audk/SecurityPkg/VariableAuthenticated/RuntimeDxe/Variable.c

3337 lines
119 KiB
C
Raw Normal View History

/** @file
The common variable operation routines shared by DXE_RUNTIME variable
module and DXE_SMM variable module.
Caution: This module requires additional review when modified.
This driver will have external input - variable data. They may be input in SMM mode.
This external input must be validated carefully to avoid security issue like
buffer overflow, integer overflow.
VariableServiceGetNextVariableName () and VariableServiceQueryVariableInfo() are external API.
They need check input parameter.
VariableServiceGetVariable() and VariableServiceSetVariable() are external API
to receive datasize and data buffer. The size should be checked carefully.
VariableServiceSetVariable() should also check authenticate data to avoid buffer overflow,
integer overflow. It should also check attribute to avoid authentication bypass.
Copyright (c) 2009 - 2013, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "Variable.h"
#include "AuthService.h"
VARIABLE_MODULE_GLOBAL *mVariableModuleGlobal;
///
/// Define a memory cache that improves the search performance for a variable.
///
VARIABLE_STORE_HEADER *mNvVariableCache = NULL;
///
/// The memory entry used for variable statistics data.
///
VARIABLE_INFO_ENTRY *gVariableInfo = NULL;
/**
Routine used to track statistical information about variable usage.
The data is stored in the EFI system table so it can be accessed later.
VariableInfo.efi can dump out the table. Only Boot Services variable
accesses are tracked by this code. The PcdVariableCollectStatistics
build flag controls if this feature is enabled.
A read that hits in the cache will have Read and Cache true for
the transaction. Data is allocated by this routine, but never
freed.
@param[in] VariableName Name of the Variable to track.
@param[in] VendorGuid Guid of the Variable to track.
@param[in] Volatile TRUE if volatile FALSE if non-volatile.
@param[in] Read TRUE if GetVariable() was called.
@param[in] Write TRUE if SetVariable() was called.
@param[in] Delete TRUE if deleted via SetVariable().
@param[in] Cache TRUE for a cache hit.
**/
VOID
UpdateVariableInfo (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
IN BOOLEAN Volatile,
IN BOOLEAN Read,
IN BOOLEAN Write,
IN BOOLEAN Delete,
IN BOOLEAN Cache
)
{
VARIABLE_INFO_ENTRY *Entry;
if (FeaturePcdGet (PcdVariableCollectStatistics)) {
if (AtRuntime ()) {
// Don't collect statistics at runtime.
return;
}
if (gVariableInfo == NULL) {
//
// On the first call allocate a entry and place a pointer to it in
// the EFI System Table.
//
gVariableInfo = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
ASSERT (gVariableInfo != NULL);
CopyGuid (&gVariableInfo->VendorGuid, VendorGuid);
gVariableInfo->Name = AllocatePool (StrSize (VariableName));
ASSERT (gVariableInfo->Name != NULL);
StrCpy (gVariableInfo->Name, VariableName);
gVariableInfo->Volatile = Volatile;
}
for (Entry = gVariableInfo; Entry != NULL; Entry = Entry->Next) {
if (CompareGuid (VendorGuid, &Entry->VendorGuid)) {
if (StrCmp (VariableName, Entry->Name) == 0) {
if (Read) {
Entry->ReadCount++;
}
if (Write) {
Entry->WriteCount++;
}
if (Delete) {
Entry->DeleteCount++;
}
if (Cache) {
Entry->CacheCount++;
}
return;
}
}
if (Entry->Next == NULL) {
//
// If the entry is not in the table add it.
// Next iteration of the loop will fill in the data.
//
Entry->Next = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
ASSERT (Entry->Next != NULL);
CopyGuid (&Entry->Next->VendorGuid, VendorGuid);
Entry->Next->Name = AllocatePool (StrSize (VariableName));
ASSERT (Entry->Next->Name != NULL);
StrCpy (Entry->Next->Name, VariableName);
Entry->Next->Volatile = Volatile;
}
}
}
}
/**
This code checks if variable header is valid or not.
@param Variable Pointer to the Variable Header.
@retval TRUE Variable header is valid.
@retval FALSE Variable header is not valid.
**/
BOOLEAN
IsValidVariableHeader (
IN VARIABLE_HEADER *Variable
)
{
if (Variable == NULL || Variable->StartId != VARIABLE_DATA) {
return FALSE;
}
return TRUE;
}
/**
This function writes data to the FWH at the correct LBA even if the LBAs
are fragmented.
@param Global Pointer to VARAIBLE_GLOBAL structure.
@param Volatile Point out the Variable is Volatile or Non-Volatile.
@param SetByIndex TRUE if target pointer is given as index.
FALSE if target pointer is absolute.
@param Fvb Pointer to the writable FVB protocol.
@param DataPtrIndex Pointer to the Data from the end of VARIABLE_STORE_HEADER
structure.
@param DataSize Size of data to be written.
@param Buffer Pointer to the buffer from which data is written.
@retval EFI_INVALID_PARAMETER Parameters not valid.
@retval EFI_SUCCESS Variable store successfully updated.
**/
EFI_STATUS
UpdateVariableStore (
IN VARIABLE_GLOBAL *Global,
IN BOOLEAN Volatile,
IN BOOLEAN SetByIndex,
IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb,
IN UINTN DataPtrIndex,
IN UINT32 DataSize,
IN UINT8 *Buffer
)
{
EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;
UINTN BlockIndex2;
UINTN LinearOffset;
UINTN CurrWriteSize;
UINTN CurrWritePtr;
UINT8 *CurrBuffer;
EFI_LBA LbaNumber;
UINTN Size;
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
VARIABLE_STORE_HEADER *VolatileBase;
EFI_PHYSICAL_ADDRESS FvVolHdr;
EFI_PHYSICAL_ADDRESS DataPtr;
EFI_STATUS Status;
FwVolHeader = NULL;
DataPtr = DataPtrIndex;
//
// Check if the Data is Volatile.
//
if (!Volatile) {
if (Fvb == NULL) {
return EFI_INVALID_PARAMETER;
}
Status = Fvb->GetPhysicalAddress(Fvb, &FvVolHdr);
ASSERT_EFI_ERROR (Status);
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvVolHdr);
//
// Data Pointer should point to the actual Address where data is to be
// written.
//
if (SetByIndex) {
DataPtr += mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
}
if ((DataPtr + DataSize) >= ((EFI_PHYSICAL_ADDRESS) (UINTN) ((UINT8 *) FwVolHeader + FwVolHeader->FvLength))) {
return EFI_INVALID_PARAMETER;
}
} else {
//
// Data Pointer should point to the actual Address where data is to be
// written.
//
VolatileBase = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
if (SetByIndex) {
DataPtr += mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
}
if ((DataPtr + DataSize) >= ((UINTN) ((UINT8 *) VolatileBase + VolatileBase->Size))) {
return EFI_INVALID_PARAMETER;
}
//
// If Volatile Variable just do a simple mem copy.
//
CopyMem ((UINT8 *)(UINTN)DataPtr, Buffer, DataSize);
return EFI_SUCCESS;
}
//
// If we are here we are dealing with Non-Volatile Variables.
//
LinearOffset = (UINTN) FwVolHeader;
CurrWritePtr = (UINTN) DataPtr;
CurrWriteSize = DataSize;
CurrBuffer = Buffer;
LbaNumber = 0;
if (CurrWritePtr < LinearOffset) {
return EFI_INVALID_PARAMETER;
}
for (PtrBlockMapEntry = FwVolHeader->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) {
for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) {
//
// Check to see if the Variable Writes are spanning through multiple
// blocks.
//
if ((CurrWritePtr >= LinearOffset) && (CurrWritePtr < LinearOffset + PtrBlockMapEntry->Length)) {
if ((CurrWritePtr + CurrWriteSize) <= (LinearOffset + PtrBlockMapEntry->Length)) {
Status = Fvb->Write (
Fvb,
LbaNumber,
(UINTN) (CurrWritePtr - LinearOffset),
&CurrWriteSize,
CurrBuffer
);
return Status;
} else {
Size = (UINT32) (LinearOffset + PtrBlockMapEntry->Length - CurrWritePtr);
Status = Fvb->Write (
Fvb,
LbaNumber,
(UINTN) (CurrWritePtr - LinearOffset),
&Size,
CurrBuffer
);
if (EFI_ERROR (Status)) {
return Status;
}
CurrWritePtr = LinearOffset + PtrBlockMapEntry->Length;
CurrBuffer = CurrBuffer + Size;
CurrWriteSize = CurrWriteSize - Size;
}
}
LinearOffset += PtrBlockMapEntry->Length;
LbaNumber++;
}
}
return EFI_SUCCESS;
}
/**
This code gets the current status of Variable Store.
@param VarStoreHeader Pointer to the Variable Store Header.
@retval EfiRaw Variable store status is raw.
@retval EfiValid Variable store status is valid.
@retval EfiInvalid Variable store status is invalid.
**/
VARIABLE_STORE_STATUS
GetVariableStoreStatus (
IN VARIABLE_STORE_HEADER *VarStoreHeader
)
{
if (CompareGuid (&VarStoreHeader->Signature, &gEfiAuthenticatedVariableGuid) &&
VarStoreHeader->Format == VARIABLE_STORE_FORMATTED &&
VarStoreHeader->State == VARIABLE_STORE_HEALTHY
) {
return EfiValid;
} else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == 0xffffffff &&
((UINT32 *)(&VarStoreHeader->Signature))[1] == 0xffffffff &&
((UINT32 *)(&VarStoreHeader->Signature))[2] == 0xffffffff &&
((UINT32 *)(&VarStoreHeader->Signature))[3] == 0xffffffff &&
VarStoreHeader->Size == 0xffffffff &&
VarStoreHeader->Format == 0xff &&
VarStoreHeader->State == 0xff
) {
return EfiRaw;
} else {
return EfiInvalid;
}
}
/**
This code gets the size of name of variable.
@param Variable Pointer to the Variable Header.
@return UINTN Size of variable in bytes.
**/
UINTN
NameSizeOfVariable (
IN VARIABLE_HEADER *Variable
)
{
if (Variable->State == (UINT8) (-1) ||
Variable->DataSize == (UINT32) (-1) ||
Variable->NameSize == (UINT32) (-1) ||
Variable->Attributes == (UINT32) (-1)) {
return 0;
}
return (UINTN) Variable->NameSize;
}
/**
This code gets the size of variable data.
@param Variable Pointer to the Variable Header.
@return Size of variable in bytes.
**/
UINTN
DataSizeOfVariable (
IN VARIABLE_HEADER *Variable
)
{
if (Variable->State == (UINT8) (-1) ||
Variable->DataSize == (UINT32) (-1) ||
Variable->NameSize == (UINT32) (-1) ||
Variable->Attributes == (UINT32) (-1)) {
return 0;
}
return (UINTN) Variable->DataSize;
}
/**
This code gets the pointer to the variable name.
@param Variable Pointer to the Variable Header.
@return Pointer to Variable Name which is Unicode encoding.
**/
CHAR16 *
GetVariableNamePtr (
IN VARIABLE_HEADER *Variable
)
{
return (CHAR16 *) (Variable + 1);
}
/**
This code gets the pointer to the variable data.
@param Variable Pointer to the Variable Header.
@return Pointer to Variable Data.
**/
UINT8 *
GetVariableDataPtr (
IN VARIABLE_HEADER *Variable
)
{
UINTN Value;
//
// Be careful about pad size for alignment.
//
Value = (UINTN) GetVariableNamePtr (Variable);
Value += NameSizeOfVariable (Variable);
Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
return (UINT8 *) Value;
}
/**
This code gets the pointer to the next variable header.
@param Variable Pointer to the Variable Header.
@return Pointer to next variable header.
**/
VARIABLE_HEADER *
GetNextVariablePtr (
IN VARIABLE_HEADER *Variable
)
{
UINTN Value;
if (!IsValidVariableHeader (Variable)) {
return NULL;
}
Value = (UINTN) GetVariableDataPtr (Variable);
Value += DataSizeOfVariable (Variable);
Value += GET_PAD_SIZE (DataSizeOfVariable (Variable));
//
// Be careful about pad size for alignment.
//
return (VARIABLE_HEADER *) HEADER_ALIGN (Value);
}
/**
Gets the pointer to the first variable header in given variable store area.
@param VarStoreHeader Pointer to the Variable Store Header.
@return Pointer to the first variable header.
**/
VARIABLE_HEADER *
GetStartPointer (
IN VARIABLE_STORE_HEADER *VarStoreHeader
)
{
//
// The end of variable store.
//
return (VARIABLE_HEADER *) HEADER_ALIGN (VarStoreHeader + 1);
}
/**
Gets the pointer to the end of the variable storage area.
This function gets pointer to the end of the variable storage
area, according to the input variable store header.
@param VarStoreHeader Pointer to the Variable Store Header.
@return Pointer to the end of the variable storage area.
**/
VARIABLE_HEADER *
GetEndPointer (
IN VARIABLE_STORE_HEADER *VarStoreHeader
)
{
//
// The end of variable store
//
return (VARIABLE_HEADER *) HEADER_ALIGN ((UINTN) VarStoreHeader + VarStoreHeader->Size);
}
/**
Check the PubKeyIndex is a valid key or not.
This function will iterate the NV storage to see if this PubKeyIndex is still referenced
by any valid count-based auth variabe.
@param[in] PubKeyIndex Index of the public key in public key store.
@retval TRUE The PubKeyIndex is still in use.
@retval FALSE The PubKeyIndex is not referenced by any count-based auth variabe.
**/
BOOLEAN
IsValidPubKeyIndex (
IN UINT32 PubKeyIndex
)
{
VARIABLE_HEADER *Variable;
if (PubKeyIndex > mPubKeyNumber) {
return FALSE;
}
Variable = GetStartPointer (mNvVariableCache);
while (IsValidVariableHeader (Variable)) {
if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) &&
Variable->PubKeyIndex == PubKeyIndex) {
return TRUE;
}
Variable = GetNextVariablePtr (Variable);
}
return FALSE;
}
/**
Get the number of valid public key in PubKeyStore.
@param[in] PubKeyNumber Number of the public key in public key store.
@return Number of valid public key in PubKeyStore.
**/
UINT32
GetValidPubKeyNumber (
IN UINT32 PubKeyNumber
)
{
UINT32 PubKeyIndex;
UINT32 Counter;
Counter = 0;
for (PubKeyIndex = 1; PubKeyIndex <= PubKeyNumber; PubKeyIndex++) {
if (IsValidPubKeyIndex (PubKeyIndex)) {
Counter++;
}
}
return Counter;
}
/**
Filter the useless key in public key store.
This function will find out all valid public keys in public key database, save them in new allocated
buffer NewPubKeyStore, and give the new PubKeyIndex. The caller is responsible for freeing buffer
NewPubKeyIndex and NewPubKeyStore with FreePool().
@param[in] PubKeyStore Point to the public key database.
@param[in] PubKeyNumber Number of the public key in PubKeyStore.
@param[out] NewPubKeyIndex Point to an array of new PubKeyIndex corresponds to NewPubKeyStore.
@param[out] NewPubKeyStore Saved all valid public keys in PubKeyStore.
@param[out] NewPubKeySize Buffer size of the NewPubKeyStore.
@retval EFI_SUCCESS Trim operation is complete successfully.
@retval EFI_OUT_OF_RESOURCES No enough memory resources, or no useless key in PubKeyStore.
**/
EFI_STATUS
PubKeyStoreFilter (
IN UINT8 *PubKeyStore,
IN UINT32 PubKeyNumber,
OUT UINT32 **NewPubKeyIndex,
OUT UINT8 **NewPubKeyStore,
OUT UINT32 *NewPubKeySize
)
{
UINT32 PubKeyIndex;
UINT32 CopiedKey;
UINT32 NewPubKeyNumber;
NewPubKeyNumber = GetValidPubKeyNumber (PubKeyNumber);
if (NewPubKeyNumber == PubKeyNumber) {
return EFI_OUT_OF_RESOURCES;
}
if (NewPubKeyNumber != 0) {
*NewPubKeySize = NewPubKeyNumber * EFI_CERT_TYPE_RSA2048_SIZE;
} else {
*NewPubKeySize = sizeof (UINT8);
}
*NewPubKeyStore = AllocatePool (*NewPubKeySize);
if (*NewPubKeyStore == NULL) {
return EFI_OUT_OF_RESOURCES;
}
*NewPubKeyIndex = AllocateZeroPool ((PubKeyNumber + 1) * sizeof (UINT32));
if (*NewPubKeyIndex == NULL) {
FreePool (*NewPubKeyStore);
return EFI_OUT_OF_RESOURCES;
}
CopiedKey = 0;
for (PubKeyIndex = 1; PubKeyIndex <= PubKeyNumber; PubKeyIndex++) {
if (IsValidPubKeyIndex (PubKeyIndex)) {
CopyMem (
*NewPubKeyStore + CopiedKey * EFI_CERT_TYPE_RSA2048_SIZE,
PubKeyStore + (PubKeyIndex - 1) * EFI_CERT_TYPE_RSA2048_SIZE,
EFI_CERT_TYPE_RSA2048_SIZE
);
(*NewPubKeyIndex)[PubKeyIndex] = ++CopiedKey;
}
}
return EFI_SUCCESS;
}
/**
Variable store garbage collection and reclaim operation.
If ReclaimPubKeyStore is FALSE, reclaim variable space by deleting the obsoleted varaibles.
If ReclaimPubKeyStore is TRUE, reclaim invalid key in public key database and update the PubKeyIndex
for all the count-based authenticate variable in NV storage.
@param[in] VariableBase Base address of variable store.
@param[out] LastVariableOffset Offset of last variable.
@param[in] IsVolatile The variable store is volatile or not;
if it is non-volatile, need FTW.
@param[in, out] UpdatingPtrTrack Pointer to updating variable pointer track structure.
@param[in] ReclaimPubKeyStore Reclaim for public key database or not.
@param[in] ReclaimAnyway If TRUE, do reclaim anyway.
@return EFI_OUT_OF_RESOURCES No enough memory resources.
@return EFI_SUCCESS Reclaim operation has finished successfully.
@return Others Unexpect error happened during reclaim operation.
**/
EFI_STATUS
Reclaim (
IN EFI_PHYSICAL_ADDRESS VariableBase,
OUT UINTN *LastVariableOffset,
IN BOOLEAN IsVolatile,
IN OUT VARIABLE_POINTER_TRACK *UpdatingPtrTrack,
IN BOOLEAN ReclaimPubKeyStore,
IN BOOLEAN ReclaimAnyway
)
{
VARIABLE_HEADER *Variable;
VARIABLE_HEADER *AddedVariable;
VARIABLE_HEADER *NextVariable;
VARIABLE_HEADER *NextAddedVariable;
VARIABLE_STORE_HEADER *VariableStoreHeader;
UINT8 *ValidBuffer;
UINTN MaximumBufferSize;
UINTN VariableSize;
UINTN VariableNameSize;
UINTN UpdatingVariableNameSize;
UINTN NameSize;
UINT8 *CurrPtr;
VOID *Point0;
VOID *Point1;
BOOLEAN FoundAdded;
EFI_STATUS Status;
CHAR16 *VariableNamePtr;
CHAR16 *UpdatingVariableNamePtr;
UINTN CommonVariableTotalSize;
UINTN HwErrVariableTotalSize;
UINT32 *NewPubKeyIndex;
UINT8 *NewPubKeyStore;
UINT32 NewPubKeySize;
VARIABLE_HEADER *PubKeyHeader;
BOOLEAN NeedDoReclaim;
VARIABLE_HEADER *UpdatingVariable;
UpdatingVariable = NULL;
if (UpdatingPtrTrack != NULL) {
UpdatingVariable = UpdatingPtrTrack->CurrPtr;
}
NeedDoReclaim = FALSE;
VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) VariableBase);
CommonVariableTotalSize = 0;
HwErrVariableTotalSize = 0;
NewPubKeyIndex = NULL;
NewPubKeyStore = NULL;
NewPubKeySize = 0;
PubKeyHeader = NULL;
//
// Start Pointers for the variable.
//
Variable = GetStartPointer (VariableStoreHeader);
MaximumBufferSize = sizeof (VARIABLE_STORE_HEADER);
while (IsValidVariableHeader (Variable)) {
NextVariable = GetNextVariablePtr (Variable);
if (Variable->State == VAR_ADDED ||
Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)
) {
VariableSize = (UINTN) NextVariable - (UINTN) Variable;
MaximumBufferSize += VariableSize;
} else {
NeedDoReclaim = TRUE;
}
Variable = NextVariable;
}
if (!ReclaimAnyway && !NeedDoReclaim) {
DEBUG ((EFI_D_INFO, "Variable driver: no DELETED variable found, so no variable space could be reclaimed.\n"));
return EFI_SUCCESS;
}
//
// Reserve the 1 Bytes with Oxff to identify the
// end of the variable buffer.
//
MaximumBufferSize += 1;
ValidBuffer = AllocatePool (MaximumBufferSize);
if (ValidBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
SetMem (ValidBuffer, MaximumBufferSize, 0xff);
//
// Copy variable store header.
//
CopyMem (ValidBuffer, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER));
CurrPtr = (UINT8 *) GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
if (ReclaimPubKeyStore) {
//
// Trim the PubKeyStore and get new PubKeyIndex.
//
Status = PubKeyStoreFilter (
mPubKeyStore,
mPubKeyNumber,
&NewPubKeyIndex,
&NewPubKeyStore,
&NewPubKeySize
);
if (EFI_ERROR (Status)) {
FreePool (ValidBuffer);
return Status;
}
//
// Refresh the PubKeyIndex for all valid variables (ADDED and IN_DELETED_TRANSITION).
//
Variable = GetStartPointer (mNvVariableCache);
while (IsValidVariableHeader (Variable)) {
NextVariable = GetNextVariablePtr (Variable);
if (Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
if ((StrCmp (GetVariableNamePtr (Variable), AUTHVAR_KEYDB_NAME) == 0) &&
(CompareGuid (&Variable->VendorGuid, &gEfiAuthenticatedVariableGuid))) {
//
// Skip the public key database, it will be reinstalled later.
//
PubKeyHeader = Variable;
Variable = NextVariable;
continue;
}
VariableSize = (UINTN) NextVariable - (UINTN) Variable;
CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
((VARIABLE_HEADER*) CurrPtr)->PubKeyIndex = NewPubKeyIndex[Variable->PubKeyIndex];
CurrPtr += VariableSize;
if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
HwErrVariableTotalSize += VariableSize;
} else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
CommonVariableTotalSize += VariableSize;
}
}
Variable = NextVariable;
}
//
// Reinstall the new public key database.
//
CopyMem (CurrPtr, (UINT8*) PubKeyHeader, sizeof (VARIABLE_HEADER));
Variable = (VARIABLE_HEADER*) CurrPtr;
Variable->DataSize = NewPubKeySize;
StrCpy (GetVariableNamePtr (Variable), GetVariableNamePtr (PubKeyHeader));
CopyMem (GetVariableDataPtr (Variable), NewPubKeyStore, NewPubKeySize);
CurrPtr = (UINT8*) GetNextVariablePtr (Variable);
CommonVariableTotalSize += (UINTN) CurrPtr - (UINTN) Variable;
} else {
//
// Reinstall all ADDED variables as long as they are not identical to Updating Variable.
//
Variable = GetStartPointer (VariableStoreHeader);
while (IsValidVariableHeader (Variable)) {
NextVariable = GetNextVariablePtr (Variable);
if (Variable->State == VAR_ADDED) {
if (UpdatingVariable != NULL) {
if (UpdatingVariable == Variable) {
Variable = NextVariable;
continue;
}
VariableNameSize = NameSizeOfVariable(Variable);
UpdatingVariableNameSize = NameSizeOfVariable(UpdatingVariable);
VariableNamePtr = GetVariableNamePtr (Variable);
UpdatingVariableNamePtr = GetVariableNamePtr (UpdatingVariable);
if (CompareGuid (&Variable->VendorGuid, &UpdatingVariable->VendorGuid) &&
VariableNameSize == UpdatingVariableNameSize &&
CompareMem (VariableNamePtr, UpdatingVariableNamePtr, VariableNameSize) == 0 ) {
Variable = NextVariable;
continue;
}
}
VariableSize = (UINTN) NextVariable - (UINTN) Variable;
CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
CurrPtr += VariableSize;
if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
HwErrVariableTotalSize += VariableSize;
} else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
CommonVariableTotalSize += VariableSize;
}
}
Variable = NextVariable;
}
//
// Reinstall the variable being updated if it is not NULL.
//
if (UpdatingVariable != NULL) {
VariableSize = (UINTN)(GetNextVariablePtr (UpdatingVariable)) - (UINTN)UpdatingVariable;
CopyMem (CurrPtr, (UINT8 *) UpdatingVariable, VariableSize);
UpdatingPtrTrack->CurrPtr = (VARIABLE_HEADER *)((UINTN)UpdatingPtrTrack->StartPtr + ((UINTN)CurrPtr - (UINTN)GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer)));
UpdatingPtrTrack->InDeletedTransitionPtr = NULL;
CurrPtr += VariableSize;
if ((!IsVolatile) && ((UpdatingVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
HwErrVariableTotalSize += VariableSize;
} else if ((!IsVolatile) && ((UpdatingVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
CommonVariableTotalSize += VariableSize;
}
}
//
// Reinstall all in delete transition variables.
//
Variable = GetStartPointer (VariableStoreHeader);
while (IsValidVariableHeader (Variable)) {
NextVariable = GetNextVariablePtr (Variable);
if (Variable != UpdatingVariable && Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
//
// Buffer has cached all ADDED variable.
// Per IN_DELETED variable, we have to guarantee that
// no ADDED one in previous buffer.
//
FoundAdded = FALSE;
AddedVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
while (IsValidVariableHeader (AddedVariable)) {
NextAddedVariable = GetNextVariablePtr (AddedVariable);
NameSize = NameSizeOfVariable (AddedVariable);
if (CompareGuid (&AddedVariable->VendorGuid, &Variable->VendorGuid) &&
NameSize == NameSizeOfVariable (Variable)
) {
Point0 = (VOID *) GetVariableNamePtr (AddedVariable);
Point1 = (VOID *) GetVariableNamePtr (Variable);
if (CompareMem (Point0, Point1, NameSize) == 0) {
FoundAdded = TRUE;
break;
}
}
AddedVariable = NextAddedVariable;
}
if (!FoundAdded) {
//
// Promote VAR_IN_DELETED_TRANSITION to VAR_ADDED.
//
VariableSize = (UINTN) NextVariable - (UINTN) Variable;
CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
CurrPtr += VariableSize;
if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
HwErrVariableTotalSize += VariableSize;
} else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
CommonVariableTotalSize += VariableSize;
}
}
}
Variable = NextVariable;
}
}
if (IsVolatile) {
//
// If volatile variable store, just copy valid buffer.
//
SetMem ((UINT8 *) (UINTN) VariableBase, VariableStoreHeader->Size, 0xff);
CopyMem ((UINT8 *) (UINTN) VariableBase, ValidBuffer, (UINTN) (CurrPtr - (UINT8 *) ValidBuffer));
Status = EFI_SUCCESS;
} else {
//
// If non-volatile variable store, perform FTW here.
//
Status = FtwVariableSpace (
VariableBase,
ValidBuffer,
(UINTN) (CurrPtr - (UINT8 *) ValidBuffer)
);
CopyMem (mNvVariableCache, (CHAR8 *)(UINTN)VariableBase, VariableStoreHeader->Size);
}
if (!EFI_ERROR (Status)) {
*LastVariableOffset = (UINTN) (CurrPtr - (UINT8 *) ValidBuffer);
if (!IsVolatile) {
mVariableModuleGlobal->HwErrVariableTotalSize = HwErrVariableTotalSize;
mVariableModuleGlobal->CommonVariableTotalSize = CommonVariableTotalSize;
}
} else {
NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase);
while (IsValidVariableHeader (NextVariable)) {
VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER);
if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
} else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
}
NextVariable = GetNextVariablePtr (NextVariable);
}
*LastVariableOffset = (UINTN) NextVariable - (UINTN) VariableBase;
}
if (NewPubKeyStore != NULL) {
FreePool (NewPubKeyStore);
}
if (NewPubKeyIndex != NULL) {
FreePool (NewPubKeyIndex);
}
FreePool (ValidBuffer);
return Status;
}
/**
Find the variable in the specified variable store.
@param[in] VariableName Name of the variable to be found
@param[in] VendorGuid Vendor GUID to be found.
@param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
check at runtime when searching variable.
@param[in, out] PtrTrack Variable Track Pointer structure that contains Variable Information.
@retval EFI_SUCCESS Variable found successfully
@retval EFI_NOT_FOUND Variable not found
**/
EFI_STATUS
FindVariableEx (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
IN BOOLEAN IgnoreRtCheck,
IN OUT VARIABLE_POINTER_TRACK *PtrTrack
)
{
VARIABLE_HEADER *InDeletedVariable;
VOID *Point;
PtrTrack->InDeletedTransitionPtr = NULL;
//
// Find the variable by walk through HOB, volatile and non-volatile variable store.
//
InDeletedVariable = NULL;
for ( PtrTrack->CurrPtr = PtrTrack->StartPtr
; (PtrTrack->CurrPtr < PtrTrack->EndPtr) && IsValidVariableHeader (PtrTrack->CurrPtr)
; PtrTrack->CurrPtr = GetNextVariablePtr (PtrTrack->CurrPtr)
) {
if (PtrTrack->CurrPtr->State == VAR_ADDED ||
PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)
) {
if (IgnoreRtCheck || !AtRuntime () || ((PtrTrack->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
if (VariableName[0] == 0) {
if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
InDeletedVariable = PtrTrack->CurrPtr;
} else {
PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
return EFI_SUCCESS;
}
} else {
if (CompareGuid (VendorGuid, &PtrTrack->CurrPtr->VendorGuid)) {
Point = (VOID *) GetVariableNamePtr (PtrTrack->CurrPtr);
ASSERT (NameSizeOfVariable (PtrTrack->CurrPtr) != 0);
if (CompareMem (VariableName, Point, NameSizeOfVariable (PtrTrack->CurrPtr)) == 0) {
if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
InDeletedVariable = PtrTrack->CurrPtr;
} else {
PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
return EFI_SUCCESS;
}
}
}
}
}
}
}
PtrTrack->CurrPtr = InDeletedVariable;
return (PtrTrack->CurrPtr == NULL) ? EFI_NOT_FOUND : EFI_SUCCESS;
}
/**
Finds variable in storage blocks of volatile and non-volatile storage areas.
This code finds variable in storage blocks of volatile and non-volatile storage areas.
If VariableName is an empty string, then we just return the first
qualified variable without comparing VariableName and VendorGuid.
If IgnoreRtCheck is TRUE, then we ignore the EFI_VARIABLE_RUNTIME_ACCESS attribute check
at runtime when searching existing variable, only VariableName and VendorGuid are compared.
Otherwise, variables without EFI_VARIABLE_RUNTIME_ACCESS are not visible at runtime.
@param[in] VariableName Name of the variable to be found.
@param[in] VendorGuid Vendor GUID to be found.
@param[out] PtrTrack VARIABLE_POINTER_TRACK structure for output,
including the range searched and the target position.
@param[in] Global Pointer to VARIABLE_GLOBAL structure, including
base of volatile variable storage area, base of
NV variable storage area, and a lock.
@param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
check at runtime when searching variable.
@retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while
VendorGuid is NULL.
@retval EFI_SUCCESS Variable successfully found.
@retval EFI_NOT_FOUND Variable not found
**/
EFI_STATUS
FindVariable (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
OUT VARIABLE_POINTER_TRACK *PtrTrack,
IN VARIABLE_GLOBAL *Global,
IN BOOLEAN IgnoreRtCheck
)
{
EFI_STATUS Status;
VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
VARIABLE_STORE_TYPE Type;
if (VariableName[0] != 0 && VendorGuid == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// 0: Volatile, 1: HOB, 2: Non-Volatile.
// The index and attributes mapping must be kept in this order as RuntimeServiceGetNextVariableName
// make use of this mapping to implement search algorithm.
//
VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) Global->VolatileVariableBase;
VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) Global->HobVariableBase;
VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
//
// Find the variable by walk through HOB, volatile and non-volatile variable store.
//
for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
if (VariableStoreHeader[Type] == NULL) {
continue;
}
PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Type]);
PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Type]);
PtrTrack->Volatile = (BOOLEAN) (Type == VariableStoreTypeVolatile);
Status = FindVariableEx (VariableName, VendorGuid, IgnoreRtCheck, PtrTrack);
if (!EFI_ERROR (Status)) {
return Status;
}
}
return EFI_NOT_FOUND;
}
/**
Get index from supported language codes according to language string.
This code is used to get corresponding index in supported language codes. It can handle
RFC4646 and ISO639 language tags.
In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index.
In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index.
For example:
SupportedLang = "engfraengfra"
Lang = "eng"
Iso639Language = TRUE
The return value is "0".
Another example:
SupportedLang = "en;fr;en-US;fr-FR"
Lang = "fr-FR"
Iso639Language = FALSE
The return value is "3".
@param SupportedLang Platform supported language codes.
@param Lang Configured language.
@param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
@retval The index of language in the language codes.
**/
UINTN
GetIndexFromSupportedLangCodes(
IN CHAR8 *SupportedLang,
IN CHAR8 *Lang,
IN BOOLEAN Iso639Language
)
{
UINTN Index;
UINTN CompareLength;
UINTN LanguageLength;
if (Iso639Language) {
CompareLength = ISO_639_2_ENTRY_SIZE;
for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) {
if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) {
//
// Successfully find the index of Lang string in SupportedLang string.
//
Index = Index / CompareLength;
return Index;
}
}
ASSERT (FALSE);
return 0;
} else {
//
// Compare RFC4646 language code
//
Index = 0;
for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++);
for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) {
//
// Skip ';' characters in SupportedLang
//
for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++);
//
// Determine the length of the next language code in SupportedLang
//
for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++);
if ((CompareLength == LanguageLength) &&
(AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) {
//
// Successfully find the index of Lang string in SupportedLang string.
//
return Index;
}
}
ASSERT (FALSE);
return 0;
}
}
/**
Get language string from supported language codes according to index.
This code is used to get corresponding language strings in supported language codes. It can handle
RFC4646 and ISO639 language tags.
In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index.
In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index.
For example:
SupportedLang = "engfraengfra"
Index = "1"
Iso639Language = TRUE
The return value is "fra".
Another example:
SupportedLang = "en;fr;en-US;fr-FR"
Index = "1"
Iso639Language = FALSE
The return value is "fr".
@param SupportedLang Platform supported language codes.
@param Index The index in supported language codes.
@param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
@retval The language string in the language codes.
**/
CHAR8 *
GetLangFromSupportedLangCodes (
IN CHAR8 *SupportedLang,
IN UINTN Index,
IN BOOLEAN Iso639Language
)
{
UINTN SubIndex;
UINTN CompareLength;
CHAR8 *Supported;
SubIndex = 0;
Supported = SupportedLang;
if (Iso639Language) {
//
// According to the index of Lang string in SupportedLang string to get the language.
// This code will be invoked in RUNTIME, therefore there is not a memory allocate/free operation.
// In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
//
CompareLength = ISO_639_2_ENTRY_SIZE;
mVariableModuleGlobal->Lang[CompareLength] = '\0';
return CopyMem (mVariableModuleGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength);
} else {
while (TRUE) {
//
// Take semicolon as delimitation, sequentially traverse supported language codes.
//
for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) {
Supported++;
}
if ((*Supported == '\0') && (SubIndex != Index)) {
//
// Have completed the traverse, but not find corrsponding string.
// This case is not allowed to happen.
//
ASSERT(FALSE);
return NULL;
}
if (SubIndex == Index) {
//
// According to the index of Lang string in SupportedLang string to get the language.
// As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
// In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
//
mVariableModuleGlobal->PlatformLang[CompareLength] = '\0';
return CopyMem (mVariableModuleGlobal->PlatformLang, Supported - CompareLength, CompareLength);
}
SubIndex++;
//
// Skip ';' characters in Supported
//
for (; *Supported != '\0' && *Supported == ';'; Supported++);
}
}
}
/**
Returns a pointer to an allocated buffer that contains the best matching language
from a set of supported languages.
This function supports both ISO 639-2 and RFC 4646 language codes, but language
code types may not be mixed in a single call to this function. This function
supports a variable argument list that allows the caller to pass in a prioritized
list of language codes to test against all the language codes in SupportedLanguages.
If SupportedLanguages is NULL, then ASSERT().
@param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
contains a set of language codes in the format
specified by Iso639Language.
@param[in] Iso639Language If TRUE, then all language codes are assumed to be
in ISO 639-2 format. If FALSE, then all language
codes are assumed to be in RFC 4646 language format
@param[in] ... A variable argument list that contains pointers to
Null-terminated ASCII strings that contain one or more
language codes in the format specified by Iso639Language.
The first language code from each of these language
code lists is used to determine if it is an exact or
close match to any of the language codes in
SupportedLanguages. Close matches only apply to RFC 4646
language codes, and the matching algorithm from RFC 4647
is used to determine if a close match is present. If
an exact or close match is found, then the matching
language code from SupportedLanguages is returned. If
no matches are found, then the next variable argument
parameter is evaluated. The variable argument list
is terminated by a NULL.
@retval NULL The best matching language could not be found in SupportedLanguages.
@retval NULL There are not enough resources available to return the best matching
language.
@retval Other A pointer to a Null-terminated ASCII string that is the best matching
language in SupportedLanguages.
**/
CHAR8 *
EFIAPI
VariableGetBestLanguage (
IN CONST CHAR8 *SupportedLanguages,
IN BOOLEAN Iso639Language,
...
)
{
VA_LIST Args;
CHAR8 *Language;
UINTN CompareLength;
UINTN LanguageLength;
CONST CHAR8 *Supported;
CHAR8 *Buffer;
if (SupportedLanguages == NULL) {
return NULL;
}
VA_START (Args, Iso639Language);
while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
//
// Default to ISO 639-2 mode
//
CompareLength = 3;
LanguageLength = MIN (3, AsciiStrLen (Language));
//
// If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
//
if (!Iso639Language) {
for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
}
//
// Trim back the length of Language used until it is empty
//
while (LanguageLength > 0) {
//
// Loop through all language codes in SupportedLanguages
//
for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
//
// In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
//
if (!Iso639Language) {
//
// Skip ';' characters in Supported
//
for (; *Supported != '\0' && *Supported == ';'; Supported++);
//
// Determine the length of the next language code in Supported
//
for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
//
// If Language is longer than the Supported, then skip to the next language
//
if (LanguageLength > CompareLength) {
continue;
}
}
//
// See if the first LanguageLength characters in Supported match Language
//
if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
VA_END (Args);
Buffer = Iso639Language ? mVariableModuleGlobal->Lang : mVariableModuleGlobal->PlatformLang;
Buffer[CompareLength] = '\0';
return CopyMem (Buffer, Supported, CompareLength);
}
}
if (Iso639Language) {
//
// If ISO 639 mode, then each language can only be tested once
//
LanguageLength = 0;
} else {
//
// If RFC 4646 mode, then trim Language from the right to the next '-' character
//
for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
}
}
}
VA_END (Args);
//
// No matches were found
//
return NULL;
}
/**
Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang.
When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes.
According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization,
and are read-only. Therefore, in variable driver, only store the original value for other use.
@param[in] VariableName Name of variable.
@param[in] Data Variable data.
@param[in] DataSize Size of data. 0 means delete.
**/
VOID
AutoUpdateLangVariable (
IN CHAR16 *VariableName,
IN VOID *Data,
IN UINTN DataSize
)
{
EFI_STATUS Status;
CHAR8 *BestPlatformLang;
CHAR8 *BestLang;
UINTN Index;
UINT32 Attributes;
VARIABLE_POINTER_TRACK Variable;
BOOLEAN SetLanguageCodes;
//
// Don't do updates for delete operation
//
if (DataSize == 0) {
return;
}
SetLanguageCodes = FALSE;
if (StrCmp (VariableName, L"PlatformLangCodes") == 0) {
//
// PlatformLangCodes is a volatile variable, so it can not be updated at runtime.
//
if (AtRuntime ()) {
return;
}
SetLanguageCodes = TRUE;
//
// According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only
// Therefore, in variable driver, only store the original value for other use.
//
if (mVariableModuleGlobal->PlatformLangCodes != NULL) {
FreePool (mVariableModuleGlobal->PlatformLangCodes);
}
mVariableModuleGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data);
ASSERT (mVariableModuleGlobal->PlatformLangCodes != NULL);
//
// PlatformLang holds a single language from PlatformLangCodes,
// so the size of PlatformLangCodes is enough for the PlatformLang.
//
if (mVariableModuleGlobal->PlatformLang != NULL) {
FreePool (mVariableModuleGlobal->PlatformLang);
}
mVariableModuleGlobal->PlatformLang = AllocateRuntimePool (DataSize);
ASSERT (mVariableModuleGlobal->PlatformLang != NULL);
} else if (StrCmp (VariableName, L"LangCodes") == 0) {
//
// LangCodes is a volatile variable, so it can not be updated at runtime.
//
if (AtRuntime ()) {
return;
}
SetLanguageCodes = TRUE;
//
// According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only
// Therefore, in variable driver, only store the original value for other use.
//
if (mVariableModuleGlobal->LangCodes != NULL) {
FreePool (mVariableModuleGlobal->LangCodes);
}
mVariableModuleGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data);
ASSERT (mVariableModuleGlobal->LangCodes != NULL);
}
if (SetLanguageCodes
&& (mVariableModuleGlobal->PlatformLangCodes != NULL)
&& (mVariableModuleGlobal->LangCodes != NULL)) {
//
// Update Lang if PlatformLang is already set
// Update PlatformLang if Lang is already set
//
Status = FindVariable (L"PlatformLang", &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
if (!EFI_ERROR (Status)) {
//
// Update Lang
//
VariableName = L"PlatformLang";
Data = GetVariableDataPtr (Variable.CurrPtr);
DataSize = Variable.CurrPtr->DataSize;
} else {
Status = FindVariable (L"Lang", &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
if (!EFI_ERROR (Status)) {
//
// Update PlatformLang
//
VariableName = L"Lang";
Data = GetVariableDataPtr (Variable.CurrPtr);
DataSize = Variable.CurrPtr->DataSize;
} else {
//
// Neither PlatformLang nor Lang is set, directly return
//
return;
}
}
}
//
// According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions.
//
Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
if (StrCmp (VariableName, L"PlatformLang") == 0) {
//
// Update Lang when PlatformLangCodes/LangCodes were set.
//
if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
//
// When setting PlatformLang, firstly get most matched language string from supported language codes.
//
BestPlatformLang = VariableGetBestLanguage (mVariableModuleGlobal->PlatformLangCodes, FALSE, Data, NULL);
if (BestPlatformLang != NULL) {
//
// Get the corresponding index in language codes.
//
Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, BestPlatformLang, FALSE);
//
// Get the corresponding ISO639 language tag according to RFC4646 language tag.
//
BestLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, Index, TRUE);
//
// Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously.
//
FindVariable (L"Lang", &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
Status = UpdateVariable (L"Lang", &gEfiGlobalVariableGuid, BestLang,
ISO_639_2_ENTRY_SIZE + 1, Attributes, 0, 0, &Variable, NULL);
DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a\n", BestPlatformLang, BestLang));
ASSERT_EFI_ERROR(Status);
}
}
} else if (StrCmp (VariableName, L"Lang") == 0) {
//
// Update PlatformLang when PlatformLangCodes/LangCodes were set.
//
if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
//
// When setting Lang, firstly get most matched language string from supported language codes.
//
BestLang = VariableGetBestLanguage (mVariableModuleGlobal->LangCodes, TRUE, Data, NULL);
if (BestLang != NULL) {
//
// Get the corresponding index in language codes.
//
Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, BestLang, TRUE);
//
// Get the corresponding RFC4646 language tag according to ISO639 language tag.
//
BestPlatformLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, Index, FALSE);
//
// Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously.
//
FindVariable (L"PlatformLang", &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
Status = UpdateVariable (L"PlatformLang", &gEfiGlobalVariableGuid, BestPlatformLang,
AsciiStrSize (BestPlatformLang), Attributes, 0, 0, &Variable, NULL);
DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a\n", BestLang, BestPlatformLang));
ASSERT_EFI_ERROR (Status);
}
}
}
}
/**
Update the variable region with Variable information. If EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is set,
index of associated public key is needed.
@param[in] VariableName Name of variable.
@param[in] VendorGuid Guid of variable.
@param[in] Data Variable data.
@param[in] DataSize Size of data. 0 means delete.
@param[in] Attributes Attributes of the variable.
@param[in] KeyIndex Index of associated public key.
@param[in] MonotonicCount Value of associated monotonic count.
@param[in, out] CacheVariable The variable information which is used to keep track of variable usage.
@param[in] TimeStamp Value of associated TimeStamp.
@retval EFI_SUCCESS The update operation is success.
@retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
**/
EFI_STATUS
UpdateVariable (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
IN VOID *Data,
IN UINTN DataSize,
IN UINT32 Attributes OPTIONAL,
IN UINT32 KeyIndex OPTIONAL,
IN UINT64 MonotonicCount OPTIONAL,
IN OUT VARIABLE_POINTER_TRACK *CacheVariable,
IN EFI_TIME *TimeStamp OPTIONAL
)
{
EFI_STATUS Status;
VARIABLE_HEADER *NextVariable;
UINTN ScratchSize;
UINTN ScratchDataSize;
UINTN NonVolatileVarableStoreSize;
UINTN VarNameOffset;
UINTN VarDataOffset;
UINTN VarNameSize;
UINTN VarSize;
BOOLEAN Volatile;
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
UINT8 State;
VARIABLE_POINTER_TRACK *Variable;
VARIABLE_POINTER_TRACK NvVariable;
VARIABLE_STORE_HEADER *VariableStoreHeader;
UINTN CacheOffset;
UINTN BufSize;
UINTN DataOffset;
UINTN RevBufSize;
if (mVariableModuleGlobal->FvbInstance == NULL) {
//
// The FVB protocol is not installed, so the EFI_VARIABLE_WRITE_ARCH_PROTOCOL is not installed.
//
if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
//
// Trying to update NV variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
//
return EFI_NOT_AVAILABLE_YET;
} else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) {
//
// Trying to update volatile authenticated variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
// The authenticated variable perhaps is not initialized, just return here.
//
return EFI_NOT_AVAILABLE_YET;
}
}
if ((CacheVariable->CurrPtr == NULL) || CacheVariable->Volatile) {
Variable = CacheVariable;
} else {
//
// Update/Delete existing NV variable.
// CacheVariable points to the variable in the memory copy of Flash area
// Now let Variable points to the same variable in Flash area.
//
VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase);
Variable = &NvVariable;
Variable->StartPtr = GetStartPointer (VariableStoreHeader);
Variable->EndPtr = GetEndPointer (VariableStoreHeader);
Variable->CurrPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->CurrPtr - (UINTN)CacheVariable->StartPtr));
if (CacheVariable->InDeletedTransitionPtr != NULL) {
Variable->InDeletedTransitionPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->InDeletedTransitionPtr - (UINTN)CacheVariable->StartPtr));
} else {
Variable->InDeletedTransitionPtr = NULL;
}
Variable->Volatile = FALSE;
}
Fvb = mVariableModuleGlobal->FvbInstance;
//
// Tricky part: Use scratch data area at the end of volatile variable store
// as a temporary storage.
//
NextVariable = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase));
ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize));
ScratchDataSize = ScratchSize - sizeof (VARIABLE_HEADER) - StrSize (VariableName) - GET_PAD_SIZE (StrSize (VariableName));
if (Variable->CurrPtr != NULL) {
//
// Update/Delete existing variable.
//
if (AtRuntime ()) {
//
// If AtRuntime and the variable is Volatile and Runtime Access,
// the volatile is ReadOnly, and SetVariable should be aborted and
// return EFI_WRITE_PROTECTED.
//
if (Variable->Volatile) {
Status = EFI_WRITE_PROTECTED;
goto Done;
}
//
// Only variable that have NV attributes can be updated/deleted in Runtime.
//
if ((Variable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
Status = EFI_INVALID_PARAMETER;
goto Done;
}
//
// Only variable that have RT attributes can be updated/deleted in Runtime.
//
if ((Variable->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) {
Status = EFI_INVALID_PARAMETER;
goto Done;
}
}
//
// Setting a data variable with no access, or zero DataSize attributes
// causes it to be deleted.
// When the EFI_VARIABLE_APPEND_WRITE attribute is set, DataSize of zero will
// not delete the variable.
//
if ((((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) && (DataSize == 0))|| ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0)) {
if (Variable->InDeletedTransitionPtr != NULL) {
//
// Both ADDED and IN_DELETED_TRANSITION variable are present,
// set IN_DELETED_TRANSITION one to DELETED state first.
//
State = Variable->InDeletedTransitionPtr->State;
State &= VAR_DELETED;
Status = UpdateVariableStore (
&mVariableModuleGlobal->VariableGlobal,
Variable->Volatile,
FALSE,
Fvb,
(UINTN) &Variable->InDeletedTransitionPtr->State,
sizeof (UINT8),
&State
);
if (!EFI_ERROR (Status)) {
if (!Variable->Volatile) {
ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
CacheVariable->InDeletedTransitionPtr->State = State;
}
} else {
goto Done;
}
}
State = Variable->CurrPtr->State;
State &= VAR_DELETED;
Status = UpdateVariableStore (
&mVariableModuleGlobal->VariableGlobal,
Variable->Volatile,
FALSE,
Fvb,
(UINTN) &Variable->CurrPtr->State,
sizeof (UINT8),
&State
);
if (!EFI_ERROR (Status)) {
UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, FALSE, TRUE, FALSE);
if (!Variable->Volatile) {
CacheVariable->CurrPtr->State = State;
FlushHobVariableToFlash (VariableName, VendorGuid);
}
}
goto Done;
}
//
// If the variable is marked valid, and the same data has been passed in,
// then return to the caller immediately.
//
if (DataSizeOfVariable (Variable->CurrPtr) == DataSize &&
(CompareMem (Data, GetVariableDataPtr (Variable->CurrPtr), DataSize) == 0) &&
((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) &&
(TimeStamp == NULL)) {
//
// Variable content unchanged and no need to update timestamp, just return.
//
UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
Status = EFI_SUCCESS;
goto Done;
} else if ((Variable->CurrPtr->State == VAR_ADDED) ||
(Variable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
//
// EFI_VARIABLE_APPEND_WRITE attribute only effects for existing variable
//
if ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0) {
//
// Cache the previous variable data into StorageArea.
//
DataOffset = sizeof (VARIABLE_HEADER) + Variable->CurrPtr->NameSize + GET_PAD_SIZE (Variable->CurrPtr->NameSize);
CopyMem (mStorageArea, (UINT8*)((UINTN) Variable->CurrPtr + DataOffset), Variable->CurrPtr->DataSize);
if (CompareGuid (VendorGuid, &gEfiImageSecurityDatabaseGuid) ||
(CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_KEY_EXCHANGE_KEY_NAME) == 0))) {
//
// For variables with the GUID EFI_IMAGE_SECURITY_DATABASE_GUID (i.e. where the data
// buffer is formatted as EFI_SIGNATURE_LIST), the driver shall not perform an append of
// EFI_SIGNATURE_DATA values that are already part of the existing variable value.
//
BufSize = AppendSignatureList (mStorageArea, Variable->CurrPtr->DataSize, Data, DataSize);
if (BufSize == Variable->CurrPtr->DataSize) {
if ((TimeStamp == NULL) || CompareTimeStamp (TimeStamp, &Variable->CurrPtr->TimeStamp)) {
//
// New EFI_SIGNATURE_DATA is not found and timestamp is not later
// than current timestamp, return EFI_SUCCESS directly.
//
UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
Status = EFI_SUCCESS;
goto Done;
}
}
} else {
//
// For other Variables, append the new data to the end of previous data.
//
CopyMem ((UINT8*)((UINTN) mStorageArea + Variable->CurrPtr->DataSize), Data, DataSize);
BufSize = Variable->CurrPtr->DataSize + DataSize;
}
RevBufSize = MIN (PcdGet32 (PcdMaxVariableSize), ScratchDataSize);
if (BufSize > RevBufSize) {
//
// If variable size (previous + current) is bigger than reserved buffer in runtime,
// return EFI_OUT_OF_RESOURCES.
//
return EFI_OUT_OF_RESOURCES;
}
//
// Override Data and DataSize which are used for combined data area including previous and new data.
//
Data = mStorageArea;
DataSize = BufSize;
}
//
// Mark the old variable as in delete transition.
//
State = Variable->CurrPtr->State;
State &= VAR_IN_DELETED_TRANSITION;
Status = UpdateVariableStore (
&mVariableModuleGlobal->VariableGlobal,
Variable->Volatile,
FALSE,
Fvb,
(UINTN) &Variable->CurrPtr->State,
sizeof (UINT8),
&State
);
if (EFI_ERROR (Status)) {
goto Done;
}
if (!Variable->Volatile) {
CacheVariable->CurrPtr->State = State;
}
}
} else {
//
// Not found existing variable. Create a new variable.
//
if ((DataSize == 0) && ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0)) {
Status = EFI_SUCCESS;
goto Done;
}
//
// Make sure we are trying to create a new variable.
// Setting a data variable with zero DataSize or no access attributes means to delete it.
//
if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
Status = EFI_NOT_FOUND;
goto Done;
}
//
// Only variable have NV|RT attribute can be created in Runtime.
//
if (AtRuntime () &&
(((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0))) {
Status = EFI_INVALID_PARAMETER;
goto Done;
}
}
//
// Function part - create a new variable and copy the data.
// Both update a variable and create a variable will come here.
SetMem (NextVariable, ScratchSize, 0xff);
NextVariable->StartId = VARIABLE_DATA;
//
// NextVariable->State = VAR_ADDED;
//
NextVariable->Reserved = 0;
NextVariable->PubKeyIndex = KeyIndex;
NextVariable->MonotonicCount = MonotonicCount;
ZeroMem (&NextVariable->TimeStamp, sizeof (EFI_TIME));
if (((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) != 0) &&
(TimeStamp != NULL)) {
if ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) {
CopyMem (&NextVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
} else {
//
// In the case when the EFI_VARIABLE_APPEND_WRITE attribute is set, only
// when the new TimeStamp value is later than the current timestamp associated
// with the variable, we need associate the new timestamp with the updated value.
//
if (Variable->CurrPtr != NULL) {
if (CompareTimeStamp (&Variable->CurrPtr->TimeStamp, TimeStamp)) {
CopyMem (&NextVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
}
}
}
}
//
// The EFI_VARIABLE_APPEND_WRITE attribute will never be set in the returned
// Attributes bitmask parameter of a GetVariable() call.
//
NextVariable->Attributes = Attributes & (~EFI_VARIABLE_APPEND_WRITE);
VarNameOffset = sizeof (VARIABLE_HEADER);
VarNameSize = StrSize (VariableName);
CopyMem (
(UINT8 *) ((UINTN) NextVariable + VarNameOffset),
VariableName,
VarNameSize
);
VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize);
CopyMem (
(UINT8 *) ((UINTN) NextVariable + VarDataOffset),
Data,
DataSize
);
CopyMem (&NextVariable->VendorGuid, VendorGuid, sizeof (EFI_GUID));
//
// There will be pad bytes after Data, the NextVariable->NameSize and
// NextVariable->DataSize should not include pad size so that variable
// service can get actual size in GetVariable.
//
NextVariable->NameSize = (UINT32)VarNameSize;
NextVariable->DataSize = (UINT32)DataSize;
//
// The actual size of the variable that stores in storage should
// include pad size.
//
VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize);
if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
//
// Create a nonvolatile variable.
//
Volatile = FALSE;
NonVolatileVarableStoreSize = ((VARIABLE_STORE_HEADER *)(UINTN)(mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase))->Size;
if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0)
&& ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize)))
|| (((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0)
&& ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > NonVolatileVarableStoreSize - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize)))) {
if (AtRuntime ()) {
Status = EFI_OUT_OF_RESOURCES;
goto Done;
}
//
// Perform garbage collection & reclaim operation.
//
Status = Reclaim (
mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
&mVariableModuleGlobal->NonVolatileLastVariableOffset,
FALSE,
Variable,
FALSE,
FALSE
);
if (EFI_ERROR (Status)) {
goto Done;
}
//
// If still no enough space, return out of resources.
//
if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0)
&& ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize)))
|| (((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0)
&& ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > NonVolatileVarableStoreSize - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize)))) {
Status = EFI_OUT_OF_RESOURCES;
goto Done;
}
if (Variable->CurrPtr != NULL) {
CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
CacheVariable->InDeletedTransitionPtr = NULL;
}
}
//
// Four steps
// 1. Write variable header
// 2. Set variable state to header valid
// 3. Write variable data
// 4. Set variable state to valid
//
//
// Step 1:
//
CacheOffset = mVariableModuleGlobal->NonVolatileLastVariableOffset;
Status = UpdateVariableStore (
&mVariableModuleGlobal->VariableGlobal,
FALSE,
TRUE,
Fvb,
mVariableModuleGlobal->NonVolatileLastVariableOffset,
sizeof (VARIABLE_HEADER),
(UINT8 *) NextVariable
);
if (EFI_ERROR (Status)) {
goto Done;
}
//
// Step 2:
//
NextVariable->State = VAR_HEADER_VALID_ONLY;
Status = UpdateVariableStore (
&mVariableModuleGlobal->VariableGlobal,
FALSE,
TRUE,
Fvb,
mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
sizeof (UINT8),
&NextVariable->State
);
if (EFI_ERROR (Status)) {
goto Done;
}
//
// Step 3:
//
Status = UpdateVariableStore (
&mVariableModuleGlobal->VariableGlobal,
FALSE,
TRUE,
Fvb,
mVariableModuleGlobal->NonVolatileLastVariableOffset + sizeof (VARIABLE_HEADER),
(UINT32) VarSize - sizeof (VARIABLE_HEADER),
(UINT8 *) NextVariable + sizeof (VARIABLE_HEADER)
);
if (EFI_ERROR (Status)) {
goto Done;
}
//
// Step 4:
//
NextVariable->State = VAR_ADDED;
Status = UpdateVariableStore (
&mVariableModuleGlobal->VariableGlobal,
FALSE,
TRUE,
Fvb,
mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
sizeof (UINT8),
&NextVariable->State
);
if (EFI_ERROR (Status)) {
goto Done;
}
mVariableModuleGlobal->NonVolatileLastVariableOffset += HEADER_ALIGN (VarSize);
if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VarSize);
} else {
mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VarSize);
}
//
// update the memory copy of Flash region.
//
CopyMem ((UINT8 *)mNvVariableCache + CacheOffset, (UINT8 *)NextVariable, VarSize);
} else {
//
// Create a volatile variable.
//
Volatile = TRUE;
if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) >
((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size) {
//
// Perform garbage collection & reclaim operation.
//
Status = Reclaim (
mVariableModuleGlobal->VariableGlobal.VolatileVariableBase,
&mVariableModuleGlobal->VolatileLastVariableOffset,
TRUE,
Variable,
FALSE,
FALSE
);
if (EFI_ERROR (Status)) {
goto Done;
}
//
// If still no enough space, return out of resources.
//
if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) >
((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size
) {
Status = EFI_OUT_OF_RESOURCES;
goto Done;
}
if (Variable->CurrPtr != NULL) {
CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
CacheVariable->InDeletedTransitionPtr = NULL;
}
}
NextVariable->State = VAR_ADDED;
Status = UpdateVariableStore (
&mVariableModuleGlobal->VariableGlobal,
TRUE,
TRUE,
Fvb,
mVariableModuleGlobal->VolatileLastVariableOffset,
(UINT32) VarSize,
(UINT8 *) NextVariable
);
if (EFI_ERROR (Status)) {
goto Done;
}
mVariableModuleGlobal->VolatileLastVariableOffset += HEADER_ALIGN (VarSize);
}
//
// Mark the old variable as deleted.
//
if (!EFI_ERROR (Status) && Variable->CurrPtr != NULL) {
if (Variable->InDeletedTransitionPtr != NULL) {
//
// Both ADDED and IN_DELETED_TRANSITION old variable are present,
// set IN_DELETED_TRANSITION one to DELETED state first.
//
State = Variable->InDeletedTransitionPtr->State;
State &= VAR_DELETED;
Status = UpdateVariableStore (
&mVariableModuleGlobal->VariableGlobal,
Variable->Volatile,
FALSE,
Fvb,
(UINTN) &Variable->InDeletedTransitionPtr->State,
sizeof (UINT8),
&State
);
if (!EFI_ERROR (Status)) {
if (!Variable->Volatile) {
ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
CacheVariable->InDeletedTransitionPtr->State = State;
}
} else {
goto Done;
}
}
State = Variable->CurrPtr->State;
State &= VAR_DELETED;
Status = UpdateVariableStore (
&mVariableModuleGlobal->VariableGlobal,
Variable->Volatile,
FALSE,
Fvb,
(UINTN) &Variable->CurrPtr->State,
sizeof (UINT8),
&State
);
if (!EFI_ERROR (Status) && !Variable->Volatile) {
CacheVariable->CurrPtr->State = State;
}
}
if (!EFI_ERROR (Status)) {
UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE);
if (!Volatile) {
FlushHobVariableToFlash (VariableName, VendorGuid);
}
}
Done:
return Status;
}
/**
Check if a Unicode character is a hexadecimal character.
This function checks if a Unicode character is a
hexadecimal character. The valid hexadecimal character is
L'0' to L'9', L'a' to L'f', or L'A' to L'F'.
@param Char The character to check against.
@retval TRUE If the Char is a hexadecmial character.
@retval FALSE If the Char is not a hexadecmial character.
**/
BOOLEAN
EFIAPI
IsHexaDecimalDigitCharacter (
IN CHAR16 Char
)
{
return (BOOLEAN) ((Char >= L'0' && Char <= L'9') || (Char >= L'A' && Char <= L'F') || (Char >= L'a' && Char <= L'f'));
}
/**
This code checks if variable is hardware error record variable or not.
According to UEFI spec, hardware error record variable should use the EFI_HARDWARE_ERROR_VARIABLE VendorGuid
and have the L"HwErrRec####" name convention, #### is a printed hex value and no 0x or h is included in the hex value.
@param VariableName Pointer to variable name.
@param VendorGuid Variable Vendor Guid.
@retval TRUE Variable is hardware error record variable.
@retval FALSE Variable is not hardware error record variable.
**/
BOOLEAN
EFIAPI
IsHwErrRecVariable (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid
)
{
if (!CompareGuid (VendorGuid, &gEfiHardwareErrorVariableGuid) ||
(StrLen (VariableName) != StrLen (L"HwErrRec####")) ||
(StrnCmp(VariableName, L"HwErrRec", StrLen (L"HwErrRec")) != 0) ||
!IsHexaDecimalDigitCharacter (VariableName[0x8]) ||
!IsHexaDecimalDigitCharacter (VariableName[0x9]) ||
!IsHexaDecimalDigitCharacter (VariableName[0xA]) ||
!IsHexaDecimalDigitCharacter (VariableName[0xB])) {
return FALSE;
}
return TRUE;
}
/**
This code checks if variable should be treated as read-only variable.
@param[in] VariableName Name of the Variable.
@param[in] VendorGuid GUID of the Variable.
@retval TRUE This variable is read-only variable.
@retval FALSE This variable is NOT read-only variable.
**/
BOOLEAN
IsReadOnlyVariable (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid
)
{
if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid)) {
if ((StrCmp (VariableName, EFI_SETUP_MODE_NAME) == 0) ||
(StrCmp (VariableName, EFI_SIGNATURE_SUPPORT_NAME) == 0) ||
(StrCmp (VariableName, EFI_SECURE_BOOT_MODE_NAME) == 0)) {
return TRUE;
}
}
return FALSE;
}
/**
This code finds variable in storage blocks (Volatile or Non-Volatile).
Caution: This function may receive untrusted input.
This function may be invoked in SMM mode, and datasize is external input.
This function will do basic validation, before parse the data.
@param VariableName Name of Variable to be found.
@param VendorGuid Variable vendor GUID.
@param Attributes Attribute value of the variable found.
@param DataSize Size of Data found. If size is less than the
data, this value contains the required size.
@param Data Data pointer.
@return EFI_INVALID_PARAMETER Invalid parameter.
@return EFI_SUCCESS Find the specified variable.
@return EFI_NOT_FOUND Not found.
@return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
**/
EFI_STATUS
EFIAPI
VariableServiceGetVariable (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
OUT UINT32 *Attributes OPTIONAL,
IN OUT UINTN *DataSize,
OUT VOID *Data
)
{
EFI_STATUS Status;
VARIABLE_POINTER_TRACK Variable;
UINTN VarDataSize;
if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) {
return EFI_INVALID_PARAMETER;
}
AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
goto Done;
}
//
// Get data size
//
VarDataSize = DataSizeOfVariable (Variable.CurrPtr);
ASSERT (VarDataSize != 0);
if (*DataSize >= VarDataSize) {
if (Data == NULL) {
Status = EFI_INVALID_PARAMETER;
goto Done;
}
CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);
if (Attributes != NULL) {
*Attributes = Variable.CurrPtr->Attributes;
}
*DataSize = VarDataSize;
UpdateVariableInfo (VariableName, VendorGuid, Variable.Volatile, TRUE, FALSE, FALSE, FALSE);
Status = EFI_SUCCESS;
goto Done;
} else {
*DataSize = VarDataSize;
Status = EFI_BUFFER_TOO_SMALL;
goto Done;
}
Done:
ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
return Status;
}
/**
This code Finds the Next available variable.
Caution: This function may receive untrusted input.
This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
@param VariableNameSize Size of the variable name.
@param VariableName Pointer to variable name.
@param VendorGuid Variable Vendor Guid.
@return EFI_INVALID_PARAMETER Invalid parameter.
@return EFI_SUCCESS Find the specified variable.
@return EFI_NOT_FOUND Not found.
@return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
**/
EFI_STATUS
EFIAPI
VariableServiceGetNextVariableName (
IN OUT UINTN *VariableNameSize,
IN OUT CHAR16 *VariableName,
IN OUT EFI_GUID *VendorGuid
)
{
VARIABLE_STORE_TYPE Type;
VARIABLE_POINTER_TRACK Variable;
VARIABLE_POINTER_TRACK VariableInHob;
VARIABLE_POINTER_TRACK VariablePtrTrack;
UINTN VarNameSize;
EFI_STATUS Status;
VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) {
return EFI_INVALID_PARAMETER;
}
AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
goto Done;
}
if (VariableName[0] != 0) {
//
// If variable name is not NULL, get next variable.
//
Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
}
//
// 0: Volatile, 1: HOB, 2: Non-Volatile.
// The index and attributes mapping must be kept in this order as FindVariable
// makes use of this mapping to implement search algorithm.
//
VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
while (TRUE) {
//
// Switch from Volatile to HOB, to Non-Volatile.
//
while ((Variable.CurrPtr >= Variable.EndPtr) ||
(Variable.CurrPtr == NULL) ||
!IsValidVariableHeader (Variable.CurrPtr)
) {
//
// Find current storage index
//
for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
if ((VariableStoreHeader[Type] != NULL) && (Variable.StartPtr == GetStartPointer (VariableStoreHeader[Type]))) {
break;
}
}
ASSERT (Type < VariableStoreTypeMax);
//
// Switch to next storage
//
for (Type++; Type < VariableStoreTypeMax; Type++) {
if (VariableStoreHeader[Type] != NULL) {
break;
}
}
//
// Capture the case that
// 1. current storage is the last one, or
// 2. no further storage
//
if (Type == VariableStoreTypeMax) {
Status = EFI_NOT_FOUND;
goto Done;
}
Variable.StartPtr = GetStartPointer (VariableStoreHeader[Type]);
Variable.EndPtr = GetEndPointer (VariableStoreHeader[Type]);
Variable.CurrPtr = Variable.StartPtr;
}
//
// Variable is found
//
if (Variable.CurrPtr->State == VAR_ADDED || Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
if (!AtRuntime () || ((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
if (Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
//
// If it is a IN_DELETED_TRANSITION variable,
// and there is also a same ADDED one at the same time,
// don't return it.
//
VariablePtrTrack.StartPtr = Variable.StartPtr;
VariablePtrTrack.EndPtr = Variable.EndPtr;
Status = FindVariableEx (
GetVariableNamePtr (Variable.CurrPtr),
&Variable.CurrPtr->VendorGuid,
FALSE,
&VariablePtrTrack
);
if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State == VAR_ADDED) {
Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
continue;
}
}
//
// Don't return NV variable when HOB overrides it
//
if ((VariableStoreHeader[VariableStoreTypeHob] != NULL) && (VariableStoreHeader[VariableStoreTypeNv] != NULL) &&
(Variable.StartPtr == GetStartPointer (VariableStoreHeader[VariableStoreTypeNv]))
) {
VariableInHob.StartPtr = GetStartPointer (VariableStoreHeader[VariableStoreTypeHob]);
VariableInHob.EndPtr = GetEndPointer (VariableStoreHeader[VariableStoreTypeHob]);
Status = FindVariableEx (
GetVariableNamePtr (Variable.CurrPtr),
&Variable.CurrPtr->VendorGuid,
FALSE,
&VariableInHob
);
if (!EFI_ERROR (Status)) {
Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
continue;
}
}
VarNameSize = NameSizeOfVariable (Variable.CurrPtr);
ASSERT (VarNameSize != 0);
if (VarNameSize <= *VariableNameSize) {
CopyMem (VariableName, GetVariableNamePtr (Variable.CurrPtr), VarNameSize);
CopyMem (VendorGuid, &Variable.CurrPtr->VendorGuid, sizeof (EFI_GUID));
Status = EFI_SUCCESS;
} else {
Status = EFI_BUFFER_TOO_SMALL;
}
*VariableNameSize = VarNameSize;
goto Done;
}
}
Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
}
Done:
ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
return Status;
}
/**
This code sets variable in storage blocks (Volatile or Non-Volatile).
Caution: This function may receive untrusted input.
This function may be invoked in SMM mode, and datasize and data are external input.
This function will do basic validation, before parse the data.
This function will parse the authentication carefully to avoid security issues, like
buffer overflow, integer overflow.
This function will check attribute carefully to avoid authentication bypass.
@param VariableName Name of Variable to be found.
@param VendorGuid Variable vendor GUID.
@param Attributes Attribute value of the variable found
@param DataSize Size of Data found. If size is less than the
data, this value contains the required size.
@param Data Data pointer.
@return EFI_INVALID_PARAMETER Invalid parameter.
@return EFI_SUCCESS Set successfully.
@return EFI_OUT_OF_RESOURCES Resource not enough to set variable.
@return EFI_NOT_FOUND Not found.
@return EFI_WRITE_PROTECTED Variable is read-only.
**/
EFI_STATUS
EFIAPI
VariableServiceSetVariable (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
IN UINT32 Attributes,
IN UINTN DataSize,
IN VOID *Data
)
{
VARIABLE_POINTER_TRACK Variable;
EFI_STATUS Status;
VARIABLE_HEADER *NextVariable;
EFI_PHYSICAL_ADDRESS Point;
UINTN PayloadSize;
//
// Check input parameters.
//
if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
return EFI_INVALID_PARAMETER;
}
if (IsReadOnlyVariable (VariableName, VendorGuid)) {
return EFI_WRITE_PROTECTED;
}
if (DataSize != 0 && Data == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Check for reserverd bit in variable attribute.
//
if ((Attributes & (~EFI_VARIABLE_ATTRIBUTES_MASK)) != 0) {
return EFI_INVALID_PARAMETER;
}
//
// Make sure if runtime bit is set, boot service bit is set also.
//
if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
return EFI_INVALID_PARAMETER;
}
//
// EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS and EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute
// cannot be set both.
//
if (((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS)
&& ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS)) {
return EFI_INVALID_PARAMETER;
}
if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) {
if (DataSize < AUTHINFO_SIZE) {
//
// Try to write Authenticated Variable without AuthInfo.
//
return EFI_SECURITY_VIOLATION;
}
PayloadSize = DataSize - AUTHINFO_SIZE;
} else if ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) {
//
// Sanity check for EFI_VARIABLE_AUTHENTICATION_2 descriptor.
//
if (DataSize < OFFSET_OF_AUTHINFO2_CERT_DATA ||
((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->AuthInfo.Hdr.dwLength > DataSize - (OFFSET_OF (EFI_VARIABLE_AUTHENTICATION_2, AuthInfo)) ||
((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->AuthInfo.Hdr.dwLength < OFFSET_OF (WIN_CERTIFICATE_UEFI_GUID, CertData)) {
return EFI_SECURITY_VIOLATION;
}
PayloadSize = DataSize - AUTHINFO2_SIZE (Data);
} else {
PayloadSize = DataSize;
}
//
// The size of the VariableName, including the Unicode Null in bytes plus
// the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize)
// bytes for HwErrRec, and PcdGet32 (PcdMaxVariableSize) bytes for the others.
//
if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
if ((PayloadSize > PcdGet32 (PcdMaxHardwareErrorVariableSize)) ||
(sizeof (VARIABLE_HEADER) + StrSize (VariableName) + PayloadSize > PcdGet32 (PcdMaxHardwareErrorVariableSize))) {
return EFI_INVALID_PARAMETER;
}
if (!IsHwErrRecVariable(VariableName, VendorGuid)) {
return EFI_INVALID_PARAMETER;
}
} else {
//
// The size of the VariableName, including the Unicode Null in bytes plus
// the DataSize is limited to maximum size of PcdGet32 (PcdMaxVariableSize) bytes.
//
if ((PayloadSize > PcdGet32 (PcdMaxVariableSize)) ||
(sizeof (VARIABLE_HEADER) + StrSize (VariableName) + PayloadSize > PcdGet32 (PcdMaxVariableSize))) {
return EFI_INVALID_PARAMETER;
}
}
if (AtRuntime ()) {
//
// HwErrRecSupport Global Variable identifies the level of hardware error record persistence
// support implemented by the platform. This variable is only modified by firmware and is read-only to the OS.
//
if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, L"HwErrRecSupport") == 0)) {
return EFI_WRITE_PROTECTED;
}
}
AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
//
// Consider reentrant in MCA/INIT/NMI. It needs be reupdated.
//
if (1 < InterlockedIncrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState)) {
Point = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
//
// Parse non-volatile variable data and get last variable offset.
//
NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point);
while ((NextVariable < GetEndPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point))
&& IsValidVariableHeader (NextVariable)) {
NextVariable = GetNextVariablePtr (NextVariable);
}
mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) Point;
}
//
// Check whether the input variable is already existed.
//
Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, TRUE);
if (!EFI_ERROR (Status)) {
if (((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) && AtRuntime ()) {
return EFI_WRITE_PROTECTED;
}
}
//
// Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang.
//
AutoUpdateLangVariable (VariableName, Data, DataSize);
//
// Process PK, KEK, Sigdb seperately.
//
if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_PLATFORM_KEY_NAME) == 0)){
Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, TRUE);
} else if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_KEY_EXCHANGE_KEY_NAME) == 0)) {
Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, FALSE);
} else if (CompareGuid (VendorGuid, &gEfiImageSecurityDatabaseGuid) &&
((StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE) == 0) || (StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE1) == 0))) {
Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, FALSE);
if (EFI_ERROR (Status)) {
Status = ProcessVarWithKek (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes);
}
} else {
Status = ProcessVariable (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes);
}
InterlockedDecrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState);
ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
return Status;
}
/**
This code returns information about the EFI variables.
Caution: This function may receive untrusted input.
This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
@param Attributes Attributes bitmask to specify the type of variables
on which to return information.
@param MaximumVariableStorageSize Pointer to the maximum size of the storage space available
for the EFI variables associated with the attributes specified.
@param RemainingVariableStorageSize Pointer to the remaining size of the storage space available
for EFI variables associated with the attributes specified.
@param MaximumVariableSize Pointer to the maximum size of an individual EFI variables
associated with the attributes specified.
@return EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied.
@return EFI_SUCCESS Query successfully.
@return EFI_UNSUPPORTED The attribute is not supported on this platform.
**/
EFI_STATUS
EFIAPI
VariableServiceQueryVariableInfo (
IN UINT32 Attributes,
OUT UINT64 *MaximumVariableStorageSize,
OUT UINT64 *RemainingVariableStorageSize,
OUT UINT64 *MaximumVariableSize
)
{
VARIABLE_HEADER *Variable;
VARIABLE_HEADER *NextVariable;
UINT64 VariableSize;
VARIABLE_STORE_HEADER *VariableStoreHeader;
UINT64 CommonVariableTotalSize;
UINT64 HwErrVariableTotalSize;
CommonVariableTotalSize = 0;
HwErrVariableTotalSize = 0;
if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) {
return EFI_INVALID_PARAMETER;
}
if((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == 0) {
//
// Make sure the Attributes combination is supported by the platform.
//
return EFI_UNSUPPORTED;
} else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
//
// Make sure if runtime bit is set, boot service bit is set also.
//
return EFI_INVALID_PARAMETER;
} else if (AtRuntime () && ((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) {
//
// Make sure RT Attribute is set if we are in Runtime phase.
//
return EFI_INVALID_PARAMETER;
} else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
//
// Make sure Hw Attribute is set with NV.
//
return EFI_INVALID_PARAMETER;
}
AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
if((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
//
// Query is Volatile related.
//
VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
} else {
//
// Query is Non-Volatile related.
//
VariableStoreHeader = mNvVariableCache;
}
//
// Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize
// with the storage size (excluding the storage header size).
//
*MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER);
//
// Harware error record variable needs larger size.
//
if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
*MaximumVariableStorageSize = PcdGet32 (PcdHwErrStorageSize);
*MaximumVariableSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER);
} else {
if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
ASSERT (PcdGet32 (PcdHwErrStorageSize) < VariableStoreHeader->Size);
*MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize);
}
//
// Let *MaximumVariableSize be PcdGet32 (PcdMaxVariableSize) with the exception of the variable header size.
//
*MaximumVariableSize = PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER);
}
//
// Point to the starting address of the variables.
//
Variable = GetStartPointer (VariableStoreHeader);
//
// Now walk through the related variable store.
//
while ((Variable < GetEndPointer (VariableStoreHeader)) && IsValidVariableHeader (Variable)) {
NextVariable = GetNextVariablePtr (Variable);
VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable;
if (AtRuntime ()) {
//
// We don't take the state of the variables in mind
// when calculating RemainingVariableStorageSize,
// since the space occupied by variables not marked with
// VAR_ADDED is not allowed to be reclaimed in Runtime.
//
if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
HwErrVariableTotalSize += VariableSize;
} else {
CommonVariableTotalSize += VariableSize;
}
} else {
//
// Only care about Variables with State VAR_ADDED, because
// the space not marked as VAR_ADDED is reclaimable now.
//
if (Variable->State == VAR_ADDED) {
if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
HwErrVariableTotalSize += VariableSize;
} else {
CommonVariableTotalSize += VariableSize;
}
}
}
//
// Go to the next one.
//
Variable = NextVariable;
}
if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){
*RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize;
}else {
*RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize;
}
if (*RemainingVariableStorageSize < sizeof (VARIABLE_HEADER)) {
*MaximumVariableSize = 0;
} else if ((*RemainingVariableStorageSize - sizeof (VARIABLE_HEADER)) < *MaximumVariableSize) {
*MaximumVariableSize = *RemainingVariableStorageSize - sizeof (VARIABLE_HEADER);
}
ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
return EFI_SUCCESS;
}
/**
This function reclaims variable storage if free size is below the threshold.
Caution: This function may be invoked at SMM mode.
Care must be taken to make sure not security issue.
**/
VOID
ReclaimForOS(
VOID
)
{
EFI_STATUS Status;
UINTN CommonVariableSpace;
UINTN RemainingCommonVariableSpace;
UINTN RemainingHwErrVariableSpace;
Status = EFI_SUCCESS;
CommonVariableSpace = ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase)))->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32(PcdHwErrStorageSize); //Allowable max size of common variable storage space
RemainingCommonVariableSpace = CommonVariableSpace - mVariableModuleGlobal->CommonVariableTotalSize;
RemainingHwErrVariableSpace = PcdGet32 (PcdHwErrStorageSize) - mVariableModuleGlobal->HwErrVariableTotalSize;
//
// Check if the free area is blow a threshold.
//
if ((RemainingCommonVariableSpace < PcdGet32 (PcdMaxVariableSize))
|| ((PcdGet32 (PcdHwErrStorageSize) != 0) &&
(RemainingHwErrVariableSpace < PcdGet32 (PcdMaxHardwareErrorVariableSize)))){
Status = Reclaim (
mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
&mVariableModuleGlobal->NonVolatileLastVariableOffset,
FALSE,
NULL,
FALSE,
FALSE
);
ASSERT_EFI_ERROR (Status);
}
}
/**
Flush the HOB variable to flash.
@param[in] VariableName Name of variable has been updated or deleted.
@param[in] VendorGuid Guid of variable has been updated or deleted.
**/
VOID
FlushHobVariableToFlash (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid
)
{
EFI_STATUS Status;
VARIABLE_STORE_HEADER *VariableStoreHeader;
VARIABLE_HEADER *Variable;
VOID *VariableData;
BOOLEAN ErrorFlag;
ErrorFlag = FALSE;
//
// Flush the HOB variable to flash.
//
if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
VariableStoreHeader = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
//
// Set HobVariableBase to 0, it can avoid SetVariable to call back.
//
mVariableModuleGlobal->VariableGlobal.HobVariableBase = 0;
for ( Variable = GetStartPointer (VariableStoreHeader)
; (Variable < GetEndPointer (VariableStoreHeader) && IsValidVariableHeader (Variable))
; Variable = GetNextVariablePtr (Variable)
) {
if (Variable->State != VAR_ADDED) {
//
// The HOB variable has been set to DELETED state in local.
//
continue;
}
ASSERT ((Variable->Attributes & EFI_VARIABLE_NON_VOLATILE) != 0);
if (VendorGuid == NULL || VariableName == NULL ||
!CompareGuid (VendorGuid, &Variable->VendorGuid) ||
StrCmp (VariableName, GetVariableNamePtr (Variable)) != 0) {
VariableData = GetVariableDataPtr (Variable);
Status = VariableServiceSetVariable (
GetVariableNamePtr (Variable),
&Variable->VendorGuid,
Variable->Attributes,
Variable->DataSize,
VariableData
);
DEBUG ((EFI_D_INFO, "Variable driver flush the HOB variable to flash: %g %s %r\n", &Variable->VendorGuid, GetVariableNamePtr (Variable), Status));
} else {
//
// The updated or deleted variable is matched with the HOB variable.
// Don't break here because we will try to set other HOB variables
// since this variable could be set successfully.
//
Status = EFI_SUCCESS;
}
if (!EFI_ERROR (Status)) {
//
// If set variable successful, or the updated or deleted variable is matched with the HOB variable,
// set the HOB variable to DELETED state in local.
//
DEBUG ((EFI_D_INFO, "Variable driver set the HOB variable to DELETED state in local: %g %s\n", &Variable->VendorGuid, GetVariableNamePtr (Variable)));
Variable->State &= VAR_DELETED;
} else {
ErrorFlag = TRUE;
}
}
if (ErrorFlag) {
//
// We still have HOB variable(s) not flushed in flash.
//
mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VariableStoreHeader;
} else {
//
// All HOB variables have been flushed in flash.
//
DEBUG ((EFI_D_INFO, "Variable driver: all HOB variables have been flushed in flash.\n"));
if (!AtRuntime ()) {
FreePool ((VOID *) VariableStoreHeader);
}
}
}
}
/**
Initializes variable write service after FVB was ready.
@retval EFI_SUCCESS Function successfully executed.
@retval Others Fail to initialize the variable service.
**/
EFI_STATUS
VariableWriteServiceInitialize (
VOID
)
{
EFI_STATUS Status;
VARIABLE_STORE_HEADER *VariableStoreHeader;
UINTN Index;
UINT8 Data;
EFI_PHYSICAL_ADDRESS VariableStoreBase;
VariableStoreBase = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
VariableStoreHeader = (VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase;
//
// Check if the free area is really free.
//
for (Index = mVariableModuleGlobal->NonVolatileLastVariableOffset; Index < VariableStoreHeader->Size; Index++) {
Data = ((UINT8 *) mNvVariableCache)[Index];
if (Data != 0xff) {
//
// There must be something wrong in variable store, do reclaim operation.
//
Status = Reclaim (
mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
&mVariableModuleGlobal->NonVolatileLastVariableOffset,
FALSE,
NULL,
FALSE,
TRUE
);
if (EFI_ERROR (Status)) {
return Status;
}
break;
}
}
FlushHobVariableToFlash (NULL, NULL);
//
// Authenticated variable initialize.
//
Status = AutenticatedVariableServiceInitialize ();
return Status;
}
/**
Initializes variable store area for non-volatile and volatile variable.
@retval EFI_SUCCESS Function successfully executed.
@retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
**/
EFI_STATUS
VariableCommonInitialize (
VOID
)
{
EFI_STATUS Status;
VARIABLE_STORE_HEADER *VolatileVariableStore;
VARIABLE_STORE_HEADER *VariableStoreHeader;
VARIABLE_HEADER *NextVariable;
EFI_PHYSICAL_ADDRESS TempVariableStoreHeader;
EFI_PHYSICAL_ADDRESS VariableStoreBase;
UINT64 VariableStoreLength;
UINTN ScratchSize;
UINTN VariableSize;
EFI_HOB_GUID_TYPE *GuidHob;
//
// Allocate runtime memory for variable driver global structure.
//
mVariableModuleGlobal = AllocateRuntimeZeroPool (sizeof (VARIABLE_MODULE_GLOBAL));
if (mVariableModuleGlobal == NULL) {
return EFI_OUT_OF_RESOURCES;
}
InitializeLock (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock, TPL_NOTIFY);
//
// Note that in EdkII variable driver implementation, Hardware Error Record type variable
// is stored with common variable in the same NV region. So the platform integrator should
// ensure that the value of PcdHwErrStorageSize is less than or equal to the value of
// PcdFlashNvStorageVariableSize.
//
ASSERT (PcdGet32 (PcdHwErrStorageSize) <= PcdGet32 (PcdFlashNvStorageVariableSize));
//
// Get HOB variable store.
//
GuidHob = GetFirstGuidHob (&gEfiAuthenticatedVariableGuid);
if (GuidHob != NULL) {
VariableStoreHeader = GET_GUID_HOB_DATA (GuidHob);
VariableStoreLength = (UINT64) (GuidHob->Header.HobLength - sizeof (EFI_HOB_GUID_TYPE));
if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) {
mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) AllocateRuntimeCopyPool ((UINTN) VariableStoreLength, (VOID *) VariableStoreHeader);
if (mVariableModuleGlobal->VariableGlobal.HobVariableBase == 0) {
return EFI_OUT_OF_RESOURCES;
}
} else {
DEBUG ((EFI_D_ERROR, "HOB Variable Store header is corrupted!\n"));
}
}
//
// Allocate memory for volatile variable store, note that there is a scratch space to store scratch data.
//
ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize));
VolatileVariableStore = AllocateRuntimePool (PcdGet32 (PcdVariableStoreSize) + ScratchSize);
if (VolatileVariableStore == NULL) {
FreePool (mVariableModuleGlobal);
return EFI_OUT_OF_RESOURCES;
}
SetMem (VolatileVariableStore, PcdGet32 (PcdVariableStoreSize) + ScratchSize, 0xff);
//
// Initialize Variable Specific Data.
//
mVariableModuleGlobal->VariableGlobal.VolatileVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VolatileVariableStore;
mVariableModuleGlobal->VolatileLastVariableOffset = (UINTN) GetStartPointer (VolatileVariableStore) - (UINTN) VolatileVariableStore;
mVariableModuleGlobal->FvbInstance = NULL;
CopyGuid (&VolatileVariableStore->Signature, &gEfiAuthenticatedVariableGuid);
VolatileVariableStore->Size = PcdGet32 (PcdVariableStoreSize);
VolatileVariableStore->Format = VARIABLE_STORE_FORMATTED;
VolatileVariableStore->State = VARIABLE_STORE_HEALTHY;
VolatileVariableStore->Reserved = 0;
VolatileVariableStore->Reserved1 = 0;
//
// Get non-volatile variable store.
//
TempVariableStoreHeader = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
if (TempVariableStoreHeader == 0) {
TempVariableStoreHeader = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
}
//
// Check if the Firmware Volume is not corrupted
//
if ((((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(TempVariableStoreHeader))->Signature != EFI_FVH_SIGNATURE) ||
(!CompareGuid (&gEfiSystemNvDataFvGuid, &((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(TempVariableStoreHeader))->FileSystemGuid))) {
Status = EFI_VOLUME_CORRUPTED;
DEBUG ((EFI_D_ERROR, "Firmware Volume for Variable Store is corrupted\n"));
goto Done;
}
VariableStoreBase = TempVariableStoreHeader + \
(((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(TempVariableStoreHeader)) -> HeaderLength);
VariableStoreLength = (UINT64) PcdGet32 (PcdFlashNvStorageVariableSize) - \
(((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(TempVariableStoreHeader)) -> HeaderLength);
mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
VariableStoreHeader = (VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase;
if (GetVariableStoreStatus (VariableStoreHeader) != EfiValid) {
Status = EFI_VOLUME_CORRUPTED;
DEBUG((EFI_D_INFO, "Variable Store header is corrupted\n"));
goto Done;
}
ASSERT(VariableStoreHeader->Size == VariableStoreLength);
//
// Parse non-volatile variable data and get last variable offset.
//
NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase);
while (IsValidVariableHeader (NextVariable)) {
VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER);
if ((NextVariable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
} else {
mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
}
NextVariable = GetNextVariablePtr (NextVariable);
}
mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) VariableStoreBase;
//
// Allocate runtime memory used for a memory copy of the FLASH region.
// Keep the memory and the FLASH in sync as updates occur
//
mNvVariableCache = AllocateRuntimeZeroPool ((UINTN)VariableStoreLength);
if (mNvVariableCache == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Done;
}
CopyMem (mNvVariableCache, (CHAR8 *)(UINTN)VariableStoreBase, (UINTN)VariableStoreLength);
Status = EFI_SUCCESS;
Done:
if (EFI_ERROR (Status)) {
FreePool (mVariableModuleGlobal);
FreePool (VolatileVariableStore);
}
return Status;
}
/**
Get the proper fvb handle and/or fvb protocol by the given Flash address.
@param[in] Address The Flash address.
@param[out] FvbHandle In output, if it is not NULL, it points to the proper FVB handle.
@param[out] FvbProtocol In output, if it is not NULL, it points to the proper FVB protocol.
**/
EFI_STATUS
GetFvbInfoByAddress (
IN EFI_PHYSICAL_ADDRESS Address,
OUT EFI_HANDLE *FvbHandle OPTIONAL,
OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvbProtocol OPTIONAL
)
{
EFI_STATUS Status;
EFI_HANDLE *HandleBuffer;
UINTN HandleCount;
UINTN Index;
EFI_PHYSICAL_ADDRESS FvbBaseAddress;
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
EFI_FVB_ATTRIBUTES_2 Attributes;
//
// Get all FVB handles.
//
Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer);
if (EFI_ERROR (Status)) {
return EFI_NOT_FOUND;
}
//
// Get the FVB to access variable store.
//
Fvb = NULL;
for (Index = 0; Index < HandleCount; Index += 1, Status = EFI_NOT_FOUND, Fvb = NULL) {
Status = GetFvbByHandle (HandleBuffer[Index], &Fvb);
if (EFI_ERROR (Status)) {
Status = EFI_NOT_FOUND;
break;
}
//
// Ensure this FVB protocol supported Write operation.
//
Status = Fvb->GetAttributes (Fvb, &Attributes);
if (EFI_ERROR (Status) || ((Attributes & EFI_FVB2_WRITE_STATUS) == 0)) {
continue;
}
//
// Compare the address and select the right one.
//
Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress);
if (EFI_ERROR (Status)) {
continue;
}
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvbBaseAddress);
if ((Address >= FvbBaseAddress) && (Address < (FvbBaseAddress + FwVolHeader->FvLength))) {
if (FvbHandle != NULL) {
*FvbHandle = HandleBuffer[Index];
}
if (FvbProtocol != NULL) {
*FvbProtocol = Fvb;
}
Status = EFI_SUCCESS;
break;
}
}
FreePool (HandleBuffer);
if (Fvb == NULL) {
Status = EFI_NOT_FOUND;
}
return Status;
}