audk/EdkNt32Pkg/Dxe/WinNtThunk/Cpu/Cpu.c

731 lines
19 KiB
C
Raw Normal View History

/*++
Copyright (c) 2006, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
Cpu.c
Abstract:
NT Emulation Architectural Protocol Driver as defined in Tiano.
This CPU module abstracts the interrupt subsystem of a platform and
the CPU-specific setjump/long pair. Other services are not implemented
in this driver.
--*/
#include "CpuDriver.h"
#define EFI_CPU_DATA_MAXIMUM_LENGTH 0x100
EFI_STATUS
EFIAPI
InitializeCpu (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
);
VOID
EFIAPI
WinNtIoProtocolNotifyFunction (
IN EFI_EVENT Event,
IN VOID *Context
);
typedef union {
EFI_CPU_DATA_RECORD *DataRecord;
UINT8 *Raw;
} EFI_CPU_DATA_RECORD_BUFFER;
EFI_SUBCLASS_TYPE1_HEADER mCpuDataRecordHeader = {
EFI_PROCESSOR_SUBCLASS_VERSION, // Version
sizeof (EFI_SUBCLASS_TYPE1_HEADER), // Header Size
0, // Instance, Initialize later
EFI_SUBCLASS_INSTANCE_NON_APPLICABLE, // SubInstance
0 // RecordType, Initialize later
};
//
// Service routines for the driver
//
STATIC
EFI_STATUS
EFIAPI
WinNtFlushCpuDataCache (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_PHYSICAL_ADDRESS Start,
IN UINT64 Length,
IN EFI_CPU_FLUSH_TYPE FlushType
)
/*++
Routine Description:
This routine would provide support for flushing the CPU data cache.
In the case of NT emulation environment, this flushing is not necessary and
is thus not implemented.
Arguments:
Pointer to CPU Architectural Protocol interface
Start adddress in memory to flush
Length of memory to flush
Flush type
Returns:
Status
EFI_SUCCESS
--*/
// TODO: This - add argument and description to function comment
// TODO: FlushType - add argument and description to function comment
// TODO: EFI_UNSUPPORTED - add return value to function comment
{
if (FlushType == EfiCpuFlushTypeWriteBackInvalidate) {
//
// Only WB flush is supported. We actually need do nothing on NT emulator
// environment. Classify this to follow EFI spec
//
return EFI_SUCCESS;
}
//
// Other flush types are not supported by NT emulator
//
return EFI_UNSUPPORTED;
}
STATIC
EFI_STATUS
EFIAPI
WinNtEnableInterrupt (
IN EFI_CPU_ARCH_PROTOCOL *This
)
/*++
Routine Description:
This routine provides support for emulation of the interrupt enable of the
the system. For our purposes, CPU enable is just a BOOLEAN that the Timer
Architectural Protocol observes in order to defer behaviour while in its
emulated interrupt, or timer tick.
Arguments:
Pointer to CPU Architectural Protocol interface
Returns:
Status
EFI_SUCCESS
--*/
// TODO: This - add argument and description to function comment
{
CPU_ARCH_PROTOCOL_PRIVATE *Private;
Private = CPU_ARCH_PROTOCOL_PRIVATE_DATA_FROM_THIS (This);
Private->InterruptState = TRUE;
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
EFIAPI
WinNtDisableInterrupt (
IN EFI_CPU_ARCH_PROTOCOL *This
)
/*++
Routine Description:
This routine provides support for emulation of the interrupt disable of the
the system. For our purposes, CPU enable is just a BOOLEAN that the Timer
Architectural Protocol observes in order to defer behaviour while in its
emulated interrupt, or timer tick.
Arguments:
Pointer to CPU Architectural Protocol interface
Returns:
Status
EFI_SUCCESS
--*/
// TODO: This - add argument and description to function comment
{
CPU_ARCH_PROTOCOL_PRIVATE *Private;
Private = CPU_ARCH_PROTOCOL_PRIVATE_DATA_FROM_THIS (This);
Private->InterruptState = FALSE;
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
EFIAPI
WinNtGetInterruptState (
IN EFI_CPU_ARCH_PROTOCOL *This,
OUT BOOLEAN *State
)
/*++
Routine Description:
This routine provides support for emulation of the interrupt disable of the
the system. For our purposes, CPU enable is just a BOOLEAN that the Timer
Architectural Protocol observes in order to defer behaviour while in its
emulated interrupt, or timer tick.
Arguments:
Pointer to CPU Architectural Protocol interface
Returns:
Status
EFI_SUCCESS
--*/
// TODO: This - add argument and description to function comment
// TODO: State - add argument and description to function comment
// TODO: EFI_INVALID_PARAMETER - add return value to function comment
{
CPU_ARCH_PROTOCOL_PRIVATE *Private;
if (State == NULL) {
return EFI_INVALID_PARAMETER;
}
Private = CPU_ARCH_PROTOCOL_PRIVATE_DATA_FROM_THIS (This);
*State = Private->InterruptState;
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
EFIAPI
WinNtInit (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_CPU_INIT_TYPE InitType
)
/*++
Routine Description:
This routine would support generation of a CPU INIT. At
present, this code does not provide emulation.
Arguments:
Pointer to CPU Architectural Protocol interface
INIT Type
Returns:
Status
EFI_UNSUPPORTED - not yet implemented
--*/
// TODO: This - add argument and description to function comment
// TODO: InitType - add argument and description to function comment
{
CPU_ARCH_PROTOCOL_PRIVATE *Private;
Private = CPU_ARCH_PROTOCOL_PRIVATE_DATA_FROM_THIS (This);
return EFI_UNSUPPORTED;
}
STATIC
EFI_STATUS
EFIAPI
WinNtRegisterInterruptHandler (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
)
/*++
Routine Description:
This routine would support registration of an interrupt handler. At
present, this code does not provide emulation.
Arguments:
Pointer to CPU Architectural Protocol interface
Pointer to interrupt handlers
Interrupt type
Returns:
Status
EFI_UNSUPPORTED - not yet implemented
--*/
// TODO: This - add argument and description to function comment
// TODO: InterruptType - add argument and description to function comment
// TODO: InterruptHandler - add argument and description to function comment
{
CPU_ARCH_PROTOCOL_PRIVATE *Private;
//
// Do parameter checking for EFI spec conformance
//
if (InterruptType < 0 || InterruptType > 0xff) {
return EFI_UNSUPPORTED;
}
//
// Do nothing for Nt32 emulation
//
Private = CPU_ARCH_PROTOCOL_PRIVATE_DATA_FROM_THIS (This);
return EFI_UNSUPPORTED;
}
STATIC
EFI_STATUS
EFIAPI
WinNtGetTimerValue (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN UINT32 TimerIndex,
OUT UINT64 *TimerValue,
OUT UINT64 *TimerPeriod OPTIONAL
)
/*++
Routine Description:
This routine would support querying of an on-CPU timer. At present,
this code does not provide timer emulation.
Arguments:
This - Pointer to CPU Architectural Protocol interface
TimerIndex - Index of given CPU timer
TimerValue - Output of the timer
TimerPeriod - Output of the timer period
Returns:
EFI_UNSUPPORTED - not yet implemented
EFI_INVALID_PARAMETER - TimeValue is NULL
--*/
{
if (TimerValue == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// No timer supported
//
return EFI_UNSUPPORTED;
}
STATIC
EFI_STATUS
EFIAPI
WinNtSetMemoryAttributes (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
)
/*++
Routine Description:
This routine would support querying of an on-CPU timer. At present,
this code does not provide timer emulation.
Arguments:
Pointer to CPU Architectural Protocol interface
Start address of memory region
The size in bytes of the memory region
The bit mask of attributes to set for the memory region
Returns:
Status
EFI_UNSUPPORTED - not yet implemented
--*/
// TODO: This - add argument and description to function comment
// TODO: BaseAddress - add argument and description to function comment
// TODO: Length - add argument and description to function comment
// TODO: Attributes - add argument and description to function comment
// TODO: EFI_INVALID_PARAMETER - add return value to function comment
{
CPU_ARCH_PROTOCOL_PRIVATE *Private;
//
// Check for invalid parameter for Spec conformance
//
if (Length == 0) {
return EFI_INVALID_PARAMETER;
}
//
// Do nothing for Nt32 emulation
//
Private = CPU_ARCH_PROTOCOL_PRIVATE_DATA_FROM_THIS (This);
return EFI_UNSUPPORTED;
}
EFI_STATUS
EFIAPI
InitializeCpu (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
/*++
Routine Description:
Initialize the state information for the CPU Architectural Protocol
Arguments:
ImageHandle of the loaded driver
Pointer to the System Table
Returns:
Status
EFI_SUCCESS - protocol instance can be published
EFI_OUT_OF_RESOURCES - cannot allocate protocol data structure
EFI_DEVICE_ERROR - cannot create the thread
--*/
// TODO: SystemTable - add argument and description to function comment
{
EFI_STATUS Status;
EFI_EVENT Event;
CPU_ARCH_PROTOCOL_PRIVATE *Private;
VOID *Registration;
Status = gBS->AllocatePool (
EfiBootServicesData,
sizeof (CPU_ARCH_PROTOCOL_PRIVATE),
&Private
);
ASSERT_EFI_ERROR (Status);
Private->Signature = CPU_ARCH_PROT_PRIVATE_SIGNATURE;
Private->Cpu.FlushDataCache = WinNtFlushCpuDataCache;
Private->Cpu.EnableInterrupt = WinNtEnableInterrupt;
Private->Cpu.DisableInterrupt = WinNtDisableInterrupt;
Private->Cpu.GetInterruptState = WinNtGetInterruptState;
Private->Cpu.Init = WinNtInit;
Private->Cpu.RegisterInterruptHandler = WinNtRegisterInterruptHandler;
Private->Cpu.GetTimerValue = WinNtGetTimerValue;
Private->Cpu.SetMemoryAttributes = WinNtSetMemoryAttributes;
Private->Cpu.NumberOfTimers = 0;
Private->Cpu.DmaBufferAlignment = 4;
Private->InterruptState = TRUE;
Private->CpuIo.Mem.Read = CpuMemoryServiceRead;
Private->CpuIo.Mem.Write = CpuMemoryServiceWrite;
Private->CpuIo.Io.Read = CpuIoServiceRead;
Private->CpuIo.Io.Write = CpuIoServiceWrite;
Private->Handle = NULL;
Status = gBS->InstallMultipleProtocolInterfaces (
&Private->Handle,
&gEfiCpuArchProtocolGuid, &Private->Cpu,
&gEfiCpuIoProtocolGuid, &Private->CpuIo,
NULL
);
ASSERT_EFI_ERROR (Status);
//
// Install notify function to store processor data to HII database and data hub.
//
Status = gBS->CreateEvent (
EFI_EVENT_NOTIFY_SIGNAL,
EFI_TPL_CALLBACK,
WinNtIoProtocolNotifyFunction,
ImageHandle,
&Event
);
ASSERT (!EFI_ERROR (Status));
Status = gBS->RegisterProtocolNotify (
&gEfiWinNtIoProtocolGuid,
Event,
&Registration
);
ASSERT (!EFI_ERROR (Status));
//
// Should be at EFI_D_INFO, but lets us now things are running
//
DEBUG ((EFI_D_ERROR, "CPU Architectural Protocol Loaded\n"));
return Status;
}
UINTN
Atoi (
CHAR16 *String
)
/*++
Routine Description:
Convert a unicode string to a UINTN
Arguments:
String - Unicode string.
Returns:
UINTN of the number represented by String.
--*/
{
UINTN Number;
CHAR16 *Str;
//
// skip preceeding white space
//
Str = String;
while ((*Str) && (*Str == ' ' || *Str == '"')) {
Str++;
}
//
// Convert ot a Number
//
Number = 0;
while (*Str != '\0') {
if ((*Str >= '0') && (*Str <= '9')) {
Number = (Number * 10) +*Str - '0';
} else {
break;
}
Str++;
}
return Number;
}
VOID
EFIAPI
WinNtIoProtocolNotifyFunction (
IN EFI_EVENT Event,
IN VOID *Context
)
/*++
Routine Description:
This function will log processor version and frequency data to data hub.
Arguments:
Event - Event whose notification function is being invoked.
Context - Pointer to the notification function's context.
Returns:
None.
--*/
{
EFI_STATUS Status;
EFI_CPU_DATA_RECORD_BUFFER RecordBuffer;
EFI_DATA_RECORD_HEADER *Record;
EFI_SUBCLASS_TYPE1_HEADER *DataHeader;
UINT32 HeaderSize;
UINT32 TotalSize;
UINTN HandleCount;
UINTN HandleIndex;
UINT64 MonotonicCount;
BOOLEAN RecordFound;
EFI_HANDLE *HandleBuffer;
EFI_WIN_NT_IO_PROTOCOL *WinNtIo;
EFI_DATA_HUB_PROTOCOL *DataHub;
EFI_HII_PROTOCOL *Hii;
EFI_HII_HANDLE StringHandle;
EFI_HII_PACKAGES *PackageList;
STRING_REF Token;
DataHub = NULL;
Token = 0;
MonotonicCount = 0;
RecordFound = FALSE;
//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (
AllHandles,
&gEfiWinNtIoProtocolGuid,
NULL,
&HandleCount,
&HandleBuffer
);
if (EFI_ERROR (Status)) {
return ;
}
//
// Locate HII protocol
//
Status = gBS->LocateProtocol (&gEfiHiiProtocolGuid, NULL, &Hii);
if (EFI_ERROR (Status)) {
return ;
}
//
// Locate DataHub protocol.
//
Status = gBS->LocateProtocol (&gEfiDataHubProtocolGuid, NULL, &DataHub);
if (EFI_ERROR (Status)) {
return ;
}
//
// Initialize data record header
//
mCpuDataRecordHeader.Instance = 1;
HeaderSize = sizeof (EFI_SUBCLASS_TYPE1_HEADER);
RecordBuffer.Raw = AllocatePool (HeaderSize + EFI_CPU_DATA_MAXIMUM_LENGTH);
if (RecordBuffer.Raw == NULL) {
return ;
}
CopyMem (RecordBuffer.Raw, &mCpuDataRecordHeader, HeaderSize);
//
// Search the Handle array to find the CPU model and speed information
//
for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) {
Status = gBS->OpenProtocol (
HandleBuffer[HandleIndex],
&gEfiWinNtIoProtocolGuid,
&WinNtIo,
Context,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
continue;
}
if ((WinNtIo->WinNtThunk->Signature == EFI_WIN_NT_THUNK_PROTOCOL_SIGNATURE) &&
CompareGuid (WinNtIo->TypeGuid, &gEfiWinNtCPUModelGuid)
) {
//
// Check if this record has been stored in data hub
//
do {
Status = DataHub->GetNextRecord (DataHub, &MonotonicCount, NULL, &Record);
if (Record->DataRecordClass == EFI_DATA_RECORD_CLASS_DATA) {
DataHeader = (EFI_SUBCLASS_TYPE1_HEADER *) (Record + 1);
if (CompareGuid (&Record->DataRecordGuid, &gEfiProcessorSubClassGuid) &&
(DataHeader->RecordType == ProcessorVersionRecordType)
) {
RecordFound = TRUE;
}
}
} while (MonotonicCount != 0);
if (RecordFound) {
RecordFound = FALSE;
continue;
}
//
// Initialize strings to HII database
//
PackageList = PreparePackages (1, &gEfiProcessorProducerGuid, CpuStrings);
Status = Hii->NewPack (Hii, PackageList, &StringHandle);
ASSERT (!EFI_ERROR (Status));
gBS->FreePool (PackageList);
//
// Store processor version data record to data hub
//
Status = Hii->NewString (Hii, NULL, StringHandle, &Token, WinNtIo->EnvString);
ASSERT (!EFI_ERROR (Status));
RecordBuffer.DataRecord->DataRecordHeader.RecordType = ProcessorVersionRecordType;
RecordBuffer.DataRecord->VariableRecord.ProcessorVersion = Token;
TotalSize = HeaderSize + sizeof (EFI_PROCESSOR_VERSION_DATA);
Status = DataHub->LogData (
DataHub,
&gEfiProcessorSubClassGuid,
&gEfiProcessorProducerGuid,
EFI_DATA_RECORD_CLASS_DATA,
RecordBuffer.Raw,
TotalSize
);
}
if ((WinNtIo->WinNtThunk->Signature == EFI_WIN_NT_THUNK_PROTOCOL_SIGNATURE) &&
CompareGuid (WinNtIo->TypeGuid, &gEfiWinNtCPUSpeedGuid)
) {
//
// Check if this record has been stored in data hub
//
do {
Status = DataHub->GetNextRecord (DataHub, &MonotonicCount, NULL, &Record);
if (Record->DataRecordClass == EFI_DATA_RECORD_CLASS_DATA) {
DataHeader = (EFI_SUBCLASS_TYPE1_HEADER *) (Record + 1);
if (CompareGuid (&Record->DataRecordGuid, &gEfiProcessorSubClassGuid) &&
(DataHeader->RecordType == ProcessorCoreFrequencyRecordType)
) {
RecordFound = TRUE;
}
}
} while (MonotonicCount != 0);
if (RecordFound) {
RecordFound = FALSE;
continue;
}
//
// Store CPU frequency data record to data hub
//
RecordBuffer.DataRecord->DataRecordHeader.RecordType = ProcessorCoreFrequencyRecordType;
RecordBuffer.DataRecord->VariableRecord.ProcessorCoreFrequency.Value = (UINT16) Atoi (WinNtIo->EnvString);
RecordBuffer.DataRecord->VariableRecord.ProcessorCoreFrequency.Exponent = 6;
TotalSize = HeaderSize + sizeof (EFI_PROCESSOR_CORE_FREQUENCY_DATA);
Status = DataHub->LogData (
DataHub,
&gEfiProcessorSubClassGuid,
&gEfiProcessorProducerGuid,
EFI_DATA_RECORD_CLASS_DATA,
RecordBuffer.Raw,
TotalSize
);
gBS->FreePool (RecordBuffer.Raw);
}
gBS->CloseProtocol (
HandleBuffer[HandleIndex],
&gEfiWinNtIoProtocolGuid,
Context,
NULL
);
}
}