audk/EdkCompatibilityPkg/Compatibility/SmmBaseHelper/SmmBaseHelper.c

1243 lines
43 KiB
C
Raw Normal View History

/** @file
SMM Base Helper SMM driver.
This driver is the counterpart of the SMM Base On SMM Base2 Thunk driver. It
provides helping services in SMM to the SMM Base On SMM Base2 Thunk driver.
Caution: This module requires additional review when modified.
This driver will have external input - communicate buffer in SMM mode.
This external input must be validated carefully to avoid security issue like
buffer overflow, integer overflow.
SmmHandlerEntry() will receive untrusted input and do validation.
Copyright (c) 2009 - 2012, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <PiSmm.h>
#include <Library/DebugLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/SmmServicesTableLib.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/PeCoffLib.h>
#include <Library/DevicePathLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/SynchronizationLib.h>
#include <Library/CpuLib.h>
#include <Guid/SmmBaseThunkCommunication.h>
#include <Protocol/SmmBaseHelperReady.h>
#include <Protocol/SmmCpu.h>
#include <Protocol/LoadedImage.h>
#include <Protocol/SmmCpuSaveState.h>
#include <Protocol/MpService.h>
#include <Protocol/LoadPe32Image.h>
#include <Protocol/SmmReadyToLock.h>
#include <Protocol/SmmAccess2.h>
///
/// Structure for tracking paired information of registered Framework SMI handler
/// and correpsonding dispatch handle for SMI handler thunk.
///
typedef struct {
LIST_ENTRY Link;
EFI_HANDLE DispatchHandle;
EFI_HANDLE SmmImageHandle;
EFI_SMM_CALLBACK_ENTRY_POINT CallbackAddress;
VOID *CommunicationBuffer;
UINTN *SourceSize;
} CALLBACK_INFO;
typedef struct {
///
/// PI SMM CPU Save State register index
///
EFI_SMM_SAVE_STATE_REGISTER Register;
///
/// Offset in Framework SMST
///
UINTN Offset;
} CPU_SAVE_STATE_CONVERSION;
#define CPU_SAVE_STATE_GET_OFFSET(Field) (UINTN)(&(((EFI_SMM_CPU_SAVE_STATE *) 0)->Ia32SaveState.Field))
EFI_HANDLE mDispatchHandle;
EFI_SMM_CPU_PROTOCOL *mSmmCpu;
EFI_PE32_IMAGE_PROTOCOL *mLoadPe32Image;
EFI_GUID mEfiSmmCpuIoGuid = EFI_SMM_CPU_IO_GUID;
EFI_SMM_BASE_HELPER_READY_PROTOCOL *mSmmBaseHelperReady;
EFI_SMM_SYSTEM_TABLE *mFrameworkSmst;
UINTN mNumberOfProcessors;
BOOLEAN mLocked = FALSE;
BOOLEAN mPageTableHookEnabled;
BOOLEAN mHookInitialized;
UINT64 *mCpuStatePageTable;
SPIN_LOCK mPFLock;
UINT64 mPhyMask;
VOID *mOriginalHandler;
EFI_SMM_CPU_SAVE_STATE *mShadowSaveState;
EFI_SMRAM_DESCRIPTOR *mSmramRanges;
UINTN mSmramRangeCount;
LIST_ENTRY mCallbackInfoListHead = INITIALIZE_LIST_HEAD_VARIABLE (mCallbackInfoListHead);
CPU_SAVE_STATE_CONVERSION mCpuSaveStateConvTable[] = {
{EFI_SMM_SAVE_STATE_REGISTER_LDTBASE , CPU_SAVE_STATE_GET_OFFSET(LDTBase)},
{EFI_SMM_SAVE_STATE_REGISTER_ES , CPU_SAVE_STATE_GET_OFFSET(ES)},
{EFI_SMM_SAVE_STATE_REGISTER_CS , CPU_SAVE_STATE_GET_OFFSET(CS)},
{EFI_SMM_SAVE_STATE_REGISTER_SS , CPU_SAVE_STATE_GET_OFFSET(SS)},
{EFI_SMM_SAVE_STATE_REGISTER_DS , CPU_SAVE_STATE_GET_OFFSET(DS)},
{EFI_SMM_SAVE_STATE_REGISTER_FS , CPU_SAVE_STATE_GET_OFFSET(FS)},
{EFI_SMM_SAVE_STATE_REGISTER_GS , CPU_SAVE_STATE_GET_OFFSET(GS)},
{EFI_SMM_SAVE_STATE_REGISTER_TR_SEL , CPU_SAVE_STATE_GET_OFFSET(TR)},
{EFI_SMM_SAVE_STATE_REGISTER_DR7 , CPU_SAVE_STATE_GET_OFFSET(DR7)},
{EFI_SMM_SAVE_STATE_REGISTER_DR6 , CPU_SAVE_STATE_GET_OFFSET(DR6)},
{EFI_SMM_SAVE_STATE_REGISTER_RAX , CPU_SAVE_STATE_GET_OFFSET(EAX)},
{EFI_SMM_SAVE_STATE_REGISTER_RBX , CPU_SAVE_STATE_GET_OFFSET(EBX)},
{EFI_SMM_SAVE_STATE_REGISTER_RCX , CPU_SAVE_STATE_GET_OFFSET(ECX)},
{EFI_SMM_SAVE_STATE_REGISTER_RDX , CPU_SAVE_STATE_GET_OFFSET(EDX)},
{EFI_SMM_SAVE_STATE_REGISTER_RSP , CPU_SAVE_STATE_GET_OFFSET(ESP)},
{EFI_SMM_SAVE_STATE_REGISTER_RBP , CPU_SAVE_STATE_GET_OFFSET(EBP)},
{EFI_SMM_SAVE_STATE_REGISTER_RSI , CPU_SAVE_STATE_GET_OFFSET(ESI)},
{EFI_SMM_SAVE_STATE_REGISTER_RDI , CPU_SAVE_STATE_GET_OFFSET(EDI)},
{EFI_SMM_SAVE_STATE_REGISTER_RIP , CPU_SAVE_STATE_GET_OFFSET(EIP)},
{EFI_SMM_SAVE_STATE_REGISTER_RFLAGS , CPU_SAVE_STATE_GET_OFFSET(EFLAGS)},
{EFI_SMM_SAVE_STATE_REGISTER_CR0 , CPU_SAVE_STATE_GET_OFFSET(CR0)},
{EFI_SMM_SAVE_STATE_REGISTER_CR3 , CPU_SAVE_STATE_GET_OFFSET(CR3)}
};
/**
Page fault handler.
**/
VOID
PageFaultHandlerHook (
VOID
);
/**
Read CpuSaveStates from PI for Framework use.
The function reads PI style CpuSaveStates of CpuIndex-th CPU for Framework driver use. If
ToRead is specified, the CpuSaveStates will be copied to ToRead, otherwise copied to
mFrameworkSmst->CpuSaveState[CpuIndex].
@param[in] CpuIndex The zero-based CPU index.
@param[in, out] ToRead If not NULL, CpuSaveStates will be copied to it.
**/
VOID
ReadCpuSaveState (
IN UINTN CpuIndex,
IN OUT EFI_SMM_CPU_SAVE_STATE *ToRead
)
{
EFI_STATUS Status;
UINTN Index;
EFI_SMM_CPU_STATE *State;
EFI_SMI_CPU_SAVE_STATE *SaveState;
State = (EFI_SMM_CPU_STATE *)gSmst->CpuSaveState[CpuIndex];
if (ToRead != NULL) {
SaveState = &ToRead->Ia32SaveState;
} else {
SaveState = &mFrameworkSmst->CpuSaveState[CpuIndex].Ia32SaveState;
}
//
// Note that SMBASE/SMMRevId/IORestart/AutoHALTRestart are in same location in IA32 and X64 CPU Save State Map.
//
SaveState->SMBASE = State->x86.SMBASE;
SaveState->SMMRevId = State->x86.SMMRevId;
SaveState->IORestart = State->x86.IORestart;
SaveState->AutoHALTRestart = State->x86.AutoHALTRestart;
for (Index = 0; Index < sizeof (mCpuSaveStateConvTable) / sizeof (CPU_SAVE_STATE_CONVERSION); Index++) {
///
/// Try to use SMM CPU Protocol to access CPU save states if possible
///
Status = mSmmCpu->ReadSaveState (
mSmmCpu,
(UINTN)sizeof (UINT32),
mCpuSaveStateConvTable[Index].Register,
CpuIndex,
((UINT8 *)SaveState) + mCpuSaveStateConvTable[Index].Offset
);
ASSERT_EFI_ERROR (Status);
}
}
/**
Write CpuSaveStates from Framework into PI.
The function writes back CpuSaveStates of CpuIndex-th CPU from PI to Framework. If
ToWrite is specified, it contains the CpuSaveStates to write from, otherwise CpuSaveStates
to write from mFrameworkSmst->CpuSaveState[CpuIndex].
@param[in] CpuIndex The zero-based CPU index.
@param[in] ToWrite If not NULL, CpuSaveStates to write from.
**/
VOID
WriteCpuSaveState (
IN UINTN CpuIndex,
IN EFI_SMM_CPU_SAVE_STATE *ToWrite
)
{
EFI_STATUS Status;
UINTN Index;
EFI_SMM_CPU_STATE *State;
EFI_SMI_CPU_SAVE_STATE *SaveState;
State = (EFI_SMM_CPU_STATE *)gSmst->CpuSaveState[CpuIndex];
if (ToWrite != NULL) {
SaveState = &ToWrite->Ia32SaveState;
} else {
SaveState = &mFrameworkSmst->CpuSaveState[CpuIndex].Ia32SaveState;
}
//
// SMMRevId is read-only.
// Note that SMBASE/IORestart/AutoHALTRestart are in same location in IA32 and X64 CPU Save State Map.
//
State->x86.SMBASE = SaveState->SMBASE;
State->x86.IORestart = SaveState->IORestart;
State->x86.AutoHALTRestart = SaveState->AutoHALTRestart;
for (Index = 0; Index < sizeof (mCpuSaveStateConvTable) / sizeof (CPU_SAVE_STATE_CONVERSION); Index++) {
Status = mSmmCpu->WriteSaveState (
mSmmCpu,
(UINTN)sizeof (UINT32),
mCpuSaveStateConvTable[Index].Register,
CpuIndex,
((UINT8 *)SaveState) +
mCpuSaveStateConvTable[Index].Offset
);
}
}
/**
Read or write a page that contains CpuSaveStates. Read is from PI to Framework.
Write is from Framework to PI.
This function reads or writes a page that contains CpuSaveStates. The page contains Framework
CpuSaveStates. On read, it reads PI style CpuSaveStates and fill the page up. On write, it
writes back from the page content to PI CpuSaveStates struct.
The first Framework CpuSaveStates (for CPU 0) is from mFrameworkSmst->CpuSaveState which is
page aligned. Because Framework CpuSaveStates are continuous, we can know which CPUs' SaveStates
are in the page start from PageAddress.
@param[in] PageAddress The base address for a page.
@param[in] IsRead TRUE for Read, FALSE for Write.
**/
VOID
ReadWriteCpuStatePage (
IN UINT64 PageAddress,
IN BOOLEAN IsRead
)
{
UINTN FirstSSIndex; // Index of first CpuSaveState in the page
UINTN LastSSIndex; // Index of last CpuSaveState in the page
BOOLEAN FirstSSAligned; // Whether first CpuSaveState is page-aligned
BOOLEAN LastSSAligned; // Whether the end of last CpuSaveState is page-aligned
UINTN ClippedSize;
UINTN CpuIndex;
FirstSSIndex = ((UINTN)PageAddress - (UINTN)mFrameworkSmst->CpuSaveState) / sizeof (EFI_SMM_CPU_SAVE_STATE);
FirstSSAligned = TRUE;
if (((UINTN)PageAddress - (UINTN)mFrameworkSmst->CpuSaveState) % sizeof (EFI_SMM_CPU_SAVE_STATE) != 0) {
FirstSSIndex++;
FirstSSAligned = FALSE;
}
LastSSIndex = ((UINTN)PageAddress + SIZE_4KB - (UINTN)mFrameworkSmst->CpuSaveState - 1) / sizeof (EFI_SMM_CPU_SAVE_STATE);
LastSSAligned = TRUE;
if (((UINTN)PageAddress + SIZE_4KB - (UINTN)mFrameworkSmst->CpuSaveState) % sizeof (EFI_SMM_CPU_SAVE_STATE) != 0) {
LastSSIndex--;
LastSSAligned = FALSE;
}
for (CpuIndex = FirstSSIndex; CpuIndex <= LastSSIndex && CpuIndex < mNumberOfProcessors; CpuIndex++) {
if (IsRead) {
ReadCpuSaveState (CpuIndex, NULL);
} else {
WriteCpuSaveState (CpuIndex, NULL);
}
}
if (!FirstSSAligned) {
ReadCpuSaveState (FirstSSIndex - 1, mShadowSaveState);
ClippedSize = (UINTN)&mFrameworkSmst->CpuSaveState[FirstSSIndex] & (SIZE_4KB - 1);
if (IsRead) {
CopyMem ((VOID*)(UINTN)PageAddress, (VOID*)((UINTN)(mShadowSaveState + 1) - ClippedSize), ClippedSize);
} else {
CopyMem ((VOID*)((UINTN)(mShadowSaveState + 1) - ClippedSize), (VOID*)(UINTN)PageAddress, ClippedSize);
WriteCpuSaveState (FirstSSIndex - 1, mShadowSaveState);
}
}
if (!LastSSAligned && LastSSIndex + 1 < mNumberOfProcessors) {
ReadCpuSaveState (LastSSIndex + 1, mShadowSaveState);
ClippedSize = SIZE_4KB - ((UINTN)&mFrameworkSmst->CpuSaveState[LastSSIndex + 1] & (SIZE_4KB - 1));
if (IsRead) {
CopyMem (&mFrameworkSmst->CpuSaveState[LastSSIndex + 1], mShadowSaveState, ClippedSize);
} else {
CopyMem (mShadowSaveState, &mFrameworkSmst->CpuSaveState[LastSSIndex + 1], ClippedSize);
WriteCpuSaveState (LastSSIndex + 1, mShadowSaveState);
}
}
}
/**
The page fault handler that on-demand read PI CpuSaveStates for framework use. If the fault
is not targeted to mFrameworkSmst->CpuSaveState range, the function will return FALSE to let
PageFaultHandlerHook know it needs to pass the fault over to original page fault handler.
@retval TRUE The page fault is correctly handled.
@retval FALSE The page fault is not handled and is passed through to original handler.
**/
BOOLEAN
PageFaultHandler (
VOID
)
{
BOOLEAN IsHandled;
UINT64 *PageTable;
UINT64 PFAddress;
UINTN NumCpuStatePages;
ASSERT (mPageTableHookEnabled);
AcquireSpinLock (&mPFLock);
PageTable = (UINT64*)(UINTN)(AsmReadCr3 () & mPhyMask);
PFAddress = AsmReadCr2 ();
NumCpuStatePages = EFI_SIZE_TO_PAGES (mNumberOfProcessors * sizeof (EFI_SMM_CPU_SAVE_STATE));
IsHandled = FALSE;
if (((UINTN)mFrameworkSmst->CpuSaveState & ~(SIZE_2MB-1)) == (PFAddress & ~(SIZE_2MB-1))) {
if ((UINTN)mFrameworkSmst->CpuSaveState <= PFAddress &&
PFAddress < (UINTN)mFrameworkSmst->CpuSaveState + EFI_PAGES_TO_SIZE (NumCpuStatePages)
) {
mCpuStatePageTable[BitFieldRead64 (PFAddress, 12, 20)] |= BIT0 | BIT1; // present and rw
CpuFlushTlb ();
ReadWriteCpuStatePage (PFAddress & ~(SIZE_4KB-1), TRUE);
IsHandled = TRUE;
} else {
ASSERT (FALSE);
}
}
ReleaseSpinLock (&mPFLock);
return IsHandled;
}
/**
Write back the dirty Framework CpuSaveStates to PI.
The function scans the page table for dirty pages in mFrameworkSmst->CpuSaveState
to write back to PI CpuSaveStates. It is meant to be called on each SmmBaseHelper SMI
callback after Framework handler is called.
**/
VOID
WriteBackDirtyPages (
VOID
)
{
UINTN NumCpuStatePages;
UINTN PTIndex;
UINTN PTStartIndex;
UINTN PTEndIndex;
NumCpuStatePages = EFI_SIZE_TO_PAGES (mNumberOfProcessors * sizeof (EFI_SMM_CPU_SAVE_STATE));
PTStartIndex = (UINTN)BitFieldRead64 ((UINT64) (UINTN) mFrameworkSmst->CpuSaveState, 12, 20);
PTEndIndex = (UINTN)BitFieldRead64 ((UINT64) (UINTN) mFrameworkSmst->CpuSaveState + EFI_PAGES_TO_SIZE(NumCpuStatePages) - 1, 12, 20);
for (PTIndex = PTStartIndex; PTIndex <= PTEndIndex; PTIndex++) {
if ((mCpuStatePageTable[PTIndex] & (BIT0|BIT6)) == (BIT0|BIT6)) { // present and dirty?
ReadWriteCpuStatePage (mCpuStatePageTable[PTIndex] & mPhyMask, FALSE);
}
}
}
/**
Hook IDT with our page fault handler so that the on-demand paging works on page fault.
The function hooks the IDT with PageFaultHandlerHook to get on-demand paging work for
PI<->Framework CpuSaveStates marshalling. It also saves original handler for pass-through
purpose.
**/
VOID
HookPageFaultHandler (
VOID
)
{
IA32_DESCRIPTOR Idtr;
IA32_IDT_GATE_DESCRIPTOR *IdtGateDesc;
UINT32 OffsetUpper;
InitializeSpinLock (&mPFLock);
AsmReadIdtr (&Idtr);
IdtGateDesc = (IA32_IDT_GATE_DESCRIPTOR *) Idtr.Base;
OffsetUpper = *(UINT32*)((UINT64*)IdtGateDesc + 1);
mOriginalHandler = (VOID *)(UINTN)(LShiftU64 (OffsetUpper, 32) + IdtGateDesc[14].Bits.OffsetLow + (IdtGateDesc[14].Bits.OffsetHigh << 16));
IdtGateDesc[14].Bits.OffsetLow = (UINT32)((UINTN)PageFaultHandlerHook & ((1 << 16) - 1));
IdtGateDesc[14].Bits.OffsetHigh = (UINT32)(((UINTN)PageFaultHandlerHook >> 16) & ((1 << 16) - 1));
}
/**
Initialize page table for pages contain HookData.
The function initialize PDE for 2MB range that contains HookData. If the related PDE points
to a 2MB page, a page table will be allocated and initialized for 4KB pages. Otherwise we juse
use the original page table.
@param[in] HookData Based on which to initialize page table.
@return The pointer to a Page Table that points to 4KB pages which contain HookData.
**/
UINT64 *
InitCpuStatePageTable (
IN VOID *HookData
)
{
UINTN Index;
UINT64 *PageTable;
UINT64 *Pdpte;
UINT64 HookAddress;
UINT64 Pde;
UINT64 Address;
//
// Initialize physical address mask
// NOTE: Physical memory above virtual address limit is not supported !!!
//
AsmCpuid (0x80000008, (UINT32*)&Index, NULL, NULL, NULL);
mPhyMask = LShiftU64 (1, (UINT8)Index) - 1;
mPhyMask &= (1ull << 48) - EFI_PAGE_SIZE;
HookAddress = (UINT64)(UINTN)HookData;
PageTable = (UINT64 *)(UINTN)(AsmReadCr3 () & mPhyMask);
PageTable = (UINT64 *)(UINTN)(PageTable[BitFieldRead64 (HookAddress, 39, 47)] & mPhyMask);
PageTable = (UINT64 *)(UINTN)(PageTable[BitFieldRead64 (HookAddress, 30, 38)] & mPhyMask);
Pdpte = (UINT64 *)(UINTN)PageTable;
Pde = Pdpte[BitFieldRead64 (HookAddress, 21, 29)];
ASSERT ((Pde & BIT0) != 0); // Present and 2M Page
if ((Pde & BIT7) == 0) { // 4KB Page Directory
PageTable = (UINT64 *)(UINTN)(Pde & mPhyMask);
} else {
ASSERT ((Pde & mPhyMask) == (HookAddress & ~(SIZE_2MB-1))); // 2MB Page Point to HookAddress
PageTable = AllocatePages (1);
ASSERT (PageTable != NULL);
Address = HookAddress & ~(SIZE_2MB-1);
for (Index = 0; Index < 512; Index++) {
PageTable[Index] = Address | BIT0 | BIT1; // Present and RW
Address += SIZE_4KB;
}
Pdpte[BitFieldRead64 (HookAddress, 21, 29)] = (UINT64)(UINTN)PageTable | BIT0 | BIT1; // Present and RW
}
return PageTable;
}
/**
Mark all the CpuSaveStates as not present.
The function marks all CpuSaveStates memory range as not present so that page fault can be triggered
on CpuSaveStates access. It is meant to be called on each SmmBaseHelper SMI callback before Framework
handler is called.
@param[in] CpuSaveState The base of CpuSaveStates.
**/
VOID
HookCpuStateMemory (
IN EFI_SMM_CPU_SAVE_STATE *CpuSaveState
)
{
UINT64 Index;
UINT64 PTStartIndex;
UINT64 PTEndIndex;
PTStartIndex = BitFieldRead64 ((UINTN)CpuSaveState, 12, 20);
PTEndIndex = BitFieldRead64 ((UINTN)CpuSaveState + mNumberOfProcessors * sizeof (EFI_SMM_CPU_SAVE_STATE) - 1, 12, 20);
for (Index = PTStartIndex; Index <= PTEndIndex; Index++) {
mCpuStatePageTable[Index] &= ~(BIT0|BIT5|BIT6); // not present nor accessed nor dirty
}
}
/**
Framework SMST SmmInstallConfigurationTable() Thunk.
This thunk calls the PI SMM SmmInstallConfigurationTable() and then update the configuration
table related fields in the Framework SMST because the PI SMM SmmInstallConfigurationTable()
function may modify these fields.
@param[in] SystemTable A pointer to the SMM System Table.
@param[in] Guid A pointer to the GUID for the entry to add, update, or remove.
@param[in] Table A pointer to the buffer of the table to add.
@param[in] TableSize The size of the table to install.
@retval EFI_SUCCESS The (Guid, Table) pair was added, updated, or removed.
@retval EFI_INVALID_PARAMETER Guid is not valid.
@retval EFI_NOT_FOUND An attempt was made to delete a non-existent entry.
@retval EFI_OUT_OF_RESOURCES There is not enough memory available to complete the operation.
**/
EFI_STATUS
EFIAPI
SmmInstallConfigurationTable (
IN EFI_SMM_SYSTEM_TABLE *SystemTable,
IN EFI_GUID *Guid,
IN VOID *Table,
IN UINTN TableSize
)
{
EFI_STATUS Status;
Status = gSmst->SmmInstallConfigurationTable (gSmst, Guid, Table, TableSize);
if (!EFI_ERROR (Status)) {
mFrameworkSmst->NumberOfTableEntries = gSmst->NumberOfTableEntries;
mFrameworkSmst->SmmConfigurationTable = gSmst->SmmConfigurationTable;
}
return Status;
}
/**
Initialize all the stuff needed for on-demand paging hooks for PI<->Framework
CpuSaveStates marshalling.
@param[in] FrameworkSmst Framework SMM system table pointer.
**/
VOID
InitHook (
IN EFI_SMM_SYSTEM_TABLE *FrameworkSmst
)
{
UINTN NumCpuStatePages;
UINTN CpuStatePage;
UINTN Bottom2MPage;
UINTN Top2MPage;
mPageTableHookEnabled = FALSE;
NumCpuStatePages = EFI_SIZE_TO_PAGES (mNumberOfProcessors * sizeof (EFI_SMM_CPU_SAVE_STATE));
//
// Only hook page table for X64 image and less than 2MB needed to hold all CPU Save States
//
if (EFI_IMAGE_MACHINE_TYPE_SUPPORTED(EFI_IMAGE_MACHINE_X64) && NumCpuStatePages <= EFI_SIZE_TO_PAGES (SIZE_2MB)) {
//
// Allocate double page size to make sure all CPU Save States are in one 2MB page.
//
CpuStatePage = (UINTN)AllocatePages (NumCpuStatePages * 2);
ASSERT (CpuStatePage != 0);
Bottom2MPage = CpuStatePage & ~(SIZE_2MB-1);
Top2MPage = (CpuStatePage + EFI_PAGES_TO_SIZE (NumCpuStatePages * 2) - 1) & ~(SIZE_2MB-1);
if (Bottom2MPage == Top2MPage ||
CpuStatePage + EFI_PAGES_TO_SIZE (NumCpuStatePages * 2) - Top2MPage >= EFI_PAGES_TO_SIZE (NumCpuStatePages)
) {
//
// If the allocated 4KB pages are within the same 2MB page or higher portion is larger, use higher portion pages.
//
FrameworkSmst->CpuSaveState = (EFI_SMM_CPU_SAVE_STATE *)(CpuStatePage + EFI_PAGES_TO_SIZE (NumCpuStatePages));
FreePages ((VOID*)CpuStatePage, NumCpuStatePages);
} else {
FrameworkSmst->CpuSaveState = (EFI_SMM_CPU_SAVE_STATE *)CpuStatePage;
FreePages ((VOID*)(CpuStatePage + EFI_PAGES_TO_SIZE (NumCpuStatePages)), NumCpuStatePages);
}
//
// Add temporary working buffer for hooking
//
mShadowSaveState = (EFI_SMM_CPU_SAVE_STATE*) AllocatePool (sizeof (EFI_SMM_CPU_SAVE_STATE));
ASSERT (mShadowSaveState != NULL);
//
// Allocate and initialize 4KB Page Table for hooking CpuSaveState.
// Replace the original 2MB PDE with new 4KB page table.
//
mCpuStatePageTable = InitCpuStatePageTable (FrameworkSmst->CpuSaveState);
//
// Mark PTE for CpuSaveState as non-exist.
//
HookCpuStateMemory (FrameworkSmst->CpuSaveState);
HookPageFaultHandler ();
CpuFlushTlb ();
mPageTableHookEnabled = TRUE;
}
mHookInitialized = TRUE;
}
/**
Construct a Framework SMST based on the PI SMM SMST.
@return Pointer to the constructed Framework SMST.
**/
EFI_SMM_SYSTEM_TABLE *
ConstructFrameworkSmst (
VOID
)
{
EFI_SMM_SYSTEM_TABLE *FrameworkSmst;
FrameworkSmst = (EFI_SMM_SYSTEM_TABLE *)AllocatePool (sizeof (EFI_SMM_SYSTEM_TABLE));
ASSERT (FrameworkSmst != NULL);
///
/// Copy same things from PI SMST to Framework SMST
///
CopyMem (FrameworkSmst, gSmst, (UINTN)(&((EFI_SMM_SYSTEM_TABLE *)0)->SmmIo));
CopyMem (
&FrameworkSmst->SmmIo,
&gSmst->SmmIo,
sizeof (EFI_SMM_SYSTEM_TABLE) - (UINTN)(&((EFI_SMM_SYSTEM_TABLE *)0)->SmmIo)
);
///
/// Update Framework SMST
///
FrameworkSmst->Hdr.Revision = EFI_SMM_SYSTEM_TABLE_REVISION;
CopyGuid (&FrameworkSmst->EfiSmmCpuIoGuid, &mEfiSmmCpuIoGuid);
mHookInitialized = FALSE;
FrameworkSmst->CpuSaveState = (EFI_SMM_CPU_SAVE_STATE *)AllocateZeroPool (mNumberOfProcessors * sizeof (EFI_SMM_CPU_SAVE_STATE));
ASSERT (FrameworkSmst->CpuSaveState != NULL);
///
/// Do not support floating point state now
///
FrameworkSmst->CpuOptionalFloatingPointState = NULL;
FrameworkSmst->SmmInstallConfigurationTable = SmmInstallConfigurationTable;
return FrameworkSmst;
}
/**
Load a given Framework SMM driver into SMRAM and invoke its entry point.
@param[in] ParentImageHandle Parent Image Handle.
@param[in] FilePath Location of the image to be installed as the handler.
@param[in] SourceBuffer Optional source buffer in case the image file
is in memory.
@param[in] SourceSize Size of the source image file, if in memory.
@param[out] ImageHandle The handle that the base driver uses to decode
the handler. Unique among SMM handlers only,
not unique across DXE/EFI.
@retval EFI_SUCCESS The operation was successful.
@retval EFI_OUT_OF_RESOURCES There were no additional SMRAM resources to load the handler
@retval EFI_UNSUPPORTED Can not find its copy in normal memory.
@retval EFI_INVALID_PARAMETER The handlers was not the correct image type
**/
EFI_STATUS
LoadImage (
IN EFI_HANDLE ParentImageHandle,
IN EFI_DEVICE_PATH_PROTOCOL *FilePath,
IN VOID *SourceBuffer,
IN UINTN SourceSize,
OUT EFI_HANDLE *ImageHandle
)
{
EFI_STATUS Status;
UINTN PageCount;
UINTN OrgPageCount;
EFI_PHYSICAL_ADDRESS DstBuffer;
if (FilePath == NULL || ImageHandle == NULL) {
return EFI_INVALID_PARAMETER;
}
PageCount = 1;
do {
OrgPageCount = PageCount;
DstBuffer = (UINTN)-1;
Status = gSmst->SmmAllocatePages (
AllocateMaxAddress,
EfiRuntimeServicesCode,
PageCount,
&DstBuffer
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = mLoadPe32Image->LoadPeImage (
mLoadPe32Image,
ParentImageHandle,
FilePath,
SourceBuffer,
SourceSize,
DstBuffer,
&PageCount,
ImageHandle,
NULL,
EFI_LOAD_PE_IMAGE_ATTRIBUTE_NONE
);
if (EFI_ERROR (Status)) {
FreePages ((VOID *)(UINTN)DstBuffer, OrgPageCount);
}
} while (Status == EFI_BUFFER_TOO_SMALL);
if (!EFI_ERROR (Status)) {
///
/// Update MP state in Framework SMST before transferring control to Framework SMM driver entry point
///
mFrameworkSmst->SmmStartupThisAp = gSmst->SmmStartupThisAp;
mFrameworkSmst->NumberOfCpus = mNumberOfProcessors;
mFrameworkSmst->CurrentlyExecutingCpu = gSmst->CurrentlyExecutingCpu;
Status = gBS->StartImage (*ImageHandle, NULL, NULL);
if (EFI_ERROR (Status)) {
mLoadPe32Image->UnLoadPeImage (mLoadPe32Image, *ImageHandle);
*ImageHandle = NULL;
FreePages ((VOID *)(UINTN)DstBuffer, PageCount);
}
}
return Status;
}
/**
This function check if the address is in SMRAM.
@param Buffer the buffer address to be checked.
@param Length the buffer length to be checked.
@retval TRUE this address is in SMRAM.
@retval FALSE this address is NOT in SMRAM.
**/
BOOLEAN
IsAddressInSmram (
IN EFI_PHYSICAL_ADDRESS Buffer,
IN UINT64 Length
)
{
UINTN Index;
for (Index = 0; Index < mSmramRangeCount; Index ++) {
if (((Buffer >= mSmramRanges[Index].CpuStart) && (Buffer < mSmramRanges[Index].CpuStart + mSmramRanges[Index].PhysicalSize)) ||
((mSmramRanges[Index].CpuStart >= Buffer) && (mSmramRanges[Index].CpuStart < Buffer + Length))) {
return TRUE;
}
}
return FALSE;
}
/**
Thunk service of EFI_SMM_BASE_PROTOCOL.Register().
@param[in, out] FunctionData Pointer to SMMBASE_FUNCTION_DATA.
**/
VOID
Register (
IN OUT SMMBASE_FUNCTION_DATA *FunctionData
)
{
EFI_STATUS Status;
if (mLocked || FunctionData->Args.Register.LegacyIA32Binary) {
Status = EFI_UNSUPPORTED;
} else {
Status = LoadImage (
FunctionData->SmmBaseImageHandle,
FunctionData->Args.Register.FilePath,
FunctionData->Args.Register.SourceBuffer,
FunctionData->Args.Register.SourceSize,
FunctionData->Args.Register.ImageHandle
);
}
FunctionData->Status = Status;
}
/**
Thunk service of EFI_SMM_BASE_PROTOCOL.UnRegister().
@param[in, out] FunctionData Pointer to SMMBASE_FUNCTION_DATA.
**/
VOID
UnRegister (
IN OUT SMMBASE_FUNCTION_DATA *FunctionData
)
{
///
/// Unregister not supported now
///
FunctionData->Status = EFI_UNSUPPORTED;
}
/**
Search for Framework SMI handler information according to specific PI SMM dispatch handle.
@param[in] DispatchHandle The unique handle assigned by SmiHandlerRegister().
@return Pointer to CALLBACK_INFO. If NULL, no callback info record is found.
**/
CALLBACK_INFO *
GetCallbackInfo (
IN EFI_HANDLE DispatchHandle
)
{
LIST_ENTRY *Node;
Node = GetFirstNode (&mCallbackInfoListHead);
while (!IsNull (&mCallbackInfoListHead, Node)) {
if (((CALLBACK_INFO *)Node)->DispatchHandle == DispatchHandle) {
return (CALLBACK_INFO *)Node;
}
Node = GetNextNode (&mCallbackInfoListHead, Node);
}
return NULL;
}
/**
Callback thunk for Framework SMI handler.
This thunk functions calls the Framework SMI handler and converts the return value
defined from Framework SMI handlers to a correpsonding return value defined by PI SMM.
@param[in] DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
@param[in] Context Points to an optional handler context which was specified when the
handler was registered.
@param[in, out] CommBuffer A pointer to a collection of data in memory that will
be conveyed from a non-SMM environment into an SMM environment.
@param[in, out] CommBufferSize The size of the CommBuffer.
@retval EFI_SUCCESS The interrupt was handled and quiesced. No other handlers
should still be called.
@retval EFI_WARN_INTERRUPT_SOURCE_QUIESCED The interrupt has been quiesced but other handlers should
still be called.
@retval EFI_WARN_INTERRUPT_SOURCE_PENDING The interrupt is still pending and other handlers should still
be called.
@retval EFI_INTERRUPT_PENDING The interrupt could not be quiesced.
**/
EFI_STATUS
EFIAPI
CallbackThunk (
IN EFI_HANDLE DispatchHandle,
IN CONST VOID *Context OPTIONAL,
IN OUT VOID *CommBuffer OPTIONAL,
IN OUT UINTN *CommBufferSize OPTIONAL
)
{
EFI_STATUS Status;
CALLBACK_INFO *CallbackInfo;
UINTN CpuIndex;
///
/// Before transferring the control into the Framework SMI handler, update CPU Save States
/// and MP states in the Framework SMST.
///
if (!mHookInitialized) {
InitHook (mFrameworkSmst);
}
if (mPageTableHookEnabled) {
HookCpuStateMemory (mFrameworkSmst->CpuSaveState);
CpuFlushTlb ();
} else {
for (CpuIndex = 0; CpuIndex < mNumberOfProcessors; CpuIndex++) {
ReadCpuSaveState (CpuIndex, NULL);
}
}
mFrameworkSmst->SmmStartupThisAp = gSmst->SmmStartupThisAp;
mFrameworkSmst->NumberOfCpus = mNumberOfProcessors;
mFrameworkSmst->CurrentlyExecutingCpu = gSmst->CurrentlyExecutingCpu;
///
/// Search for Framework SMI handler information
///
CallbackInfo = GetCallbackInfo (DispatchHandle);
ASSERT (CallbackInfo != NULL);
///
/// Thunk into original Framwork SMI handler
///
Status = (CallbackInfo->CallbackAddress) (
CallbackInfo->SmmImageHandle,
CallbackInfo->CommunicationBuffer,
CallbackInfo->SourceSize
);
///
/// Save CPU Save States in case any of them was modified
///
if (mPageTableHookEnabled) {
WriteBackDirtyPages ();
} else {
for (CpuIndex = 0; CpuIndex < mNumberOfProcessors; CpuIndex++) {
WriteCpuSaveState (CpuIndex, NULL);
}
}
///
/// Conversion of returned status code
///
switch (Status) {
case EFI_HANDLER_SUCCESS:
Status = EFI_WARN_INTERRUPT_SOURCE_QUIESCED;
break;
case EFI_HANDLER_CRITICAL_EXIT:
case EFI_HANDLER_SOURCE_QUIESCED:
Status = EFI_SUCCESS;
break;
case EFI_HANDLER_SOURCE_PENDING:
Status = EFI_WARN_INTERRUPT_SOURCE_PENDING;
break;
}
return Status;
}
/**
Thunk service of EFI_SMM_BASE_PROTOCOL.RegisterCallback().
@param[in, out] FunctionData Pointer to SMMBASE_FUNCTION_DATA.
**/
VOID
RegisterCallback (
IN OUT SMMBASE_FUNCTION_DATA *FunctionData
)
{
CALLBACK_INFO *Buffer;
if (mLocked) {
FunctionData->Status = EFI_UNSUPPORTED;
return;
}
///
/// Note that MakeLast and FloatingPointSave options are not supported in PI SMM
///
///
/// Allocate buffer for callback thunk information
///
Buffer = (CALLBACK_INFO *)AllocateZeroPool (sizeof (CALLBACK_INFO));
if (Buffer == NULL) {
FunctionData->Status = EFI_OUT_OF_RESOURCES;
return;
}
///
/// Fill SmmImageHandle and CallbackAddress into the thunk
///
Buffer->SmmImageHandle = FunctionData->Args.RegisterCallback.SmmImageHandle;
Buffer->CallbackAddress = FunctionData->Args.RegisterCallback.CallbackAddress;
///
/// Register the thunk code as a root SMI handler
///
FunctionData->Status = gSmst->SmiHandlerRegister (
CallbackThunk,
NULL,
&Buffer->DispatchHandle
);
if (EFI_ERROR (FunctionData->Status)) {
FreePool (Buffer);
return;
}
///
/// Save this callback info
///
InsertTailList (&mCallbackInfoListHead, &Buffer->Link);
}
/**
Thunk service of EFI_SMM_BASE_PROTOCOL.SmmAllocatePool().
@param[in, out] FunctionData Pointer to SMMBASE_FUNCTION_DATA.
**/
VOID
HelperAllocatePool (
IN OUT SMMBASE_FUNCTION_DATA *FunctionData
)
{
if (mLocked) {
FunctionData->Status = EFI_UNSUPPORTED;
} else {
FunctionData->Status = gSmst->SmmAllocatePool (
FunctionData->Args.AllocatePool.PoolType,
FunctionData->Args.AllocatePool.Size,
FunctionData->Args.AllocatePool.Buffer
);
}
}
/**
Thunk service of EFI_SMM_BASE_PROTOCOL.SmmFreePool().
@param[in, out] FunctionData Pointer to SMMBASE_FUNCTION_DATA.
**/
VOID
HelperFreePool (
IN OUT SMMBASE_FUNCTION_DATA *FunctionData
)
{
if (mLocked) {
FunctionData->Status = EFI_UNSUPPORTED;
} else {
FreePool (FunctionData->Args.FreePool.Buffer);
FunctionData->Status = EFI_SUCCESS;
}
}
/**
Thunk service of EFI_SMM_BASE_PROTOCOL.Communicate().
@param[in, out] FunctionData Pointer to SMMBASE_FUNCTION_DATA.
**/
VOID
HelperCommunicate (
IN OUT SMMBASE_FUNCTION_DATA *FunctionData
)
{
LIST_ENTRY *Node;
CALLBACK_INFO *CallbackInfo;
if (FunctionData->Args.Communicate.CommunicationBuffer == NULL) {
FunctionData->Status = EFI_INVALID_PARAMETER;
return;
}
Node = GetFirstNode (&mCallbackInfoListHead);
while (!IsNull (&mCallbackInfoListHead, Node)) {
CallbackInfo = (CALLBACK_INFO *)Node;
if (FunctionData->Args.Communicate.ImageHandle == CallbackInfo->SmmImageHandle) {
CallbackInfo->CommunicationBuffer = FunctionData->Args.Communicate.CommunicationBuffer;
CallbackInfo->SourceSize = FunctionData->Args.Communicate.SourceSize;
///
/// The message was successfully posted.
///
FunctionData->Status = EFI_SUCCESS;
return;
}
Node = GetNextNode (&mCallbackInfoListHead, Node);
}
FunctionData->Status = EFI_INVALID_PARAMETER;
}
/**
Communication service SMI Handler entry.
This SMI handler provides services for the SMM Base Thunk driver.
Caution: This function may receive untrusted input during runtime.
The communicate buffer is external input, so this function will do operations only if the communicate
buffer is outside of SMRAM so that returning the status code in the buffer won't overwrite anywhere in SMRAM.
@param[in] DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister().
@param[in] RegisterContext Points to an optional handler context which was specified when the
handler was registered.
@param[in, out] CommBuffer A pointer to a collection of data in memory that will
be conveyed from a non-SMM environment into an SMM environment.
@param[in, out] CommBufferSize The size of the CommBuffer.
@retval EFI_SUCCESS The interrupt was handled and quiesced. No other handlers
should still be called.
@retval EFI_WARN_INTERRUPT_SOURCE_QUIESCED The interrupt has been quiesced but other handlers should
still be called.
@retval EFI_WARN_INTERRUPT_SOURCE_PENDING The interrupt is still pending and other handlers should still
be called.
@retval EFI_INTERRUPT_PENDING The interrupt could not be quiesced.
**/
EFI_STATUS
EFIAPI
SmmHandlerEntry (
IN EFI_HANDLE DispatchHandle,
IN CONST VOID *RegisterContext,
IN OUT VOID *CommBuffer,
IN OUT UINTN *CommBufferSize
)
{
SMMBASE_FUNCTION_DATA *FunctionData;
ASSERT (CommBuffer != NULL);
ASSERT (CommBufferSize != NULL);
if (*CommBufferSize == sizeof (SMMBASE_FUNCTION_DATA) &&
!IsAddressInSmram ((EFI_PHYSICAL_ADDRESS)(UINTN)CommBuffer, *CommBufferSize)) {
FunctionData = (SMMBASE_FUNCTION_DATA *)CommBuffer;
switch (FunctionData->Function) {
case SmmBaseFunctionRegister:
Register (FunctionData);
break;
case SmmBaseFunctionUnregister:
UnRegister (FunctionData);
break;
case SmmBaseFunctionRegisterCallback:
RegisterCallback (FunctionData);
break;
case SmmBaseFunctionAllocatePool:
HelperAllocatePool (FunctionData);
break;
case SmmBaseFunctionFreePool:
HelperFreePool (FunctionData);
break;
case SmmBaseFunctionCommunicate:
HelperCommunicate (FunctionData);
break;
default:
DEBUG ((EFI_D_WARN, "SmmBaseHelper: invalid SMM Base function.\n"));
FunctionData->Status = EFI_UNSUPPORTED;
}
}
return EFI_SUCCESS;
}
/**
Smm Ready To Lock event notification handler.
It sets a flag indicating that SMRAM has been locked.
@param[in] Protocol Points to the protocol's unique identifier.
@param[in] Interface Points to the interface instance.
@param[in] Handle The handle on which the interface was installed.
@retval EFI_SUCCESS Notification handler runs successfully.
**/
EFI_STATUS
EFIAPI
SmmReadyToLockEventNotify (
IN CONST EFI_GUID *Protocol,
IN VOID *Interface,
IN EFI_HANDLE Handle
)
{
mLocked = TRUE;
return EFI_SUCCESS;
}
/**
Entry point function of the SMM Base Helper SMM driver.
@param[in] ImageHandle The firmware allocated handle for the EFI image.
@param[in] SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
@retval other Some error occurs when executing this entry point.
**/
EFI_STATUS
EFIAPI
SmmBaseHelperMain (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_MP_SERVICES_PROTOCOL *MpServices;
EFI_HANDLE Handle;
UINTN NumberOfEnabledProcessors;
VOID *Registration;
EFI_SMM_ACCESS2_PROTOCOL *SmmAccess;
UINTN Size;
Handle = NULL;
///
/// Locate SMM CPU Protocol which is used later to retrieve/update CPU Save States
///
Status = gSmst->SmmLocateProtocol (&gEfiSmmCpuProtocolGuid, NULL, (VOID **) &mSmmCpu);
ASSERT_EFI_ERROR (Status);
///
/// Locate PE32 Image Protocol which is used later to load Framework SMM driver
///
Status = SystemTable->BootServices->LocateProtocol (&gEfiLoadPeImageProtocolGuid, NULL, (VOID **) &mLoadPe32Image);
ASSERT_EFI_ERROR (Status);
//
// Get MP Services Protocol
//
Status = SystemTable->BootServices->LocateProtocol (&gEfiMpServiceProtocolGuid, NULL, (VOID **)&MpServices);
ASSERT_EFI_ERROR (Status);
//
// Use MP Services Protocol to retrieve the number of processors and number of enabled processors
//
Status = MpServices->GetNumberOfProcessors (MpServices, &mNumberOfProcessors, &NumberOfEnabledProcessors);
ASSERT_EFI_ERROR (Status);
///
/// Interface structure of SMM BASE Helper Ready Protocol is allocated from UEFI pool
/// instead of SMM pool so that SMM Base Thunk driver can access it in Non-SMM mode.
///
Status = gBS->AllocatePool (
EfiBootServicesData,
sizeof (EFI_SMM_BASE_HELPER_READY_PROTOCOL),
(VOID **)&mSmmBaseHelperReady
);
ASSERT_EFI_ERROR (Status);
///
/// Construct Framework SMST from PI SMST
///
mFrameworkSmst = ConstructFrameworkSmst ();
mSmmBaseHelperReady->FrameworkSmst = mFrameworkSmst;
mSmmBaseHelperReady->ServiceEntry = SmmHandlerEntry;
//
// Get SMRAM information
//
Status = gBS->LocateProtocol (&gEfiSmmAccess2ProtocolGuid, NULL, (VOID **)&SmmAccess);
ASSERT_EFI_ERROR (Status);
Size = 0;
Status = SmmAccess->GetCapabilities (SmmAccess, &Size, NULL);
ASSERT (Status == EFI_BUFFER_TOO_SMALL);
Status = gSmst->SmmAllocatePool (
EfiRuntimeServicesData,
Size,
(VOID **)&mSmramRanges
);
ASSERT_EFI_ERROR (Status);
Status = SmmAccess->GetCapabilities (SmmAccess, &Size, mSmramRanges);
ASSERT_EFI_ERROR (Status);
mSmramRangeCount = Size / sizeof (EFI_SMRAM_DESCRIPTOR);
//
// Register SMM Ready To Lock Protocol notification
//
Status = gSmst->SmmRegisterProtocolNotify (
&gEfiSmmReadyToLockProtocolGuid,
SmmReadyToLockEventNotify,
&Registration
);
ASSERT_EFI_ERROR (Status);
///
/// Register SMM Base Helper services for SMM Base Thunk driver
///
Status = gSmst->SmiHandlerRegister (SmmHandlerEntry, &gEfiSmmBaseThunkCommunicationGuid, &mDispatchHandle);
ASSERT_EFI_ERROR (Status);
///
/// Install EFI SMM Base Helper Protocol in the UEFI handle database
///
Status = gBS->InstallProtocolInterface (
&Handle,
&gEfiSmmBaseHelperReadyProtocolGuid,
EFI_NATIVE_INTERFACE,
mSmmBaseHelperReady
);
ASSERT_EFI_ERROR (Status);
return Status;
}