2014-11-13 19:27:09 +01:00
|
|
|
EnableDisableAP,
|
2014-11-13 19:26:32 +01:00
|
|
|
WhoAmI
|
2014-11-13 19:26:13 +01:00
|
|
|
};
|
|
|
|
|
2014-11-13 19:28:33 +01:00
|
|
|
/**
|
|
|
|
Get Mp Service Lock.
|
|
|
|
|
|
|
|
@param CpuData the pointer to CPU_DATA_BLOCK of specified processor
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
GetMpSpinLock (
|
|
|
|
IN CPU_DATA_BLOCK *CpuData
|
|
|
|
)
|
|
|
|
{
|
|
|
|
while (!AcquireSpinLockOrFail (&CpuData->CpuDataLock)) {
|
|
|
|
CpuPause ();
|
|
|
|
}
|
2014-11-13 19:29:40 +01:00
|
|
|
CpuData->LockSelf = GetApicId ();
|
2014-11-13 19:28:33 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Release Mp Service Lock.
|
|
|
|
|
|
|
|
@param CpuData the pointer to CPU_DATA_BLOCK of specified processor
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
ReleaseMpSpinLock (
|
|
|
|
IN CPU_DATA_BLOCK *CpuData
|
|
|
|
)
|
|
|
|
{
|
|
|
|
ReleaseSpinLock (&CpuData->CpuDataLock);
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:26:42 +01:00
|
|
|
/**
|
|
|
|
Check whether caller processor is BSP.
|
|
|
|
|
|
|
|
@retval TRUE the caller is BSP
|
|
|
|
@retval FALSE the caller is AP
|
|
|
|
|
|
|
|
**/
|
|
|
|
BOOLEAN
|
|
|
|
IsBSP (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINTN CpuIndex;
|
|
|
|
CPU_DATA_BLOCK *CpuData;
|
|
|
|
|
|
|
|
CpuData = NULL;
|
|
|
|
|
|
|
|
WhoAmI (&mMpServicesTemplate, &CpuIndex);
|
|
|
|
CpuData = &mMpSystemData.CpuDatas[CpuIndex];
|
|
|
|
|
|
|
|
return CpuData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT ? TRUE : FALSE;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:09 +01:00
|
|
|
/**
|
|
|
|
Get the Application Processors state.
|
|
|
|
|
|
|
|
@param CpuData the pointer to CPU_DATA_BLOCK of specified AP
|
|
|
|
|
|
|
|
@retval CPU_STATE the AP status
|
|
|
|
|
|
|
|
**/
|
|
|
|
CPU_STATE
|
|
|
|
GetApState (
|
|
|
|
IN CPU_DATA_BLOCK *CpuData
|
|
|
|
)
|
|
|
|
{
|
|
|
|
CPU_STATE State;
|
|
|
|
|
2014-11-13 19:28:33 +01:00
|
|
|
GetMpSpinLock (CpuData);
|
2014-11-13 19:27:09 +01:00
|
|
|
State = CpuData->State;
|
2014-11-13 19:28:33 +01:00
|
|
|
ReleaseMpSpinLock (CpuData);
|
2014-11-13 19:27:09 +01:00
|
|
|
|
|
|
|
return State;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:21 +01:00
|
|
|
/**
|
|
|
|
Set the Application Processors state.
|
|
|
|
|
|
|
|
@param CpuData The pointer to CPU_DATA_BLOCK of specified AP
|
|
|
|
@param State The AP status
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
SetApState (
|
|
|
|
IN CPU_DATA_BLOCK *CpuData,
|
|
|
|
IN CPU_STATE State
|
|
|
|
)
|
|
|
|
{
|
2014-11-13 19:28:33 +01:00
|
|
|
GetMpSpinLock (CpuData);
|
2014-11-13 19:27:21 +01:00
|
|
|
CpuData->State = State;
|
2014-11-13 19:28:33 +01:00
|
|
|
ReleaseMpSpinLock (CpuData);
|
2014-11-13 19:27:21 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Set the Application Processor prepare to run a function specified
|
|
|
|
by Params.
|
|
|
|
|
|
|
|
@param CpuData the pointer to CPU_DATA_BLOCK of specified AP
|
|
|
|
@param Procedure A pointer to the function to be run on enabled APs of the system
|
|
|
|
@param ProcedureArgument Pointer to the optional parameter of the assigned function
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
SetApProcedure (
|
|
|
|
IN CPU_DATA_BLOCK *CpuData,
|
|
|
|
IN EFI_AP_PROCEDURE Procedure,
|
|
|
|
IN VOID *ProcedureArgument
|
|
|
|
)
|
|
|
|
{
|
2014-11-13 19:28:33 +01:00
|
|
|
GetMpSpinLock (CpuData);
|
2014-11-13 19:27:21 +01:00
|
|
|
CpuData->Parameter = ProcedureArgument;
|
|
|
|
CpuData->Procedure = Procedure;
|
2014-11-13 19:28:33 +01:00
|
|
|
ReleaseMpSpinLock (CpuData);
|
2014-11-13 19:27:21 +01:00
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:09 +01:00
|
|
|
/**
|
|
|
|
Check the Application Processors Status whether contains the Flags.
|
|
|
|
|
|
|
|
@param CpuData the pointer to CPU_DATA_BLOCK of specified AP
|
|
|
|
@param Flags the StatusFlag describing in EFI_PROCESSOR_INFORMATION
|
|
|
|
|
|
|
|
@retval TRUE the AP status includes the StatusFlag
|
|
|
|
@retval FALSE the AP status excludes the StatusFlag
|
|
|
|
|
|
|
|
**/
|
|
|
|
BOOLEAN
|
|
|
|
TestCpuStatusFlag (
|
|
|
|
IN CPU_DATA_BLOCK *CpuData,
|
|
|
|
IN UINT32 Flags
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT32 Ret;
|
|
|
|
|
2014-11-13 19:28:33 +01:00
|
|
|
GetMpSpinLock (CpuData);
|
2014-11-13 19:27:09 +01:00
|
|
|
Ret = CpuData->Info.StatusFlag & Flags;
|
2014-11-13 19:28:33 +01:00
|
|
|
ReleaseMpSpinLock (CpuData);
|
2014-11-13 19:27:09 +01:00
|
|
|
|
2014-11-24 05:57:40 +01:00
|
|
|
return (BOOLEAN) (Ret != 0);
|
2014-11-13 19:27:09 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Bitwise-Or of the Application Processors Status with the Flags.
|
|
|
|
|
|
|
|
@param CpuData the pointer to CPU_DATA_BLOCK of specified AP
|
|
|
|
@param Flags the StatusFlag describing in EFI_PROCESSOR_INFORMATION
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
CpuStatusFlagOr (
|
|
|
|
IN CPU_DATA_BLOCK *CpuData,
|
|
|
|
IN UINT32 Flags
|
|
|
|
)
|
|
|
|
{
|
2014-11-13 19:28:33 +01:00
|
|
|
GetMpSpinLock (CpuData);
|
2014-11-13 19:27:09 +01:00
|
|
|
CpuData->Info.StatusFlag |= Flags;
|
2014-11-13 19:28:33 +01:00
|
|
|
ReleaseMpSpinLock (CpuData);
|
2014-11-13 19:27:09 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Bitwise-AndNot of the Application Processors Status with the Flags.
|
|
|
|
|
|
|
|
@param CpuData the pointer to CPU_DATA_BLOCK of specified AP
|
|
|
|
@param Flags the StatusFlag describing in EFI_PROCESSOR_INFORMATION
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
CpuStatusFlagAndNot (
|
|
|
|
IN CPU_DATA_BLOCK *CpuData,
|
|
|
|
IN UINT32 Flags
|
|
|
|
)
|
|
|
|
{
|
2014-11-13 19:28:33 +01:00
|
|
|
GetMpSpinLock (CpuData);
|
2014-11-13 19:27:09 +01:00
|
|
|
CpuData->Info.StatusFlag &= ~Flags;
|
2014-11-13 19:28:33 +01:00
|
|
|
ReleaseMpSpinLock (CpuData);
|
2014-11-13 19:27:09 +01:00
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:21 +01:00
|
|
|
/**
|
|
|
|
Searches for the next blocking AP.
|
|
|
|
|
|
|
|
Search for the next AP that is put in blocking state by single-threaded StartupAllAPs().
|
|
|
|
|
|
|
|
@param NextNumber Pointer to the processor number of the next blocking AP.
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS The next blocking AP has been found.
|
|
|
|
@retval EFI_NOT_FOUND No blocking AP exists.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
GetNextBlockedNumber (
|
|
|
|
OUT UINTN *NextNumber
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINTN Number;
|
|
|
|
CPU_STATE CpuState;
|
|
|
|
CPU_DATA_BLOCK *CpuData;
|
|
|
|
|
|
|
|
for (Number = 0; Number < mMpSystemData.NumberOfProcessors; Number++) {
|
|
|
|
CpuData = &mMpSystemData.CpuDatas[Number];
|
|
|
|
if (TestCpuStatusFlag (CpuData, PROCESSOR_AS_BSP_BIT)) {
|
|
|
|
//
|
|
|
|
// Skip BSP
|
|
|
|
//
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
CpuState = GetApState (CpuData);
|
|
|
|
if (CpuState == CpuStateBlocked) {
|
|
|
|
*NextNumber = Number;
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return EFI_NOT_FOUND;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:34 +01:00
|
|
|
/**
|
|
|
|
Check if the APs state are finished, and update them to idle state
|
|
|
|
by StartupAllAPs().
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
CheckAndUpdateAllAPsToIdleState (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINTN ProcessorNumber;
|
|
|
|
UINTN NextNumber;
|
|
|
|
CPU_DATA_BLOCK *CpuData;
|
|
|
|
EFI_STATUS Status;
|
|
|
|
CPU_STATE CpuState;
|
|
|
|
|
|
|
|
for (ProcessorNumber = 0; ProcessorNumber < mMpSystemData.NumberOfProcessors; ProcessorNumber++) {
|
|
|
|
CpuData = &mMpSystemData.CpuDatas[ProcessorNumber];
|
|
|
|
if (TestCpuStatusFlag (CpuData, PROCESSOR_AS_BSP_BIT)) {
|
|
|
|
//
|
|
|
|
// Skip BSP
|
|
|
|
//
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!TestCpuStatusFlag (CpuData, PROCESSOR_ENABLED_BIT)) {
|
|
|
|
//
|
|
|
|
// Skip Disabled processors
|
|
|
|
//
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
CpuState = GetApState (CpuData);
|
|
|
|
if (CpuState == CpuStateFinished) {
|
|
|
|
mMpSystemData.FinishCount++;
|
|
|
|
if (mMpSystemData.SingleThread) {
|
|
|
|
Status = GetNextBlockedNumber (&NextNumber);
|
|
|
|
if (!EFI_ERROR (Status)) {
|
|
|
|
SetApState (&mMpSystemData.CpuDatas[NextNumber], CpuStateReady);
|
|
|
|
SetApProcedure (&mMpSystemData.CpuDatas[NextNumber],
|
|
|
|
mMpSystemData.Procedure,
|
|
|
|
mMpSystemData.ProcedureArgument);
|
2015-03-09 07:43:11 +01:00
|
|
|
//
|
|
|
|
// If this AP previous state is blocked, we should
|
|
|
|
// wake up this AP by sent a SIPI. and avoid
|
|
|
|
// re-involve the sleeping state. we must call
|
|
|
|
// SetApProcedure() first.
|
|
|
|
//
|
|
|
|
ResetProcessorToIdleState (&mMpSystemData.CpuDatas[NextNumber]);
|
2014-11-13 19:27:34 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
SetApState (CpuData, CpuStateIdle);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-10-19 21:08:28 +02:00
|
|
|
/**
|
|
|
|
Check if all APs are in state CpuStateSleeping.
|
|
|
|
|
|
|
|
Return TRUE if all APs are in the CpuStateSleeping state. Do not
|
|
|
|
check the state of the BSP or any disabled APs.
|
|
|
|
|
|
|
|
@retval TRUE All APs are in CpuStateSleeping state.
|
|
|
|
@retval FALSE One or more APs are not in CpuStateSleeping state.
|
|
|
|
|
|
|
|
**/
|
|
|
|
BOOLEAN
|
|
|
|
CheckAllAPsSleeping (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINTN ProcessorNumber;
|
|
|
|
CPU_DATA_BLOCK *CpuData;
|
|
|
|
|
|
|
|
for (ProcessorNumber = 0; ProcessorNumber < mMpSystemData.NumberOfProcessors; ProcessorNumber++) {
|
|
|
|
CpuData = &mMpSystemData.CpuDatas[ProcessorNumber];
|
|
|
|
if (TestCpuStatusFlag (CpuData, PROCESSOR_AS_BSP_BIT)) {
|
|
|
|
//
|
|
|
|
// Skip BSP
|
|
|
|
//
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!TestCpuStatusFlag (CpuData, PROCESSOR_ENABLED_BIT)) {
|
|
|
|
//
|
|
|
|
// Skip Disabled processors
|
|
|
|
//
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (GetApState (CpuData) != CpuStateSleeping) {
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:34 +01:00
|
|
|
/**
|
|
|
|
If the timeout expires before all APs returns from Procedure,
|
|
|
|
we should forcibly terminate the executing AP and fill FailedList back
|
|
|
|
by StartupAllAPs().
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
ResetAllFailedAPs (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
|
|
|
CPU_DATA_BLOCK *CpuData;
|
|
|
|
UINTN Number;
|
|
|
|
CPU_STATE CpuState;
|
|
|
|
|
|
|
|
if (mMpSystemData.FailedList != NULL) {
|
|
|
|
*mMpSystemData.FailedList = AllocatePool ((mMpSystemData.StartCount - mMpSystemData.FinishCount + 1) * sizeof(UINTN));
|
|
|
|
ASSERT (*mMpSystemData.FailedList != NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (Number = 0; Number < mMpSystemData.NumberOfProcessors; Number++) {
|
|
|
|
CpuData = &mMpSystemData.CpuDatas[Number];
|
|
|
|
if (TestCpuStatusFlag (CpuData, PROCESSOR_AS_BSP_BIT)) {
|
|
|
|
//
|
|
|
|
// Skip BSP
|
|
|
|
//
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!TestCpuStatusFlag (CpuData, PROCESSOR_ENABLED_BIT)) {
|
|
|
|
//
|
|
|
|
// Skip Disabled processors
|
|
|
|
//
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
CpuState = GetApState (CpuData);
|
2015-03-09 07:43:11 +01:00
|
|
|
if (CpuState != CpuStateIdle &&
|
|
|
|
CpuState != CpuStateSleeping) {
|
2014-11-13 19:27:34 +01:00
|
|
|
if (mMpSystemData.FailedList != NULL) {
|
|
|
|
(*mMpSystemData.FailedList)[mMpSystemData.FailedListIndex++] = Number;
|
|
|
|
}
|
|
|
|
ResetProcessorToIdleState (CpuData);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mMpSystemData.FailedList != NULL) {
|
|
|
|
(*mMpSystemData.FailedList)[mMpSystemData.FailedListIndex] = END_OF_CPU_LIST;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:26:42 +01:00
|
|
|
/**
|
|
|
|
This service retrieves the number of logical processor in the platform
|
|
|
|
and the number of those logical processors that are enabled on this boot.
|
|
|
|
This service may only be called from the BSP.
|
|
|
|
|
|
|
|
This function is used to retrieve the following information:
|
|
|
|
- The number of logical processors that are present in the system.
|
|
|
|
- The number of enabled logical processors in the system at the instant
|
|
|
|
this call is made.
|
|
|
|
|
|
|
|
Because MP Service Protocol provides services to enable and disable processors
|
|
|
|
dynamically, the number of enabled logical processors may vary during the
|
|
|
|
course of a boot session.
|
|
|
|
|
|
|
|
If this service is called from an AP, then EFI_DEVICE_ERROR is returned.
|
|
|
|
If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
|
|
|
|
EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors
|
|
|
|
is returned in NumberOfProcessors, the number of currently enabled processor
|
|
|
|
is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned.
|
|
|
|
|
|
|
|
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
|
|
|
|
instance.
|
|
|
|
@param[out] NumberOfProcessors Pointer to the total number of logical
|
|
|
|
processors in the system, including the BSP
|
|
|
|
and disabled APs.
|
|
|
|
@param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
|
|
|
|
processors that exist in system, including
|
|
|
|
the BSP.
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS The number of logical processors and enabled
|
|
|
|
logical processors was retrieved.
|
|
|
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
|
|
|
@retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL.
|
|
|
|
@retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
EFIAPI
|
|
|
|
GetNumberOfProcessors (
|
|
|
|
IN EFI_MP_SERVICES_PROTOCOL *This,
|
|
|
|
OUT UINTN *NumberOfProcessors,
|
|
|
|
OUT UINTN *NumberOfEnabledProcessors
|
|
|
|
)
|
|
|
|
{
|
|
|
|
if ((NumberOfProcessors == NULL) || (NumberOfEnabledProcessors == NULL)) {
|
|
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!IsBSP ()) {
|
|
|
|
return EFI_DEVICE_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
*NumberOfProcessors = mMpSystemData.NumberOfProcessors;
|
|
|
|
*NumberOfEnabledProcessors = mMpSystemData.NumberOfEnabledProcessors;
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:26:53 +01:00
|
|
|
/**
|
|
|
|
Gets detailed MP-related information on the requested processor at the
|
|
|
|
instant this call is made. This service may only be called from the BSP.
|
|
|
|
|
|
|
|
This service retrieves detailed MP-related information about any processor
|
|
|
|
on the platform. Note the following:
|
|
|
|
- The processor information may change during the course of a boot session.
|
|
|
|
- The information presented here is entirely MP related.
|
|
|
|
|
|
|
|
Information regarding the number of caches and their sizes, frequency of operation,
|
|
|
|
slot numbers is all considered platform-related information and is not provided
|
|
|
|
by this service.
|
|
|
|
|
|
|
|
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
|
|
|
|
instance.
|
|
|
|
@param[in] ProcessorNumber The handle number of processor.
|
|
|
|
@param[out] ProcessorInfoBuffer A pointer to the buffer where information for
|
|
|
|
the requested processor is deposited.
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS Processor information was returned.
|
|
|
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
|
|
|
@retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
|
|
|
|
@retval EFI_NOT_FOUND The processor with the handle specified by
|
|
|
|
ProcessorNumber does not exist in the platform.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
EFIAPI
|
|
|
|
GetProcessorInfo (
|
|
|
|
IN EFI_MP_SERVICES_PROTOCOL *This,
|
|
|
|
IN UINTN ProcessorNumber,
|
|
|
|
OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
|
|
|
|
)
|
|
|
|
{
|
|
|
|
if (ProcessorInfoBuffer == NULL) {
|
|
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!IsBSP ()) {
|
|
|
|
return EFI_DEVICE_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ProcessorNumber >= mMpSystemData.NumberOfProcessors) {
|
|
|
|
return EFI_NOT_FOUND;
|
|
|
|
}
|
|
|
|
|
|
|
|
CopyMem (ProcessorInfoBuffer, &mMpSystemData.CpuDatas[ProcessorNumber], sizeof (EFI_PROCESSOR_INFORMATION));
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:34 +01:00
|
|
|
/**
|
|
|
|
This service executes a caller provided function on all enabled APs. APs can
|
|
|
|
run either simultaneously or one at a time in sequence. This service supports
|
|
|
|
both blocking and non-blocking requests. The non-blocking requests use EFI
|
|
|
|
events so the BSP can detect when the APs have finished. This service may only
|
|
|
|
be called from the BSP.
|
|
|
|
|
|
|
|
This function is used to dispatch all the enabled APs to the function specified
|
|
|
|
by Procedure. If any enabled AP is busy, then EFI_NOT_READY is returned
|
|
|
|
immediately and Procedure is not started on any AP.
|
|
|
|
|
|
|
|
If SingleThread is TRUE, all the enabled APs execute the function specified by
|
|
|
|
Procedure one by one, in ascending order of processor handle number. Otherwise,
|
|
|
|
all the enabled APs execute the function specified by Procedure simultaneously.
|
|
|
|
|
|
|
|
If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all
|
|
|
|
APs finish or TimeoutInMicroseconds expires. Otherwise, execution is in non-blocking
|
|
|
|
mode, and the BSP returns from this service without waiting for APs. If a
|
|
|
|
non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
|
|
|
|
is signaled, then EFI_UNSUPPORTED must be returned.
|
|
|
|
|
|
|
|
If the timeout specified by TimeoutInMicroseconds expires before all APs return
|
|
|
|
from Procedure, then Procedure on the failed APs is terminated. All enabled APs
|
|
|
|
are always available for further calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
|
|
|
|
and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL, its
|
|
|
|
content points to the list of processor handle numbers in which Procedure was
|
|
|
|
terminated.
|
|
|
|
|
|
|
|
Note: It is the responsibility of the consumer of the EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
|
|
|
|
to make sure that the nature of the code that is executed on the BSP and the
|
|
|
|
dispatched APs is well controlled. The MP Services Protocol does not guarantee
|
|
|
|
that the Procedure function is MP-safe. Hence, the tasks that can be run in
|
|
|
|
parallel are limited to certain independent tasks and well-controlled exclusive
|
|
|
|
code. EFI services and protocols may not be called by APs unless otherwise
|
|
|
|
specified.
|
|
|
|
|
|
|
|
In blocking execution mode, BSP waits until all APs finish or
|
|
|
|
TimeoutInMicroseconds expires.
|
|
|
|
|
|
|
|
In non-blocking execution mode, BSP is freed to return to the caller and then
|
|
|
|
proceed to the next task without having to wait for APs. The following
|
|
|
|
sequence needs to occur in a non-blocking execution mode:
|
|
|
|
|
|
|
|
-# The caller that intends to use this MP Services Protocol in non-blocking
|
|
|
|
mode creates WaitEvent by calling the EFI CreateEvent() service. The caller
|
|
|
|
invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter WaitEvent
|
|
|
|
is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests
|
|
|
|
the function specified by Procedure to be started on all the enabled APs,
|
|
|
|
and releases the BSP to continue with other tasks.
|
|
|
|
-# The caller can use the CheckEvent() and WaitForEvent() services to check
|
|
|
|
the state of the WaitEvent created in step 1.
|
|
|
|
-# When the APs complete their task or TimeoutInMicroSecondss expires, the MP
|
|
|
|
Service signals WaitEvent by calling the EFI SignalEvent() function. If
|
|
|
|
FailedCpuList is not NULL, its content is available when WaitEvent is
|
|
|
|
signaled. If all APs returned from Procedure prior to the timeout, then
|
|
|
|
FailedCpuList is set to NULL. If not all APs return from Procedure before
|
|
|
|
the timeout, then FailedCpuList is filled in with the list of the failed
|
|
|
|
APs. The buffer is allocated by MP Service Protocol using AllocatePool().
|
|
|
|
It is the caller's responsibility to free the buffer with FreePool() service.
|
|
|
|
-# This invocation of SignalEvent() function informs the caller that invoked
|
|
|
|
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs completed
|
|
|
|
the specified task or a timeout occurred. The contents of FailedCpuList
|
|
|
|
can be examined to determine which APs did not complete the specified task
|
|
|
|
prior to the timeout.
|
|
|
|
|
|
|
|
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
|
|
|
|
instance.
|
|
|
|
@param[in] Procedure A pointer to the function to be run on
|
|
|
|
enabled APs of the system. See type
|
|
|
|
EFI_AP_PROCEDURE.
|
|
|
|
@param[in] SingleThread If TRUE, then all the enabled APs execute
|
|
|
|
the function specified by Procedure one by
|
|
|
|
one, in ascending order of processor handle
|
|
|
|
number. If FALSE, then all the enabled APs
|
|
|
|
execute the function specified by Procedure
|
|
|
|
simultaneously.
|
|
|
|
@param[in] WaitEvent The event created by the caller with CreateEvent()
|
|
|
|
service. If it is NULL, then execute in
|
|
|
|
blocking mode. BSP waits until all APs finish
|
|
|
|
or TimeoutInMicroseconds expires. If it's
|
|
|
|
not NULL, then execute in non-blocking mode.
|
|
|
|
BSP requests the function specified by
|
|
|
|
Procedure to be started on all the enabled
|
|
|
|
APs, and go on executing immediately. If
|
|
|
|
all return from Procedure, or TimeoutInMicroseconds
|
|
|
|
expires, this event is signaled. The BSP
|
|
|
|
can use the CheckEvent() or WaitForEvent()
|
|
|
|
services to check the state of event. Type
|
|
|
|
EFI_EVENT is defined in CreateEvent() in
|
|
|
|
the Unified Extensible Firmware Interface
|
|
|
|
Specification.
|
|
|
|
@param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
|
|
|
|
APs to return from Procedure, either for
|
|
|
|
blocking or non-blocking mode. Zero means
|
|
|
|
infinity. If the timeout expires before
|
|
|
|
all APs return from Procedure, then Procedure
|
|
|
|
on the failed APs is terminated. All enabled
|
|
|
|
APs are available for next function assigned
|
|
|
|
by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
|
|
|
|
or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
|
|
|
|
If the timeout expires in blocking mode,
|
|
|
|
BSP returns EFI_TIMEOUT. If the timeout
|
|
|
|
expires in non-blocking mode, WaitEvent
|
|
|
|
is signaled with SignalEvent().
|
|
|
|
@param[in] ProcedureArgument The parameter passed into Procedure for
|
|
|
|
all APs.
|
|
|
|
@param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise,
|
|
|
|
if all APs finish successfully, then its
|
|
|
|
content is set to NULL. If not all APs
|
|
|
|
finish before timeout expires, then its
|
|
|
|
content is set to address of the buffer
|
|
|
|
holding handle numbers of the failed APs.
|
|
|
|
The buffer is allocated by MP Service Protocol,
|
|
|
|
and it's the caller's responsibility to
|
|
|
|
free the buffer with FreePool() service.
|
|
|
|
In blocking mode, it is ready for consumption
|
|
|
|
when the call returns. In non-blocking mode,
|
|
|
|
it is ready when WaitEvent is signaled. The
|
|
|
|
list of failed CPU is terminated by
|
|
|
|
END_OF_CPU_LIST.
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS In blocking mode, all APs have finished before
|
|
|
|
the timeout expired.
|
|
|
|
@retval EFI_SUCCESS In non-blocking mode, function has been dispatched
|
|
|
|
to all enabled APs.
|
|
|
|
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
|
|
|
|
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
|
|
|
|
signaled.
|
|
|
|
@retval EFI_DEVICE_ERROR Caller processor is AP.
|
|
|
|
@retval EFI_NOT_STARTED No enabled APs exist in the system.
|
|
|
|
@retval EFI_NOT_READY Any enabled APs are busy.
|
|
|
|
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
|
|
|
|
all enabled APs have finished.
|
|
|
|
@retval EFI_INVALID_PARAMETER Procedure is NULL.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
EFIAPI
|
|
|
|
StartupAllAPs (
|
|
|
|
IN EFI_MP_SERVICES_PROTOCOL *This,
|
|
|
|
IN EFI_AP_PROCEDURE Procedure,
|
|
|
|
IN BOOLEAN SingleThread,
|
|
|
|
IN EFI_EVENT WaitEvent OPTIONAL,
|
|
|
|
IN UINTN TimeoutInMicroseconds,
|
|
|
|
IN VOID *ProcedureArgument OPTIONAL,
|
|
|
|
OUT UINTN **FailedCpuList OPTIONAL
|
|
|
|
)
|
|
|
|
{
|
|
|
|
EFI_STATUS Status;
|
|
|
|
CPU_DATA_BLOCK *CpuData;
|
|
|
|
UINTN Number;
|
|
|
|
CPU_STATE APInitialState;
|
2015-03-09 07:43:11 +01:00
|
|
|
CPU_STATE CpuState;
|
2014-11-13 19:27:34 +01:00
|
|
|
|
|
|
|
CpuData = NULL;
|
|
|
|
|
|
|
|
if (FailedCpuList != NULL) {
|
|
|
|
*FailedCpuList = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!IsBSP ()) {
|
|
|
|
return EFI_DEVICE_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mMpSystemData.NumberOfProcessors == 1) {
|
|
|
|
return EFI_NOT_STARTED;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Procedure == NULL) {
|
|
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:29:54 +01:00
|
|
|
//
|
|
|
|
// temporarily stop checkAllAPsStatus for avoid resource dead-lock.
|
|
|
|
//
|
|
|
|
mStopCheckAllAPsStatus = TRUE;
|
|
|
|
|
2014-11-13 19:27:34 +01:00
|
|
|
for (Number = 0; Number < mMpSystemData.NumberOfProcessors; Number++) {
|
|
|
|
CpuData = &mMpSystemData.CpuDatas[Number];
|
|
|
|
if (TestCpuStatusFlag (CpuData, PROCESSOR_AS_BSP_BIT)) {
|
|
|
|
//
|
|
|
|
// Skip BSP
|
|
|
|
//
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!TestCpuStatusFlag (CpuData, PROCESSOR_ENABLED_BIT)) {
|
|
|
|
//
|
|
|
|
// Skip Disabled processors
|
|
|
|
//
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2015-03-09 07:43:11 +01:00
|
|
|
CpuState = GetApState (CpuData);
|
|
|
|
if (CpuState != CpuStateIdle &&
|
|
|
|
CpuState != CpuStateSleeping) {
|
2014-11-13 19:27:34 +01:00
|
|
|
return EFI_NOT_READY;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
mMpSystemData.Procedure = Procedure;
|
|
|
|
mMpSystemData.ProcedureArgument = ProcedureArgument;
|
|
|
|
mMpSystemData.WaitEvent = WaitEvent;
|
|
|
|
mMpSystemData.Timeout = TimeoutInMicroseconds;
|
2014-11-24 05:57:40 +01:00
|
|
|
mMpSystemData.TimeoutActive = (BOOLEAN) (TimeoutInMicroseconds != 0);
|
2014-11-13 19:27:34 +01:00
|
|
|
mMpSystemData.FinishCount = 0;
|
|
|
|
mMpSystemData.StartCount = 0;
|
|
|
|
mMpSystemData.SingleThread = SingleThread;
|
|
|
|
mMpSystemData.FailedList = FailedCpuList;
|
|
|
|
mMpSystemData.FailedListIndex = 0;
|
|
|
|
APInitialState = CpuStateReady;
|
|
|
|
|
|
|
|
for (Number = 0; Number < mMpSystemData.NumberOfProcessors; Number++) {
|
|
|
|
CpuData = &mMpSystemData.CpuDatas[Number];
|
|
|
|
if (TestCpuStatusFlag (CpuData, PROCESSOR_AS_BSP_BIT)) {
|
|
|
|
//
|
|
|
|
// Skip BSP
|
|
|
|
//
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!TestCpuStatusFlag (CpuData, PROCESSOR_ENABLED_BIT)) {
|
|
|
|
//
|
|
|
|
// Skip Disabled processors
|
|
|
|
//
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Get APs prepared, and put failing APs into FailedCpuList
|
|
|
|
// if "SingleThread", only 1 AP will put to ready state, other AP will be put to ready
|
|
|
|
// state 1 by 1, until the previous 1 finished its task
|
|
|
|
// if not "SingleThread", all APs are put to ready state from the beginning
|
|
|
|
//
|
2015-03-09 07:43:11 +01:00
|
|
|
CpuState = GetApState (CpuData);
|
|
|
|
if (CpuState == CpuStateIdle ||
|
|
|
|
CpuState == CpuStateSleeping) {
|
2014-11-13 19:27:34 +01:00
|
|
|
mMpSystemData.StartCount++;
|
|
|
|
|
|
|
|
SetApState (CpuData, APInitialState);
|
|
|
|
|
|
|
|
if (APInitialState == CpuStateReady) {
|
|
|
|
SetApProcedure (CpuData, Procedure, ProcedureArgument);
|
2015-03-09 07:43:11 +01:00
|
|
|
//
|
|
|
|
// If this AP previous state is Sleeping, we should
|
|
|
|
// wake up this AP by sent a SIPI. and avoid
|
|
|
|
// re-involve the sleeping state. we must call
|
|
|
|
// SetApProcedure() first.
|
|
|
|
//
|
|
|
|
if (CpuState == CpuStateSleeping) {
|
|
|
|
ResetProcessorToIdleState (CpuData);
|
|
|
|
}
|
2014-11-13 19:27:34 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
if (SingleThread) {
|
|
|
|
APInitialState = CpuStateBlocked;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:28:20 +01:00
|
|
|
mStopCheckAllAPsStatus = FALSE;
|
|
|
|
|
2014-11-13 19:27:34 +01:00
|
|
|
if (WaitEvent != NULL) {
|
2014-11-13 19:28:20 +01:00
|
|
|
//
|
|
|
|
// non blocking
|
|
|
|
//
|
|
|
|
return EFI_SUCCESS;
|
2014-11-13 19:27:34 +01:00
|
|
|
}
|
|
|
|
|
2014-11-13 19:29:54 +01:00
|
|
|
//
|
|
|
|
// Blocking temporarily stop CheckAllAPsStatus()
|
|
|
|
//
|
|
|
|
mStopCheckAllAPsStatus = TRUE;
|
|
|
|
|
2014-11-13 19:27:34 +01:00
|
|
|
while (TRUE) {
|
|
|
|
CheckAndUpdateAllAPsToIdleState ();
|
|
|
|
if (mMpSystemData.FinishCount == mMpSystemData.StartCount) {
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
goto Done;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// task timeout
|
|
|
|
//
|
|
|
|
if (mMpSystemData.TimeoutActive && mMpSystemData.Timeout < 0) {
|
|
|
|
ResetAllFailedAPs();
|
|
|
|
Status = EFI_TIMEOUT;
|
|
|
|
goto Done;
|
|
|
|
}
|
|
|
|
|
2015-11-20 09:22:46 +01:00
|
|
|
MicroSecondDelay (gPollInterval);
|
2014-11-13 19:27:34 +01:00
|
|
|
mMpSystemData.Timeout -= gPollInterval;
|
|
|
|
}
|
|
|
|
|
|
|
|
Done:
|
|
|
|
|
|
|
|
return Status;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:21 +01:00
|
|
|
/**
|
|
|
|
This service lets the caller get one enabled AP to execute a caller-provided
|
|
|
|
function. The caller can request the BSP to either wait for the completion
|
|
|
|
of the AP or just proceed with the next task by using the EFI event mechanism.
|
|
|
|
See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking
|
|
|
|
execution support. This service may only be called from the BSP.
|
|
|
|
|
|
|
|
This function is used to dispatch one enabled AP to the function specified by
|
|
|
|
Procedure passing in the argument specified by ProcedureArgument. If WaitEvent
|
|
|
|
is NULL, execution is in blocking mode. The BSP waits until the AP finishes or
|
|
|
|
TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode.
|
|
|
|
BSP proceeds to the next task without waiting for the AP. If a non-blocking mode
|
|
|
|
is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled,
|
|
|
|
then EFI_UNSUPPORTED must be returned.
|
|
|
|
|
|
|
|
If the timeout specified by TimeoutInMicroseconds expires before the AP returns
|
|
|
|
from Procedure, then execution of Procedure by the AP is terminated. The AP is
|
|
|
|
available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
|
|
|
|
EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
|
|
|
|
|
|
|
|
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
|
|
|
|
instance.
|
|
|
|
@param[in] Procedure A pointer to the function to be run on
|
|
|
|
enabled APs of the system. See type
|
|
|
|
EFI_AP_PROCEDURE.
|
|
|
|
@param[in] ProcessorNumber The handle number of the AP. The range is
|
|
|
|
from 0 to the total number of logical
|
|
|
|
processors minus 1. The total number of
|
|
|
|
logical processors can be retrieved by
|
|
|
|
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
|
|
|
|
@param[in] WaitEvent The event created by the caller with CreateEvent()
|
|
|
|
service. If it is NULL, then execute in
|
|
|
|
blocking mode. BSP waits until all APs finish
|
|
|
|
or TimeoutInMicroseconds expires. If it's
|
|
|
|
not NULL, then execute in non-blocking mode.
|
|
|
|
BSP requests the function specified by
|
|
|
|
Procedure to be started on all the enabled
|
|
|
|
APs, and go on executing immediately. If
|
|
|
|
all return from Procedure or TimeoutInMicroseconds
|
|
|
|
expires, this event is signaled. The BSP
|
|
|
|
can use the CheckEvent() or WaitForEvent()
|
|
|
|
services to check the state of event. Type
|
|
|
|
EFI_EVENT is defined in CreateEvent() in
|
|
|
|
the Unified Extensible Firmware Interface
|
|
|
|
Specification.
|
|
|
|
@param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
|
|
|
|
APs to return from Procedure, either for
|
|
|
|
blocking or non-blocking mode. Zero means
|
|
|
|
infinity. If the timeout expires before
|
|
|
|
all APs return from Procedure, then Procedure
|
|
|
|
on the failed APs is terminated. All enabled
|
|
|
|
APs are available for next function assigned
|
|
|
|
by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
|
|
|
|
or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
|
|
|
|
If the timeout expires in blocking mode,
|
|
|
|
BSP returns EFI_TIMEOUT. If the timeout
|
|
|
|
expires in non-blocking mode, WaitEvent
|
|
|
|
is signaled with SignalEvent().
|
|
|
|
@param[in] ProcedureArgument The parameter passed into Procedure for
|
|
|
|
all APs.
|
|
|
|
@param[out] Finished If NULL, this parameter is ignored. In
|
|
|
|
blocking mode, this parameter is ignored.
|
|
|
|
In non-blocking mode, if AP returns from
|
|
|
|
Procedure before the timeout expires, its
|
|
|
|
content is set to TRUE. Otherwise, the
|
|
|
|
value is set to FALSE. The caller can
|
|
|
|
determine if the AP returned from Procedure
|
|
|
|
by evaluating this value.
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS In blocking mode, specified AP finished before
|
|
|
|
the timeout expires.
|
|
|
|
@retval EFI_SUCCESS In non-blocking mode, the function has been
|
|
|
|
dispatched to specified AP.
|
|
|
|
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
|
|
|
|
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
|
|
|
|
signaled.
|
|
|
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
|
|
|
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
|
|
|
|
the specified AP has finished.
|
|
|
|
@retval EFI_NOT_READY The specified AP is busy.
|
|
|
|
@retval EFI_NOT_FOUND The processor with the handle specified by
|
|
|
|
ProcessorNumber does not exist.
|
|
|
|
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
|
|
|
|
@retval EFI_INVALID_PARAMETER Procedure is NULL.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
EFIAPI
|
|
|
|
StartupThisAP (
|
|
|
|
IN EFI_MP_SERVICES_PROTOCOL *This,
|
|
|
|
IN EFI_AP_PROCEDURE Procedure,
|
|
|
|
IN UINTN ProcessorNumber,
|
|
|
|
IN EFI_EVENT WaitEvent OPTIONAL,
|
|
|
|
IN UINTN TimeoutInMicroseconds,
|
|
|
|
IN VOID *ProcedureArgument OPTIONAL,
|
|
|
|
OUT BOOLEAN *Finished OPTIONAL
|
|
|
|
)
|
|
|
|
{
|
|
|
|
CPU_DATA_BLOCK *CpuData;
|
2015-03-09 07:43:11 +01:00
|
|
|
CPU_STATE CpuState;
|
2014-11-13 19:27:21 +01:00
|
|
|
|
|
|
|
CpuData = NULL;
|
|
|
|
|
|
|
|
if (Finished != NULL) {
|
|
|
|
*Finished = FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!IsBSP ()) {
|
|
|
|
return EFI_DEVICE_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Procedure == NULL) {
|
|
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ProcessorNumber >= mMpSystemData.NumberOfProcessors) {
|
|
|
|
return EFI_NOT_FOUND;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:29:54 +01:00
|
|
|
//
|
|
|
|
// temporarily stop checkAllAPsStatus for avoid resource dead-lock.
|
|
|
|
//
|
|
|
|
mStopCheckAllAPsStatus = TRUE;
|
|
|
|
|
2014-11-13 19:27:21 +01:00
|
|
|
CpuData = &mMpSystemData.CpuDatas[ProcessorNumber];
|
|
|
|
if (TestCpuStatusFlag (CpuData, PROCESSOR_AS_BSP_BIT) ||
|
|
|
|
!TestCpuStatusFlag (CpuData, PROCESSOR_ENABLED_BIT)) {
|
|
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
}
|
|
|
|
|
2015-03-09 07:43:11 +01:00
|
|
|
CpuState = GetApState (CpuData);
|
|
|
|
if (CpuState != CpuStateIdle &&
|
|
|
|
CpuState != CpuStateSleeping) {
|
2014-11-13 19:27:21 +01:00
|
|
|
return EFI_NOT_READY;
|
|
|
|
}
|
|
|
|
|
|
|
|
SetApState (CpuData, CpuStateReady);
|
|
|
|
|
|
|
|
SetApProcedure (CpuData, Procedure, ProcedureArgument);
|
2015-03-09 07:43:11 +01:00
|
|
|
//
|
|
|
|
// If this AP previous state is Sleeping, we should
|
|
|
|
// wake up this AP by sent a SIPI. and avoid
|
|
|
|
// re-involve the sleeping state. we must call
|
|
|
|
// SetApProcedure() first.
|
|
|
|
//
|
|
|
|
if (CpuState == CpuStateSleeping) {
|
|
|
|
ResetProcessorToIdleState (CpuData);
|
|
|
|
}
|
2014-11-13 19:27:21 +01:00
|
|
|
|
|
|
|
CpuData->Timeout = TimeoutInMicroseconds;
|
|
|
|
CpuData->WaitEvent = WaitEvent;
|
2014-11-24 05:57:40 +01:00
|
|
|
CpuData->TimeoutActive = (BOOLEAN) (TimeoutInMicroseconds != 0);
|
2014-11-13 19:27:21 +01:00
|
|
|
CpuData->Finished = Finished;
|
|
|
|
|
2014-11-13 19:28:20 +01:00
|
|
|
mStopCheckAllAPsStatus = FALSE;
|
|
|
|
|
2014-11-13 19:27:21 +01:00
|
|
|
if (WaitEvent != NULL) {
|
|
|
|
//
|
|
|
|
// Non Blocking
|
|
|
|
//
|
2014-11-13 19:28:20 +01:00
|
|
|
return EFI_SUCCESS;
|
2014-11-13 19:27:21 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Blocking
|
|
|
|
//
|
|
|
|
while (TRUE) {
|
|
|
|
if (GetApState (CpuData) == CpuStateFinished) {
|
|
|
|
SetApState (CpuData, CpuStateIdle);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CpuData->TimeoutActive && CpuData->Timeout < 0) {
|
|
|
|
ResetProcessorToIdleState (CpuData);
|
|
|
|
return EFI_TIMEOUT;
|
|
|
|
}
|
|
|
|
|
2015-11-20 09:22:46 +01:00
|
|
|
MicroSecondDelay (gPollInterval);
|
2014-11-13 19:27:21 +01:00
|
|
|
CpuData->Timeout -= gPollInterval;
|
|
|
|
}
|
|
|
|
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:52 +01:00
|
|
|
/**
|
|
|
|
This service switches the requested AP to be the BSP from that point onward.
|
|
|
|
This service changes the BSP for all purposes. This call can only be performed
|
|
|
|
by the current BSP.
|
|
|
|
|
|
|
|
This service switches the requested AP to be the BSP from that point onward.
|
|
|
|
This service changes the BSP for all purposes. The new BSP can take over the
|
|
|
|
execution of the old BSP and continue seamlessly from where the old one left
|
|
|
|
off. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
|
|
|
|
is signaled.
|
|
|
|
|
|
|
|
If the BSP cannot be switched prior to the return from this service, then
|
|
|
|
EFI_UNSUPPORTED must be returned.
|
|
|
|
|
|
|
|
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
|
|
|
|
@param[in] ProcessorNumber The handle number of AP that is to become the new
|
|
|
|
BSP. The range is from 0 to the total number of
|
|
|
|
logical processors minus 1. The total number of
|
|
|
|
logical processors can be retrieved by
|
|
|
|
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
|
|
|
|
@param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
|
|
|
|
enabled AP. Otherwise, it will be disabled.
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS BSP successfully switched.
|
|
|
|
@retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to
|
|
|
|
this service returning.
|
|
|
|
@retval EFI_UNSUPPORTED Switching the BSP is not supported.
|
|
|
|
@retval EFI_SUCCESS The calling processor is an AP.
|
|
|
|
@retval EFI_NOT_FOUND The processor with the handle specified by
|
|
|
|
ProcessorNumber does not exist.
|
|
|
|
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or
|
|
|
|
a disabled AP.
|
|
|
|
@retval EFI_NOT_READY The specified AP is busy.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
EFIAPI
|
|
|
|
SwitchBSP (
|
|
|
|
IN EFI_MP_SERVICES_PROTOCOL *This,
|
|
|
|
IN UINTN ProcessorNumber,
|
|
|
|
IN BOOLEAN EnableOldBSP
|
|
|
|
)
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// Current always return unsupported.
|
|
|
|
//
|
|
|
|
return EFI_UNSUPPORTED;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:09 +01:00
|
|
|
/**
|
|
|
|
This service lets the caller enable or disable an AP from this point onward.
|
|
|
|
This service may only be called from the BSP.
|
|
|
|
|
|
|
|
This service allows the caller enable or disable an AP from this point onward.
|
|
|
|
The caller can optionally specify the health status of the AP by Health. If
|
|
|
|
an AP is being disabled, then the state of the disabled AP is implementation
|
|
|
|
dependent. If an AP is enabled, then the implementation must guarantee that a
|
|
|
|
complete initialization sequence is performed on the AP, so the AP is in a state
|
|
|
|
that is compatible with an MP operating system. This service may not be supported
|
|
|
|
after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled.
|
|
|
|
|
|
|
|
If the enable or disable AP operation cannot be completed prior to the return
|
|
|
|
from this service, then EFI_UNSUPPORTED must be returned.
|
|
|
|
|
|
|
|
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
|
|
|
|
@param[in] ProcessorNumber The handle number of AP that is to become the new
|
|
|
|
BSP. The range is from 0 to the total number of
|
|
|
|
logical processors minus 1. The total number of
|
|
|
|
logical processors can be retrieved by
|
|
|
|
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
|
|
|
|
@param[in] EnableAP Specifies the new state for the processor for
|
|
|
|
enabled, FALSE for disabled.
|
|
|
|
@param[in] HealthFlag If not NULL, a pointer to a value that specifies
|
|
|
|
the new health status of the AP. This flag
|
|
|
|
corresponds to StatusFlag defined in
|
|
|
|
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
|
|
|
|
the PROCESSOR_HEALTH_STATUS_BIT is used. All other
|
|
|
|
bits are ignored. If it is NULL, this parameter
|
|
|
|
is ignored.
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
|
|
|
|
@retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed
|
|
|
|
prior to this service returning.
|
|
|
|
@retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported.
|
|
|
|
@retval EFI_DEVICE_ERROR The calling processor is an AP.
|
|
|
|
@retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber
|
|
|
|
does not exist.
|
|
|
|
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
EFIAPI
|
|
|
|
EnableDisableAP (
|
|
|
|
IN EFI_MP_SERVICES_PROTOCOL *This,
|
|
|
|
IN UINTN ProcessorNumber,
|
|
|
|
IN BOOLEAN EnableAP,
|
|
|
|
IN UINT32 *HealthFlag OPTIONAL
|
|
|
|
)
|
|
|
|
{
|
|
|
|
CPU_DATA_BLOCK *CpuData;
|
2014-11-13 19:29:54 +01:00
|
|
|
BOOLEAN TempStopCheckState;
|
2015-03-09 07:43:11 +01:00
|
|
|
CPU_STATE CpuState;
|
2014-11-13 19:29:54 +01:00
|
|
|
|
|
|
|
CpuData = NULL;
|
|
|
|
TempStopCheckState = FALSE;
|
2014-11-13 19:27:09 +01:00
|
|
|
|
|
|
|
if (!IsBSP ()) {
|
|
|
|
return EFI_DEVICE_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ProcessorNumber >= mMpSystemData.NumberOfProcessors) {
|
|
|
|
return EFI_NOT_FOUND;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:29:54 +01:00
|
|
|
//
|
|
|
|
// temporarily stop checkAllAPsStatus for initialize parameters.
|
|
|
|
//
|
|
|
|
if (!mStopCheckAllAPsStatus) {
|
|
|
|
mStopCheckAllAPsStatus = TRUE;
|
|
|
|
TempStopCheckState = TRUE;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:09 +01:00
|
|
|
CpuData = &mMpSystemData.CpuDatas[ProcessorNumber];
|
|
|
|
if (TestCpuStatusFlag (CpuData, PROCESSOR_AS_BSP_BIT)) {
|
|
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
}
|
|
|
|
|
2015-03-09 07:43:11 +01:00
|
|
|
CpuState = GetApState (CpuData);
|
|
|
|
if (CpuState != CpuStateIdle &&
|
|
|
|
CpuState != CpuStateSleeping) {
|
2014-11-13 19:27:09 +01:00
|
|
|
return EFI_UNSUPPORTED;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (EnableAP) {
|
|
|
|
if (!(TestCpuStatusFlag (CpuData, PROCESSOR_ENABLED_BIT))) {
|
|
|
|
mMpSystemData.NumberOfEnabledProcessors++;
|
|
|
|
}
|
|
|
|
CpuStatusFlagOr (CpuData, PROCESSOR_ENABLED_BIT);
|
|
|
|
} else {
|
|
|
|
if (TestCpuStatusFlag (CpuData, PROCESSOR_ENABLED_BIT)) {
|
|
|
|
mMpSystemData.NumberOfEnabledProcessors--;
|
|
|
|
}
|
|
|
|
CpuStatusFlagAndNot (CpuData, PROCESSOR_ENABLED_BIT);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (HealthFlag != NULL) {
|
|
|
|
CpuStatusFlagAndNot (CpuData, (UINT32)~PROCESSOR_HEALTH_STATUS_BIT);
|
|
|
|
CpuStatusFlagOr (CpuData, (*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT));
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:29:54 +01:00
|
|
|
if (TempStopCheckState) {
|
|
|
|
mStopCheckAllAPsStatus = FALSE;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:09 +01:00
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:26:32 +01:00
|
|
|
/**
|
|
|
|
This return the handle number for the calling processor. This service may be
|
|
|
|
called from the BSP and APs.
|
|
|
|
|
|
|
|
This service returns the processor handle number for the calling processor.
|
|
|
|
The returned value is in the range from 0 to the total number of logical
|
|
|
|
processors minus 1. The total number of logical processors can be retrieved
|
|
|
|
with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be
|
|
|
|
called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER
|
|
|
|
is returned. Otherwise, the current processors handle number is returned in
|
|
|
|
ProcessorNumber, and EFI_SUCCESS is returned.
|
|
|
|
|
|
|
|
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
|
|
|
|
@param[out] ProcessorNumber The handle number of AP that is to become the new
|
|
|
|
BSP. The range is from 0 to the total number of
|
|
|
|
logical processors minus 1. The total number of
|
|
|
|
logical processors can be retrieved by
|
|
|
|
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS The current processor handle number was returned
|
|
|
|
in ProcessorNumber.
|
|
|
|
@retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
EFIAPI
|
|
|
|
WhoAmI (
|
|
|
|
IN EFI_MP_SERVICES_PROTOCOL *This,
|
|
|
|
OUT UINTN *ProcessorNumber
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINTN Index;
|
|
|
|
UINT32 ProcessorId;
|
|
|
|
|
|
|
|
if (ProcessorNumber == NULL) {
|
|
|
|
return EFI_INVALID_PARAMETER;
|
|
|
|
}
|
|
|
|
|
|
|
|
ProcessorId = GetApicId ();
|
|
|
|
for (Index = 0; Index < mMpSystemData.NumberOfProcessors; Index++) {
|
|
|
|
if (mMpSystemData.CpuDatas[Index].Info.ProcessorId == ProcessorId) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
*ProcessorNumber = Index;
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:21 +01:00
|
|
|
/**
|
|
|
|
Terminate AP's task and set it to idle state.
|
|
|
|
|
|
|
|
This function terminates AP's task due to timeout by sending INIT-SIPI,
|
|
|
|
and sends it to idle state.
|
|
|
|
|
|
|
|
@param CpuData the pointer to CPU_DATA_BLOCK of specified AP
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
ResetProcessorToIdleState (
|
|
|
|
IN CPU_DATA_BLOCK *CpuData
|
|
|
|
)
|
|
|
|
{
|
2014-11-13 19:29:13 +01:00
|
|
|
ResetApStackless ((UINT32)CpuData->Info.ProcessorId);
|
2014-11-13 19:27:21 +01:00
|
|
|
}
|
|
|
|
|
2014-11-13 19:26:03 +01:00
|
|
|
/**
|
|
|
|
Application Processors do loop routine
|
|
|
|
after switch to its own stack.
|
|
|
|
|
|
|
|
@param Context1 A pointer to the context to pass into the function.
|
|
|
|
@param Context2 A pointer to the context to pass into the function.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
ProcessorToIdleState (
|
|
|
|
IN VOID *Context1, OPTIONAL
|
|
|
|
IN VOID *Context2 OPTIONAL
|
|
|
|
)
|
|
|
|
{
|
2014-11-13 19:28:10 +01:00
|
|
|
UINTN ProcessorNumber;
|
|
|
|
CPU_DATA_BLOCK *CpuData;
|
|
|
|
EFI_AP_PROCEDURE Procedure;
|
2015-03-09 07:45:26 +01:00
|
|
|
volatile VOID *ProcedureArgument;
|
2014-11-13 19:28:10 +01:00
|
|
|
|
2014-11-13 19:29:31 +01:00
|
|
|
AsmApDoneWithCommonStack ();
|
|
|
|
|
|
|
|
while (!mAPsAlreadyInitFinished) {
|
|
|
|
CpuPause ();
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:28:10 +01:00
|
|
|
WhoAmI (&mMpServicesTemplate, &ProcessorNumber);
|
|
|
|
CpuData = &mMpSystemData.CpuDatas[ProcessorNumber];
|
2014-11-13 19:26:03 +01:00
|
|
|
|
2014-11-13 19:29:40 +01:00
|
|
|
//
|
|
|
|
// Avoid forcibly reset AP caused the AP got lock not release.
|
|
|
|
//
|
|
|
|
if (CpuData->LockSelf == (INTN) GetApicId ()) {
|
|
|
|
ReleaseSpinLock (&CpuData->CpuDataLock);
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:29:13 +01:00
|
|
|
//
|
2015-03-09 07:38:16 +01:00
|
|
|
// Avoid forcibly reset AP caused the timeout AP State is not
|
|
|
|
// updated.
|
2014-11-13 19:29:13 +01:00
|
|
|
//
|
|
|
|
GetMpSpinLock (CpuData);
|
2015-03-09 07:38:16 +01:00
|
|
|
if (CpuData->State == CpuStateBusy) {
|
|
|
|
CpuData->Procedure = NULL;
|
|
|
|
}
|
2014-11-13 19:29:13 +01:00
|
|
|
CpuData->State = CpuStateIdle;
|
|
|
|
ReleaseMpSpinLock (CpuData);
|
|
|
|
|
2014-11-13 19:28:10 +01:00
|
|
|
while (TRUE) {
|
2014-11-13 19:28:33 +01:00
|
|
|
GetMpSpinLock (CpuData);
|
2014-11-13 19:28:10 +01:00
|
|
|
ProcedureArgument = CpuData->Parameter;
|
|
|
|
Procedure = CpuData->Procedure;
|
2014-11-13 19:28:33 +01:00
|
|
|
ReleaseMpSpinLock (CpuData);
|
2014-11-13 19:28:10 +01:00
|
|
|
|
|
|
|
if (Procedure != NULL) {
|
2015-03-09 07:38:16 +01:00
|
|
|
SetApState (CpuData, CpuStateBusy);
|
|
|
|
|
2015-03-09 07:45:26 +01:00
|
|
|
Procedure ((VOID*) ProcedureArgument);
|
2014-11-13 19:28:10 +01:00
|
|
|
|
2014-11-13 19:28:33 +01:00
|
|
|
GetMpSpinLock (CpuData);
|
2014-11-13 19:28:10 +01:00
|
|
|
CpuData->Procedure = NULL;
|
2014-11-13 19:28:33 +01:00
|
|
|
CpuData->State = CpuStateFinished;
|
|
|
|
ReleaseMpSpinLock (CpuData);
|
2015-03-09 07:43:11 +01:00
|
|
|
} else {
|
|
|
|
//
|
|
|
|
// if no procedure to execution, we simply put AP
|
|
|
|
// into sleeping state, and waiting BSP sent SIPI.
|
|
|
|
//
|
|
|
|
GetMpSpinLock (CpuData);
|
|
|
|
if (CpuData->State == CpuStateIdle) {
|
|
|
|
CpuData->State = CpuStateSleeping;
|
|
|
|
}
|
|
|
|
ReleaseMpSpinLock (CpuData);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (GetApState (CpuData) == CpuStateSleeping) {
|
|
|
|
CpuSleep ();
|
2014-11-13 19:28:10 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
CpuPause ();
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:26:03 +01:00
|
|
|
CpuSleep ();
|
|
|
|
CpuDeadLoop ();
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:21 +01:00
|
|
|
/**
|
|
|
|
Checks AP' status periodically.
|
|
|
|
|
|
|
|
This function is triggerred by timer perodically to check the
|
|
|
|
state of AP forStartupThisAP() executed in non-blocking mode.
|
|
|
|
|
|
|
|
@param Event Event triggered.
|
|
|
|
@param Context Parameter passed with the event.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EFIAPI
|
|
|
|
CheckThisAPStatus (
|
|
|
|
IN EFI_EVENT Event,
|
|
|
|
IN VOID *Context
|
|
|
|
)
|
|
|
|
{
|
|
|
|
CPU_DATA_BLOCK *CpuData;
|
|
|
|
CPU_STATE CpuState;
|
|
|
|
|
|
|
|
CpuData = (CPU_DATA_BLOCK *) Context;
|
|
|
|
if (CpuData->TimeoutActive) {
|
|
|
|
CpuData->Timeout -= gPollInterval;
|
|
|
|
}
|
|
|
|
|
|
|
|
CpuState = GetApState (CpuData);
|
|
|
|
|
|
|
|
if (CpuState == CpuStateFinished) {
|
|
|
|
if (CpuData->Finished) {
|
|
|
|
*CpuData->Finished = TRUE;
|
|
|
|
}
|
|
|
|
SetApState (CpuData, CpuStateIdle);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CpuData->TimeoutActive && CpuData->Timeout < 0) {
|
|
|
|
if (CpuState != CpuStateIdle &&
|
|
|
|
CpuData->Finished) {
|
|
|
|
*CpuData->Finished = FALSE;
|
|
|
|
}
|
|
|
|
ResetProcessorToIdleState (CpuData);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
out:
|
2014-11-13 19:28:20 +01:00
|
|
|
CpuData->TimeoutActive = FALSE;
|
|
|
|
gBS->SignalEvent (CpuData->WaitEvent);
|
|
|
|
CpuData->WaitEvent = NULL;
|
2014-11-13 19:27:21 +01:00
|
|
|
}
|
|
|
|
|
2014-11-13 19:27:34 +01:00
|
|
|
/**
|
|
|
|
Checks APs' status periodically.
|
|
|
|
|
|
|
|
This function is triggerred by timer perodically to check the
|
|
|
|
state of APs for StartupAllAPs() executed in non-blocking mode.
|
|
|
|
|
|
|
|
@param Event Event triggered.
|
|
|
|
@param Context Parameter passed with the event.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EFIAPI
|
|
|
|
CheckAllAPsStatus (
|
|
|
|
IN EFI_EVENT Event,
|
|
|
|
IN VOID *Context
|
|
|
|
)
|
|
|
|
{
|
2014-11-13 19:28:20 +01:00
|
|
|
CPU_DATA_BLOCK *CpuData;
|
|
|
|
UINTN Number;
|
2014-11-13 19:28:48 +01:00
|
|
|
EFI_STATUS Status;
|
2014-11-13 19:28:20 +01:00
|
|
|
|
2014-11-13 19:27:34 +01:00
|
|
|
if (mMpSystemData.TimeoutActive) {
|
|
|
|
mMpSystemData.Timeout -= gPollInterval;
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:28:20 +01:00
|
|
|
if (mStopCheckAllAPsStatus) {
|
|
|
|
return;
|
|
|
|
}
|
2014-11-13 19:27:34 +01:00
|
|
|
|
2014-11-13 19:28:48 +01:00
|
|
|
//
|
|
|
|
// avoid next timer enter.
|
|
|
|
//
|
|
|
|
Status = gBS->SetTimer (
|
|
|
|
mMpSystemData.CheckAllAPsEvent,
|
|
|
|
TimerCancel,
|
|
|
|
0
|
|
|
|
);
|
|
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
|
2014-11-13 19:28:20 +01:00
|
|
|
if (mMpSystemData.WaitEvent != NULL) {
|
|
|
|
CheckAndUpdateAllAPsToIdleState ();
|
2014-11-13 19:27:34 +01:00
|
|
|
//
|
2014-11-13 19:28:20 +01:00
|
|
|
// task timeout
|
2014-11-13 19:27:34 +01:00
|
|
|
//
|
2014-11-13 19:28:20 +01:00
|
|
|
if (mMpSystemData.TimeoutActive && mMpSystemData.Timeout < 0) {
|
|
|
|
ResetAllFailedAPs();
|
|
|
|
//
|
|
|
|
// force exit
|
|
|
|
//
|
|
|
|
mMpSystemData.FinishCount = mMpSystemData.StartCount;
|
|
|
|
}
|
2014-11-13 19:27:34 +01:00
|
|
|
|
2014-11-13 19:28:20 +01:00
|
|
|
if (mMpSystemData.FinishCount != mMpSystemData.StartCount) {
|
2014-11-13 19:28:48 +01:00
|
|
|
goto EXIT;
|
2014-11-13 19:28:20 +01:00
|
|
|
}
|
2014-11-13 19:27:34 +01:00
|
|
|
|
2014-11-13 19:28:20 +01:00
|
|
|
mMpSystemData.TimeoutActive = FALSE;
|
2014-11-13 19:27:34 +01:00
|
|
|
gBS->SignalEvent (mMpSystemData.WaitEvent);
|
|
|
|
mMpSystemData.WaitEvent = NULL;
|
2014-11-13 19:28:20 +01:00
|
|
|
mStopCheckAllAPsStatus = TRUE;
|
2014-11-13 19:28:48 +01:00
|
|
|
|
|
|
|
goto EXIT;
|
2014-11-13 19:28:20 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// check each AP status for StartupThisAP
|
|
|
|
//
|
|
|
|
for (Number = 0; Number < mMpSystemData.NumberOfProcessors; Number++) {
|
|
|
|
CpuData = &mMpSystemData.CpuDatas[Number];
|
|
|
|
if (CpuData->WaitEvent) {
|
|
|
|
CheckThisAPStatus (NULL, (VOID *)CpuData);
|
|
|
|
}
|
2014-11-13 19:27:34 +01:00
|
|
|
}
|
2014-11-13 19:28:48 +01:00
|
|
|
|
|
|
|
EXIT:
|
|
|
|
Status = gBS->SetTimer (
|
|
|
|
mMpSystemData.CheckAllAPsEvent,
|
|
|
|
TimerPeriodic,
|
|
|
|
EFI_TIMER_PERIOD_MICROSECONDS (100)
|
|
|
|
);
|
|
|
|
ASSERT_EFI_ERROR (Status);
|
2014-11-13 19:27:34 +01:00
|
|
|
}
|
|
|
|
|
2014-11-13 19:24:43 +01:00
|
|
|
/**
|
|
|
|
Application Processor C code entry point.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EFIAPI
|
|
|
|
ApEntryPointInC (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
2014-11-13 19:29:13 +01:00
|
|
|
VOID* TopOfApStack;
|
|
|
|
UINTN ProcessorNumber;
|
2014-11-13 19:26:23 +01:00
|
|
|
|
2014-11-13 19:29:13 +01:00
|
|
|
if (!mAPsAlreadyInitFinished) {
|
|
|
|
FillInProcessorInformation (FALSE, mMpSystemData.NumberOfProcessors);
|
|
|
|
TopOfApStack = (UINT8*)mApStackStart + gApStackSize;
|
|
|
|
mApStackStart = TopOfApStack;
|
2014-11-13 19:26:23 +01:00
|
|
|
|
2014-11-13 19:29:13 +01:00
|
|
|
//
|
|
|
|
// Store the Stack address, when reset the AP, We can found the original address.
|
|
|
|
//
|
|
|
|
mMpSystemData.CpuDatas[mMpSystemData.NumberOfProcessors].TopOfStack = TopOfApStack;
|
|
|
|
mMpSystemData.NumberOfProcessors++;
|
|
|
|
mMpSystemData.NumberOfEnabledProcessors++;
|
|
|
|
} else {
|
|
|
|
WhoAmI (&mMpServicesTemplate, &ProcessorNumber);
|
|
|
|
//
|
|
|
|
// Get the original stack address.
|
|
|
|
//
|
|
|
|
TopOfApStack = mMpSystemData.CpuDatas[ProcessorNumber].TopOfStack;
|
|
|
|
}
|
2014-11-13 19:26:03 +01:00
|
|
|
|
|
|
|
SwitchStack (
|
|
|
|
(SWITCH_STACK_ENTRY_POINT)(UINTN)ProcessorToIdleState,
|
|
|
|
NULL,
|
|
|
|
NULL,
|
2014-11-13 19:26:23 +01:00
|
|
|
TopOfApStack);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
This function is called by all processors (both BSP and AP) once and collects MP related data.
|
|
|
|
|
|
|
|
@param Bsp TRUE if the CPU is BSP
|
|
|
|
@param ProcessorNumber The specific processor number
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS Data for the processor collected and filled in
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
FillInProcessorInformation (
|
|
|
|
IN BOOLEAN Bsp,
|
|
|
|
IN UINTN ProcessorNumber
|
|
|
|
)
|
|
|
|
{
|
|
|
|
CPU_DATA_BLOCK *CpuData;
|
|
|
|
UINT32 ProcessorId;
|
|
|
|
|
|
|
|
CpuData = &mMpSystemData.CpuDatas[ProcessorNumber];
|
|
|
|
ProcessorId = GetApicId ();
|
|
|
|
CpuData->Info.ProcessorId = ProcessorId;
|
|
|
|
CpuData->Info.StatusFlag = PROCESSOR_ENABLED_BIT | PROCESSOR_HEALTH_STATUS_BIT;
|
|
|
|
if (Bsp) {
|
|
|
|
CpuData->Info.StatusFlag |= PROCESSOR_AS_BSP_BIT;
|
|
|
|
}
|
|
|
|
CpuData->Info.Location.Package = ProcessorId;
|
|
|
|
CpuData->Info.Location.Core = 0;
|
|
|
|
CpuData->Info.Location.Thread = 0;
|
2015-03-09 07:37:32 +01:00
|
|
|
CpuData->State = Bsp ? CpuStateBusy : CpuStateIdle;
|
2014-11-13 19:26:23 +01:00
|
|
|
|
|
|
|
CpuData->Procedure = NULL;
|
|
|
|
CpuData->Parameter = NULL;
|
|
|
|
InitializeSpinLock (&CpuData->CpuDataLock);
|
2014-11-13 19:29:40 +01:00
|
|
|
CpuData->LockSelf = -1;
|
2014-11-13 19:26:23 +01:00
|
|
|
|
|
|
|
return EFI_SUCCESS;
|
2014-11-13 19:24:43 +01:00
|
|
|
}
|
|
|
|
|
2014-11-13 19:26:23 +01:00
|
|
|
/**
|
|
|
|
Prepare the System Data.
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS the System Data finished initilization.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
InitMpSystemData (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
2014-11-13 19:27:21 +01:00
|
|
|
EFI_STATUS Status;
|
|
|
|
|
2014-11-13 19:26:23 +01:00
|
|
|
ZeroMem (&mMpSystemData, sizeof (MP_SYSTEM_DATA));
|
|
|
|
|
|
|
|
mMpSystemData.NumberOfProcessors = 1;
|
|
|
|
mMpSystemData.NumberOfEnabledProcessors = 1;
|
|
|
|
|
|
|
|
mMpSystemData.CpuDatas = AllocateZeroPool (sizeof (CPU_DATA_BLOCK) * gMaxLogicalProcessorNumber);
|
|
|
|
ASSERT(mMpSystemData.CpuDatas != NULL);
|
|
|
|
|
2014-11-13 19:27:34 +01:00
|
|
|
Status = gBS->CreateEvent (
|
|
|
|
EVT_TIMER | EVT_NOTIFY_SIGNAL,
|
|
|
|
TPL_CALLBACK,
|
|
|
|
CheckAllAPsStatus,
|
|
|
|
NULL,
|
|
|
|
&mMpSystemData.CheckAllAPsEvent
|
|
|
|
);
|
|
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
|
2014-11-13 19:28:20 +01:00
|
|
|
//
|
|
|
|
// Set timer to check all APs status.
|
|
|
|
//
|
|
|
|
Status = gBS->SetTimer (
|
|
|
|
mMpSystemData.CheckAllAPsEvent,
|
|
|
|
TimerPeriodic,
|
|
|
|
EFI_TIMER_PERIOD_MICROSECONDS (100)
|
|
|
|
);
|
|
|
|
ASSERT_EFI_ERROR (Status);
|
2014-11-13 19:27:21 +01:00
|
|
|
|
2014-11-13 19:26:23 +01:00
|
|
|
//
|
|
|
|
// BSP
|
|
|
|
//
|
|
|
|
FillInProcessorInformation (TRUE, 0);
|
|
|
|
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
2014-11-13 19:24:43 +01:00
|
|
|
|
2015-06-16 04:55:54 +02:00
|
|
|
/**
|
|
|
|
Collects BIST data from HOB.
|
|
|
|
|
|
|
|
This function collects BIST data from HOB built from Sec Platform Information
|
|
|
|
PPI or SEC Platform Information2 PPI.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
CollectBistDataFromHob (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
|
|
|
EFI_HOB_GUID_TYPE *GuidHob;
|
|
|
|
EFI_SEC_PLATFORM_INFORMATION_RECORD2 *SecPlatformInformation2;
|
|
|
|
EFI_SEC_PLATFORM_INFORMATION_RECORD *SecPlatformInformation;
|
|
|
|
UINTN NumberOfData;
|
|
|
|
EFI_SEC_PLATFORM_INFORMATION_CPU *CpuInstance;
|
|
|
|
EFI_SEC_PLATFORM_INFORMATION_CPU BspCpuInstance;
|
|
|
|
UINTN ProcessorNumber;
|
|
|
|
UINT32 InitialLocalApicId;
|
|
|
|
CPU_DATA_BLOCK *CpuData;
|
|
|
|
|
|
|
|
SecPlatformInformation2 = NULL;
|
|
|
|
SecPlatformInformation = NULL;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Get gEfiSecPlatformInformation2PpiGuid Guided HOB firstly
|
|
|
|
//
|
|
|
|
GuidHob = GetFirstGuidHob (&gEfiSecPlatformInformation2PpiGuid);
|
|
|
|
if (GuidHob != NULL) {
|
|
|
|
//
|
|
|
|
// Sec Platform Information2 PPI includes BSP/APs' BIST information
|
|
|
|
//
|
|
|
|
SecPlatformInformation2 = GET_GUID_HOB_DATA (GuidHob);
|
|
|
|
NumberOfData = SecPlatformInformation2->NumberOfCpus;
|
|
|
|
CpuInstance = SecPlatformInformation2->CpuInstance;
|
|
|
|
} else {
|
|
|
|
//
|
|
|
|
// Otherwise, get gEfiSecPlatformInformationPpiGuid Guided HOB
|
|
|
|
//
|
|
|
|
GuidHob = GetFirstGuidHob (&gEfiSecPlatformInformationPpiGuid);
|
|
|
|
if (GuidHob != NULL) {
|
|
|
|
SecPlatformInformation = GET_GUID_HOB_DATA (GuidHob);
|
|
|
|
NumberOfData = 1;
|
|
|
|
//
|
|
|
|
// SEC Platform Information only includes BSP's BIST information
|
|
|
|
// does not have BSP's APIC ID
|
|
|
|
//
|
|
|
|
BspCpuInstance.CpuLocation = GetApicId ();
|
|
|
|
BspCpuInstance.InfoRecord.IA32HealthFlags.Uint32 = SecPlatformInformation->IA32HealthFlags.Uint32;
|
|
|
|
CpuInstance = &BspCpuInstance;
|
|
|
|
} else {
|
|
|
|
DEBUG ((EFI_D_INFO, "Does not find any HOB stored CPU BIST information!\n"));
|
|
|
|
//
|
|
|
|
// Does not find any HOB stored BIST information
|
|
|
|
//
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-06-19 10:27:35 +02:00
|
|
|
while ((NumberOfData--) > 0) {
|
2015-06-16 04:55:54 +02:00
|
|
|
for (ProcessorNumber = 0; ProcessorNumber < mMpSystemData.NumberOfProcessors; ProcessorNumber++) {
|
|
|
|
CpuData = &mMpSystemData.CpuDatas[ProcessorNumber];
|
|
|
|
InitialLocalApicId = (UINT32) CpuData->Info.ProcessorId;
|
|
|
|
if (InitialLocalApicId == CpuInstance[NumberOfData].CpuLocation) {
|
|
|
|
//
|
|
|
|
// Update CPU health status for MP Services Protocol according to BIST data.
|
|
|
|
//
|
|
|
|
if (CpuInstance[NumberOfData].InfoRecord.IA32HealthFlags.Uint32 != 0) {
|
|
|
|
CpuData->Info.StatusFlag &= ~PROCESSOR_HEALTH_STATUS_BIT;
|
|
|
|
//
|
|
|
|
// Report Status Code that self test is failed
|
|
|
|
//
|
|
|
|
REPORT_STATUS_CODE (
|
|
|
|
EFI_ERROR_CODE | EFI_ERROR_MAJOR,
|
|
|
|
(EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_EC_SELF_TEST)
|
|
|
|
);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-11-17 15:54:09 +01:00
|
|
|
/**
|
|
|
|
Callback function for ExitBootServices.
|
|
|
|
|
|
|
|
@param Event Event whose notification function is being invoked.
|
|
|
|
@param Context The pointer to the notification function's context,
|
|
|
|
which is implementation-dependent.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EFIAPI
|
|
|
|
ExitBootServicesCallback (
|
|
|
|
IN EFI_EVENT Event,
|
|
|
|
IN VOID *Context
|
|
|
|
)
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// Avoid APs access invalid buff datas which allocated by BootServices,
|
|
|
|
// so we send INIT IPI to APs to let them wait for SIPI state.
|
|
|
|
//
|
|
|
|
SendInitIpiAllExcludingSelf ();
|
|
|
|
}
|
|
|
|
|
2015-10-19 21:08:47 +02:00
|
|
|
/**
|
|
|
|
A minimal wrapper function that allows MtrrSetAllMtrrs() to be passed to
|
|
|
|
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() as Procedure.
|
|
|
|
|
|
|
|
@param[in] Buffer Pointer to an MTRR_SETTINGS object, to be passed to
|
|
|
|
MtrrSetAllMtrrs().
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EFIAPI
|
|
|
|
SetMtrrsFromBuffer (
|
|
|
|
IN VOID *Buffer
|
|
|
|
)
|
|
|
|
{
|
|
|
|
MtrrSetAllMtrrs (Buffer);
|
|
|
|
}
|
|
|
|
|
2014-11-13 19:24:25 +01:00
|
|
|
/**
|
|
|
|
Initialize Multi-processor support.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
InitializeMpSupport (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
2015-10-19 21:08:28 +02:00
|
|
|
EFI_STATUS Status;
|
2015-10-19 21:08:47 +02:00
|
|
|
MTRR_SETTINGS MtrrSettings;
|
2015-10-19 21:08:28 +02:00
|
|
|
UINTN Timeout;
|
2014-11-13 19:30:18 +01:00
|
|
|
|
2014-11-13 19:25:48 +01:00
|
|
|
gMaxLogicalProcessorNumber = (UINTN) PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
|
|
|
|
if (gMaxLogicalProcessorNumber < 1) {
|
|
|
|
DEBUG ((DEBUG_ERROR, "Setting PcdCpuMaxLogicalProcessorNumber should be more than zero.\n"));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
2015-10-19 21:07:52 +02:00
|
|
|
InitMpSystemData ();
|
2014-11-13 19:24:25 +01:00
|
|
|
|
2014-11-13 19:25:48 +01:00
|
|
|
//
|
2015-10-19 21:07:52 +02:00
|
|
|
// Only perform AP detection if PcdCpuMaxLogicalProcessorNumber is greater than 1
|
2014-11-13 19:25:48 +01:00
|
|
|
//
|
2015-10-19 21:07:52 +02:00
|
|
|
if (gMaxLogicalProcessorNumber > 1) {
|
2014-11-13 19:25:48 +01:00
|
|
|
|
2015-10-19 21:07:52 +02:00
|
|
|
gApStackSize = (UINTN) PcdGet32 (PcdCpuApStackSize);
|
|
|
|
ASSERT ((gApStackSize & (SIZE_4KB - 1)) == 0);
|
|
|
|
|
|
|
|
mApStackStart = AllocatePages (EFI_SIZE_TO_PAGES (gMaxLogicalProcessorNumber * gApStackSize));
|
|
|
|
ASSERT (mApStackStart != NULL);
|
|
|
|
|
|
|
|
//
|
|
|
|
// the first buffer of stack size used for common stack, when the amount of AP
|
|
|
|
// more than 1, we should never free the common stack which maybe used for AP reset.
|
|
|
|
//
|
|
|
|
mCommonStack = mApStackStart;
|
|
|
|
mTopOfApCommonStack = (UINT8*) mApStackStart + gApStackSize;
|
|
|
|
mApStackStart = mTopOfApCommonStack;
|
2014-11-13 19:25:48 +01:00
|
|
|
|
2015-10-19 21:07:52 +02:00
|
|
|
PrepareAPStartupCode ();
|
2014-11-13 19:29:01 +01:00
|
|
|
|
2015-10-19 21:07:52 +02:00
|
|
|
StartApsStackless ();
|
|
|
|
}
|
2014-11-13 19:30:09 +01:00
|
|
|
|
|
|
|
DEBUG ((DEBUG_INFO, "Detect CPU count: %d\n", mMpSystemData.NumberOfProcessors));
|
2014-11-13 19:26:23 +01:00
|
|
|
if (mMpSystemData.NumberOfProcessors == 1) {
|
2014-11-13 19:29:01 +01:00
|
|
|
FreeApStartupCode ();
|
2015-10-19 21:07:52 +02:00
|
|
|
if (mCommonStack != NULL) {
|
|
|
|
FreePages (mCommonStack, EFI_SIZE_TO_PAGES (gMaxLogicalProcessorNumber * gApStackSize));
|
|
|
|
}
|
2014-11-13 19:25:48 +01:00
|
|
|
}
|
|
|
|
|
2014-11-13 19:29:31 +01:00
|
|
|
mMpSystemData.CpuDatas = ReallocatePool (
|
|
|
|
sizeof (CPU_DATA_BLOCK) * gMaxLogicalProcessorNumber,
|
|
|
|
sizeof (CPU_DATA_BLOCK) * mMpSystemData.NumberOfProcessors,
|
|
|
|
mMpSystemData.CpuDatas);
|
|
|
|
|
2015-10-19 21:08:28 +02:00
|
|
|
//
|
|
|
|
// Release all APs to complete initialization and enter idle loop
|
|
|
|
//
|
2014-11-13 19:29:13 +01:00
|
|
|
mAPsAlreadyInitFinished = TRUE;
|
|
|
|
|
2015-10-19 21:08:28 +02:00
|
|
|
//
|
|
|
|
// Wait for all APs to enter idle loop.
|
|
|
|
//
|
|
|
|
Timeout = 0;
|
|
|
|
do {
|
|
|
|
if (CheckAllAPsSleeping ()) {
|
|
|
|
break;
|
|
|
|
}
|
2015-11-20 09:22:46 +01:00
|
|
|
MicroSecondDelay (gPollInterval);
|
2015-10-19 21:08:28 +02:00
|
|
|
Timeout += gPollInterval;
|
|
|
|
} while (Timeout <= PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds));
|
|
|
|
ASSERT (Timeout <= PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds));
|
|
|
|
|
2015-06-16 04:55:54 +02:00
|
|
|
//
|
|
|
|
// Update CPU healthy information from Guided HOB
|
|
|
|
//
|
|
|
|
CollectBistDataFromHob ();
|
|
|
|
|
2015-10-19 21:08:47 +02:00
|
|
|
//
|
|
|
|
// Synchronize MTRR settings to APs.
|
|
|
|
//
|
|
|
|
MtrrGetAllMtrrs (&MtrrSettings);
|
|
|
|
Status = mMpServicesTemplate.StartupAllAPs (
|
|
|
|
&mMpServicesTemplate, // This
|
|
|
|
SetMtrrsFromBuffer, // Procedure
|
|
|
|
TRUE, // SingleThread
|
|
|
|
NULL, // WaitEvent
|
|
|
|
0, // TimeoutInMicrosecsond
|
|
|
|
&MtrrSettings, // ProcedureArgument
|
|
|
|
NULL // FailedCpuList
|
|
|
|
);
|
|
|
|
ASSERT (Status == EFI_SUCCESS || Status == EFI_NOT_STARTED);
|
|
|
|
|
2014-11-13 19:30:18 +01:00
|
|
|
Status = gBS->InstallMultipleProtocolInterfaces (
|
|
|
|
&mMpServiceHandle,
|
|
|
|
&gEfiMpServiceProtocolGuid, &mMpServicesTemplate,
|
|
|
|
NULL
|
|
|
|
);
|
|
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
|
2015-10-19 21:07:52 +02:00
|
|
|
if (mMpSystemData.NumberOfProcessors > 1 && mMpSystemData.NumberOfProcessors < gMaxLogicalProcessorNumber) {
|
|
|
|
if (mApStackStart != NULL) {
|
|
|
|
FreePages (mApStackStart, EFI_SIZE_TO_PAGES (
|
|
|
|
(gMaxLogicalProcessorNumber - mMpSystemData.NumberOfProcessors) *
|
|
|
|
gApStackSize));
|
|
|
|
}
|
2014-11-13 19:25:48 +01:00
|
|
|
}
|
2014-11-17 15:54:09 +01:00
|
|
|
|
|
|
|
Status = gBS->CreateEvent (
|
|
|
|
EVT_SIGNAL_EXIT_BOOT_SERVICES,
|
|
|
|
TPL_CALLBACK,
|
|
|
|
ExitBootServicesCallback,
|
|
|
|
NULL,
|
|
|
|
&mExitBootServicesEvent
|
|
|
|
);
|
|
|
|
ASSERT_EFI_ERROR (Status);
|
2014-11-13 19:25:48 +01:00
|
|
|
}
|