audk/ArmPkg/Library/ArmLib/AArch64/AArch64Mmu.c

674 lines
24 KiB
C
Raw Normal View History

/** @file
* File managing the MMU for ARMv8 architecture
*
* Copyright (c) 2011-2013, ARM Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include <Uefi.h>
#include <Chipset/AArch64.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/ArmLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include "AArch64Lib.h"
#include "ArmLibPrivate.h"
// We use this index definition to define an invalid block entry
#define TT_ATTR_INDX_INVALID ((UINT32)~0)
STATIC
UINT64
ArmMemoryAttributeToPageAttribute (
IN ARM_MEMORY_REGION_ATTRIBUTES Attributes
)
{
switch (Attributes) {
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
return TT_ATTR_INDX_MEMORY_WRITE_BACK;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
return TT_ATTR_INDX_MEMORY_WRITE_THROUGH;
case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
return TT_ATTR_INDX_DEVICE_MEMORY;
case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK:
return TT_ATTR_INDX_MEMORY_WRITE_BACK;
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH:
return TT_ATTR_INDX_MEMORY_WRITE_THROUGH;
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:
return TT_ATTR_INDX_DEVICE_MEMORY;
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED:
return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
default:
ASSERT(0);
return TT_ATTR_INDX_DEVICE_MEMORY;
}
}
UINT64
PageAttributeToGcdAttribute (
IN UINT64 PageAttributes
)
{
UINT64 GcdAttributes;
switch (PageAttributes & TT_ATTR_INDX_MASK) {
case TT_ATTR_INDX_DEVICE_MEMORY:
GcdAttributes = EFI_MEMORY_UC;
break;
case TT_ATTR_INDX_MEMORY_NON_CACHEABLE:
GcdAttributes = EFI_MEMORY_WC;
break;
case TT_ATTR_INDX_MEMORY_WRITE_THROUGH:
GcdAttributes = EFI_MEMORY_WT;
break;
case TT_ATTR_INDX_MEMORY_WRITE_BACK:
GcdAttributes = EFI_MEMORY_WB;
break;
default:
DEBUG ((EFI_D_ERROR, "PageAttributeToGcdAttribute: PageAttributes:0x%lX not supported.\n", PageAttributes));
ASSERT (0);
// The Global Coherency Domain (GCD) value is defined as a bit set.
// Returning 0 means no attribute has been set.
GcdAttributes = 0;
}
// Determine protection attributes
if (((PageAttributes & TT_AP_MASK) == TT_AP_NO_RO) || ((PageAttributes & TT_AP_MASK) == TT_AP_RO_RO)) {
// Read only cases map to write-protect
GcdAttributes |= EFI_MEMORY_WP;
}
// Process eXecute Never attribute
if ((PageAttributes & (TT_PXN_MASK | TT_UXN_MASK)) != 0 ) {
GcdAttributes |= EFI_MEMORY_XP;
}
return GcdAttributes;
}
UINT64
GcdAttributeToPageAttribute (
IN UINT64 GcdAttributes
)
{
UINT64 PageAttributes;
switch (GcdAttributes & 0xFF) {
case EFI_MEMORY_UC:
PageAttributes = TT_ATTR_INDX_DEVICE_MEMORY;
break;
case EFI_MEMORY_WC:
PageAttributes = TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
break;
case EFI_MEMORY_WT:
PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_THROUGH;
break;
case EFI_MEMORY_WB:
PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_BACK;
break;
default:
DEBUG ((EFI_D_ERROR, "GcdAttributeToPageAttribute: 0x%X attributes is not supported.\n", GcdAttributes));
ASSERT (0);
// If no match has been found then we mark the memory as device memory.
// The only side effect of using device memory should be a slow down in the performance.
PageAttributes = TT_ATTR_INDX_DEVICE_MEMORY;
}
// Determine protection attributes
if (GcdAttributes & EFI_MEMORY_WP) {
// Read only cases map to write-protect
PageAttributes |= TT_AP_RO_RO;
}
// Process eXecute Never attribute
if (GcdAttributes & EFI_MEMORY_XP) {
PageAttributes |= (TT_PXN_MASK | TT_UXN_MASK);
}
return PageAttributes;
}
ARM_MEMORY_REGION_ATTRIBUTES
GcdAttributeToArmAttribute (
IN UINT64 GcdAttributes
)
{
switch (GcdAttributes & 0xFF) {
case EFI_MEMORY_UC:
return ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
case EFI_MEMORY_WC:
return ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED;
case EFI_MEMORY_WT:
return ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH;
case EFI_MEMORY_WB:
return ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK;
default:
DEBUG ((EFI_D_ERROR, "GcdAttributeToArmAttribute: 0x%lX attributes is not supported.\n", GcdAttributes));
ASSERT (0);
return ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
}
}
// Describe the T0SZ values for each translation table level
typedef struct {
UINTN MinT0SZ;
UINTN MaxT0SZ;
UINTN LargestT0SZ; // Generally (MaxT0SZ == LargestT0SZ) but at the Level3 Table
// the MaxT0SZ is not at the boundary of the table
} T0SZ_DESCRIPTION_PER_LEVEL;
// Map table for the corresponding Level of Table
STATIC CONST T0SZ_DESCRIPTION_PER_LEVEL T0SZPerTableLevel[] = {
{ 16, 24, 24 }, // Table Level 0
{ 25, 33, 33 }, // Table Level 1
{ 34, 39, 42 } // Table Level 2
};
VOID
GetRootTranslationTableInfo (
IN UINTN T0SZ,
OUT UINTN *TableLevel,
OUT UINTN *TableEntryCount
)
{
UINTN Index;
// Identify the level of the root table from the given T0SZ
for (Index = 0; Index < sizeof (T0SZPerTableLevel) / sizeof (T0SZ_DESCRIPTION_PER_LEVEL); Index++) {
if (T0SZ <= T0SZPerTableLevel[Index].MaxT0SZ) {
break;
}
}
// If we have not found the corresponding maximum T0SZ then we use the last one
if (Index == sizeof (T0SZPerTableLevel) / sizeof (T0SZ_DESCRIPTION_PER_LEVEL)) {
Index--;
}
// Get the level of the root table
if (TableLevel) {
*TableLevel = Index;
}
// The Size of the Table is 2^(T0SZ-LargestT0SZ)
if (TableEntryCount) {
*TableEntryCount = 1 << (T0SZPerTableLevel[Index].LargestT0SZ - T0SZ + 1);
}
}
STATIC
VOID
LookupAddresstoRootTable (
IN UINT64 MaxAddress,
OUT UINTN *T0SZ,
OUT UINTN *TableEntryCount
)
{
UINTN TopBit;
// Check the parameters are not NULL
ASSERT ((T0SZ != NULL) && (TableEntryCount != NULL));
// Look for the highest bit set in MaxAddress
for (TopBit = 63; TopBit != 0; TopBit--) {
if ((1ULL << TopBit) & MaxAddress) {
// MaxAddress top bit is found
TopBit = TopBit + 1;
break;
}
}
ASSERT (TopBit != 0);
// Calculate T0SZ from the top bit of the MaxAddress
*T0SZ = 64 - TopBit;
// Get the Table info from T0SZ
GetRootTranslationTableInfo (*T0SZ, NULL, TableEntryCount);
}
STATIC
UINT64*
GetBlockEntryListFromAddress (
IN UINT64 *RootTable,
IN UINT64 RegionStart,
OUT UINTN *TableLevel,
IN OUT UINT64 *BlockEntrySize,
IN OUT UINT64 **LastBlockEntry
)
{
UINTN RootTableLevel;
UINTN RootTableEntryCount;
UINT64 *TranslationTable;
UINT64 *BlockEntry;
UINT64 BlockEntryAddress;
UINTN BaseAddressAlignment;
UINTN PageLevel;
UINTN Index;
UINTN IndexLevel;
UINTN T0SZ;
UINT64 Attributes;
UINT64 TableAttributes;
// Initialize variable
BlockEntry = NULL;
// Ensure the parameters are valid
ASSERT (TableLevel && BlockEntrySize && LastBlockEntry);
// Ensure the Region is aligned on 4KB boundary
ASSERT ((RegionStart & (SIZE_4KB - 1)) == 0);
// Ensure the required size is aligned on 4KB boundary
ASSERT ((*BlockEntrySize & (SIZE_4KB - 1)) == 0);
//
// Calculate LastBlockEntry from T0SZ - this is the last block entry of the root Translation table
//
T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;
// Get the Table info from T0SZ
GetRootTranslationTableInfo (T0SZ, &RootTableLevel, &RootTableEntryCount);
// The last block of the root table depends on the number of entry in this table
*LastBlockEntry = TT_LAST_BLOCK_ADDRESS(RootTable, RootTableEntryCount);
// If the start address is 0x0 then we use the size of the region to identify the alignment
if (RegionStart == 0) {
// Identify the highest possible alignment for the Region Size
for (BaseAddressAlignment = 0; BaseAddressAlignment < 64; BaseAddressAlignment++) {
if ((1 << BaseAddressAlignment) & *BlockEntrySize) {
break;
}
}
} else {
// Identify the highest possible alignment for the Base Address
for (BaseAddressAlignment = 0; BaseAddressAlignment < 64; BaseAddressAlignment++) {
if ((1 << BaseAddressAlignment) & RegionStart) {
break;
}
}
}
// Identify the Page Level the RegionStart must belongs to
PageLevel = 3 - ((BaseAddressAlignment - 12) / 9);
// If the required size is smaller than the current block size then we need to go to the page below.
// The PageLevel was calculated on the Base Address alignment but did not take in account the alignment
// of the allocation size
if (*BlockEntrySize < TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel)) {
// It does not fit so we need to go a page level above
PageLevel++;
}
// Expose the found PageLevel to the caller
*TableLevel = PageLevel;
// Now, we have the Table Level we can get the Block Size associated to this table
*BlockEntrySize = TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel);
//
// Get the Table Descriptor for the corresponding PageLevel. We need to decompose RegionStart to get appropriate entries
//
TranslationTable = RootTable;
for (IndexLevel = RootTableLevel; IndexLevel <= PageLevel; IndexLevel++) {
BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, IndexLevel, RegionStart);
if ((IndexLevel != 3) && ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY)) {
// Go to the next table
TranslationTable = (UINT64*)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
// If we are at the last level then update the output
if (IndexLevel == PageLevel) {
// And get the appropriate BlockEntry at the next level
BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, IndexLevel + 1, RegionStart);
// Set the last block for this new table
*LastBlockEntry = TT_LAST_BLOCK_ADDRESS(TranslationTable, TT_ENTRY_COUNT);
}
} else if ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) {
// If we are not at the last level then we need to split this BlockEntry
if (IndexLevel != PageLevel) {
// Retrieve the attributes from the block entry
Attributes = *BlockEntry & TT_ATTRIBUTES_MASK;
// Convert the block entry attributes into Table descriptor attributes
TableAttributes = TT_TABLE_AP_NO_PERMISSION;
if (Attributes & TT_PXN_MASK) {
TableAttributes = TT_TABLE_PXN;
}
if (Attributes & TT_UXN_MASK) {
TableAttributes = TT_TABLE_XN;
}
if (Attributes & TT_NS) {
TableAttributes = TT_TABLE_NS;
}
// Get the address corresponding at this entry
BlockEntryAddress = RegionStart;
BlockEntryAddress = BlockEntryAddress >> TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
// Shift back to right to set zero before the effective address
BlockEntryAddress = BlockEntryAddress << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
// Set the correct entry type for the next page level
if ((IndexLevel + 1) == 3) {
Attributes |= TT_TYPE_BLOCK_ENTRY_LEVEL3;
} else {
Attributes |= TT_TYPE_BLOCK_ENTRY;
}
// Create a new translation table
TranslationTable = (UINT64*)AllocatePages (EFI_SIZE_TO_PAGES((TT_ENTRY_COUNT * sizeof(UINT64)) + TT_ALIGNMENT_DESCRIPTION_TABLE));
if (TranslationTable == NULL) {
return NULL;
}
TranslationTable = (UINT64*)((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
// Fill the BlockEntry with the new TranslationTable
*BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TableAttributes | TT_TYPE_TABLE_ENTRY;
// Update the last block entry with the newly created translation table
*LastBlockEntry = TT_LAST_BLOCK_ADDRESS(TranslationTable, TT_ENTRY_COUNT);
// Populate the newly created lower level table
BlockEntry = TranslationTable;
for (Index = 0; Index < TT_ENTRY_COUNT; Index++) {
*BlockEntry = Attributes | (BlockEntryAddress + (Index << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel + 1)));
BlockEntry++;
}
// Block Entry points at the beginning of the Translation Table
BlockEntry = TranslationTable;
}
} else {
// Case of Invalid Entry and we are at a page level above of the one targetted.
if (IndexLevel != PageLevel) {
// Create a new translation table
TranslationTable = (UINT64*)AllocatePages (EFI_SIZE_TO_PAGES((TT_ENTRY_COUNT * sizeof(UINT64)) + TT_ALIGNMENT_DESCRIPTION_TABLE));
if (TranslationTable == NULL) {
return NULL;
}
TranslationTable = (UINT64*)((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
ZeroMem (TranslationTable, TT_ENTRY_COUNT * sizeof(UINT64));
// Fill the new BlockEntry with the TranslationTable
*BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TT_TYPE_TABLE_ENTRY;
// Update the last block entry with the newly created translation table
*LastBlockEntry = TT_LAST_BLOCK_ADDRESS(TranslationTable, TT_ENTRY_COUNT);
}
}
}
return BlockEntry;
}
STATIC
RETURN_STATUS
FillTranslationTable (
IN UINT64 *RootTable,
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion
)
{
UINT64 Attributes;
UINT32 Type;
UINT64 RegionStart;
UINT64 RemainingRegionLength;
UINT64 *BlockEntry;
UINT64 *LastBlockEntry;
UINT64 BlockEntrySize;
UINTN TableLevel;
// Ensure the Length is aligned on 4KB boundary
ASSERT ((MemoryRegion->Length > 0) && ((MemoryRegion->Length & (SIZE_4KB - 1)) == 0));
// Variable initialization
Attributes = ArmMemoryAttributeToPageAttribute (MemoryRegion->Attributes) | TT_AF;
RemainingRegionLength = MemoryRegion->Length;
RegionStart = MemoryRegion->VirtualBase;
do {
// Get the first Block Entry that matches the Virtual Address and also the information on the Table Descriptor
// such as the the size of the Block Entry and the address of the last BlockEntry of the Table Descriptor
BlockEntrySize = RemainingRegionLength;
BlockEntry = GetBlockEntryListFromAddress (RootTable, RegionStart, &TableLevel, &BlockEntrySize, &LastBlockEntry);
if (BlockEntry == NULL) {
// GetBlockEntryListFromAddress() return NULL when it fails to allocate new pages from the Translation Tables
return RETURN_OUT_OF_RESOURCES;
}
if (TableLevel != 3) {
Type = TT_TYPE_BLOCK_ENTRY;
} else {
Type = TT_TYPE_BLOCK_ENTRY_LEVEL3;
}
do {
// Fill the Block Entry with attribute and output block address
*BlockEntry = (RegionStart & TT_ADDRESS_MASK_BLOCK_ENTRY) | Attributes | Type;
// Go to the next BlockEntry
RegionStart += BlockEntrySize;
RemainingRegionLength -= BlockEntrySize;
BlockEntry++;
} while ((RemainingRegionLength >= BlockEntrySize) && (BlockEntry <= LastBlockEntry));
} while (RemainingRegionLength != 0);
return RETURN_SUCCESS;
}
RETURN_STATUS
SetMemoryAttributes (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes,
IN EFI_PHYSICAL_ADDRESS VirtualMask
)
{
RETURN_STATUS Status;
ARM_MEMORY_REGION_DESCRIPTOR MemoryRegion;
UINT64 *TranslationTable;
MemoryRegion.PhysicalBase = BaseAddress;
MemoryRegion.VirtualBase = BaseAddress;
MemoryRegion.Length = Length;
MemoryRegion.Attributes = GcdAttributeToArmAttribute (Attributes);
TranslationTable = ArmGetTTBR0BaseAddress ();
Status = FillTranslationTable (TranslationTable, &MemoryRegion);
if (RETURN_ERROR (Status)) {
return Status;
}
// Flush d-cache so descriptors make it back to uncached memory for subsequent table walks
// flush and invalidate pages
ArmCleanInvalidateDataCache ();
ArmInvalidateInstructionCache ();
// Invalidate all TLB entries so changes are synced
ArmInvalidateTlb ();
return RETURN_SUCCESS;
}
RETURN_STATUS
EFIAPI
ArmConfigureMmu (
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,
OUT VOID **TranslationTableBase OPTIONAL,
OUT UINTN *TranslationTableSize OPTIONAL
)
{
VOID* TranslationTable;
UINTN TranslationTablePageCount;
UINT32 TranslationTableAttribute;
ARM_MEMORY_REGION_DESCRIPTOR *MemoryTableEntry;
UINT64 MaxAddress;
UINT64 TopAddress;
UINTN T0SZ;
UINTN RootTableEntryCount;
UINT64 TCR;
RETURN_STATUS Status;
ASSERT (MemoryTable != NULL);
// Identify the highest address of the memory table
MaxAddress = MemoryTable->PhysicalBase + MemoryTable->Length - 1;
MemoryTableEntry = MemoryTable;
while (MemoryTableEntry->Length != 0) {
TopAddress = MemoryTableEntry->PhysicalBase + MemoryTableEntry->Length - 1;
if (TopAddress > MaxAddress) {
MaxAddress = TopAddress;
}
MemoryTableEntry++;
}
// Lookup the Table Level to get the information
LookupAddresstoRootTable (MaxAddress, &T0SZ, &RootTableEntryCount);
//
// Set TCR that allows us to retrieve T0SZ in the subsequent functions
//
// Ideally we will be running at EL2, but should support EL1 as well.
// UEFI should not run at EL3.
if (ArmReadCurrentEL () == AARCH64_EL2) {
//Note: Bits 23 and 31 are reserved(RES1) bits in TCR_EL2
TCR = T0SZ | (1UL << 31) | (1UL << 23) | TCR_TG0_4KB;
// Set the Physical Address Size using MaxAddress
if (MaxAddress < SIZE_4GB) {
TCR |= TCR_PS_4GB;
} else if (MaxAddress < SIZE_64GB) {
TCR |= TCR_PS_64GB;
} else if (MaxAddress < SIZE_1TB) {
TCR |= TCR_PS_1TB;
} else if (MaxAddress < SIZE_4TB) {
TCR |= TCR_PS_4TB;
} else if (MaxAddress < SIZE_16TB) {
TCR |= TCR_PS_16TB;
} else if (MaxAddress < SIZE_256TB) {
TCR |= TCR_PS_256TB;
} else {
DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
ASSERT (0); // Bigger than 48-bit memory space are not supported
return RETURN_UNSUPPORTED;
}
} else if (ArmReadCurrentEL () == AARCH64_EL1) {
TCR = T0SZ | TCR_TG0_4KB;
// Set the Physical Address Size using MaxAddress
if (MaxAddress < SIZE_4GB) {
TCR |= TCR_IPS_4GB;
} else if (MaxAddress < SIZE_64GB) {
TCR |= TCR_IPS_64GB;
} else if (MaxAddress < SIZE_1TB) {
TCR |= TCR_IPS_1TB;
} else if (MaxAddress < SIZE_4TB) {
TCR |= TCR_IPS_4TB;
} else if (MaxAddress < SIZE_16TB) {
TCR |= TCR_IPS_16TB;
} else if (MaxAddress < SIZE_256TB) {
TCR |= TCR_IPS_256TB;
} else {
DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
ASSERT (0); // Bigger than 48-bit memory space are not supported
return RETURN_UNSUPPORTED;
}
} else {
ASSERT (0); // UEFI is only expected to run at EL2 and EL1, not EL3.
return RETURN_UNSUPPORTED;
}
// Set TCR
ArmSetTCR (TCR);
// Allocate pages for translation table
TranslationTablePageCount = EFI_SIZE_TO_PAGES((RootTableEntryCount * sizeof(UINT64)) + TT_ALIGNMENT_DESCRIPTION_TABLE);
TranslationTable = AllocatePages (TranslationTablePageCount);
if (TranslationTable == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
TranslationTable = (VOID*)((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
// We set TTBR0 just after allocating the table to retrieve its location from the subsequent
// functions without needing to pass this value across the functions. The MMU is only enabled
// after the translation tables are populated.
ArmSetTTBR0 (TranslationTable);
if (TranslationTableBase != NULL) {
*TranslationTableBase = TranslationTable;
}
if (TranslationTableSize != NULL) {
*TranslationTableSize = RootTableEntryCount * sizeof(UINT64);
}
ZeroMem (TranslationTable, RootTableEntryCount * sizeof(UINT64));
// Disable MMU and caches. ArmDisableMmu() also invalidates the TLBs
ArmDisableMmu ();
ArmDisableDataCache ();
ArmDisableInstructionCache ();
// Make sure nothing sneaked into the cache
ArmCleanInvalidateDataCache ();
ArmInvalidateInstructionCache ();
TranslationTableAttribute = TT_ATTR_INDX_INVALID;
while (MemoryTable->Length != 0) {
// Find the memory attribute for the Translation Table
if (((UINTN)TranslationTable >= MemoryTable->PhysicalBase) &&
((UINTN)TranslationTable <= MemoryTable->PhysicalBase - 1 + MemoryTable->Length)) {
TranslationTableAttribute = MemoryTable->Attributes;
}
Status = FillTranslationTable (TranslationTable, MemoryTable);
if (RETURN_ERROR (Status)) {
goto FREE_TRANSLATION_TABLE;
}
MemoryTable++;
}
// Translate the Memory Attributes into Translation Table Register Attributes
if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED) ||
(TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED)) {
TCR |= TCR_SH_NON_SHAREABLE | TCR_RGN_OUTER_NON_CACHEABLE | TCR_RGN_INNER_NON_CACHEABLE;
} else if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK) ||
(TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK)) {
TCR |= TCR_SH_INNER_SHAREABLE | TCR_RGN_OUTER_WRITE_BACK_ALLOC | TCR_RGN_INNER_WRITE_BACK_ALLOC;
} else if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH) ||
(TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH)) {
TCR |= TCR_SH_NON_SHAREABLE | TCR_RGN_OUTER_WRITE_THROUGH | TCR_RGN_INNER_WRITE_THROUGH;
} else {
// If we failed to find a mapping that contains the root translation table then it probably means the translation table
// is not mapped in the given memory map.
ASSERT (0);
Status = RETURN_UNSUPPORTED;
goto FREE_TRANSLATION_TABLE;
}
ArmSetMAIR (MAIR_ATTR(TT_ATTR_INDX_DEVICE_MEMORY, MAIR_ATTR_DEVICE_MEMORY) | // mapped to EFI_MEMORY_UC
MAIR_ATTR(TT_ATTR_INDX_MEMORY_NON_CACHEABLE, MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE) | // mapped to EFI_MEMORY_WC
MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_THROUGH, MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH) | // mapped to EFI_MEMORY_WT
MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_BACK, MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK)); // mapped to EFI_MEMORY_WB
ArmDisableAlignmentCheck ();
ArmEnableInstructionCache ();
ArmEnableDataCache ();
ArmEnableMmu ();
return RETURN_SUCCESS;
FREE_TRANSLATION_TABLE:
FreePages (TranslationTable, TranslationTablePageCount);
return Status;
}