audk/DuetPkg/Library/DuetBdsLib/BdsPlatform.c

1738 lines
48 KiB
C
Raw Normal View History

/*++
Copyright (c) 2006 - 2008, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
BdsPlatform.c
Abstract:
This file include all platform action which can be customized
by IBV/OEM.
--*/
#include "BdsPlatform.h"
#define IS_PCI_ISA_PDECODE(_p) IS_CLASS3 (_p, PCI_CLASS_BRIDGE, PCI_CLASS_BRIDGE_ISA_PDECODE, 0)
CHAR16 mFirmwareVendor[] = L"TianoCore.org";
extern BOOLEAN gConnectAllHappened;
extern USB_CLASS_FORMAT_DEVICE_PATH gUsbClassKeyboardDevicePath;
//
// BDS Platform Functions
//
VOID
GetSystemTablesFromHob (
VOID
)
/*++
Routine Description:
Find GUID'ed HOBs that contain EFI_PHYSICAL_ADDRESS of ACPI, SMBIOS, MPs tables
Arguments:
None
Returns:
None.
--*/
{
EFI_PEI_HOB_POINTERS GuidHob;
EFI_PEI_HOB_POINTERS HobStart;
EFI_PHYSICAL_ADDRESS *Table;
UINTN Index;
EFI_GUID *TableGuidArray[] = {
&gEfiAcpi20TableGuid, &gEfiAcpiTableGuid, &gEfiSmbiosTableGuid, &gEfiMpsTableGuid
};
//
// Get Hob List
//
HobStart.Raw = GetHobList ();
//
// Iteratively add ACPI Table, SMBIOS Table, MPS Table to EFI System Table
//
for (Index = 0; Index < sizeof (TableGuidArray) / sizeof (*TableGuidArray); ++Index) {
GuidHob.Raw = GetNextGuidHob (TableGuidArray[Index], HobStart.Raw);
if (GuidHob.Raw != NULL) {
Table = GET_GUID_HOB_DATA (GuidHob.Guid);
if (Table != NULL) {
//
// Check if Mps Table/Smbios Table/Acpi Table exists in E/F seg,
// According to UEFI Spec, we should make sure Smbios table,
// ACPI table and Mps tables kept in memory of specified type
//
ConvertSystemTable(TableGuidArray[Index], (VOID**)&Table);
gBS->InstallConfigurationTable (TableGuidArray[Index], (VOID *)Table);
}
}
}
return ;
}
#define EFI_LDR_MEMORY_DESCRIPTOR_GUID \
{ 0x7701d7e5, 0x7d1d, 0x4432, {0xa4, 0x68, 0x67, 0x3d, 0xab, 0x8a, 0xde, 0x60 }}
EFI_GUID gEfiLdrMemoryDescriptorGuid = EFI_LDR_MEMORY_DESCRIPTOR_GUID;
#pragma pack(1)
typedef struct {
EFI_HOB_GUID_TYPE Hob;
UINTN MemDescCount;
EFI_MEMORY_DESCRIPTOR *MemDesc;
} MEMORY_DESC_HOB;
#pragma pack()
#if 0
VOID
PrintMemoryMap (
VOID
)
{
EFI_MEMORY_DESCRIPTOR *MemMap;
EFI_MEMORY_DESCRIPTOR *MemMapPtr;
UINTN MemMapSize;
UINTN MapKey, DescriptorSize;
UINTN Index;
UINT32 DescriptorVersion;
UINT64 Bytes;
EFI_STATUS Status;
MemMapSize = 0;
MemMap = NULL;
Status = gBS->GetMemoryMap (&MemMapSize, MemMap, &MapKey, &DescriptorSize, &DescriptorVersion);
ASSERT (Status == EFI_BUFFER_TOO_SMALL);
MemMapSize += EFI_PAGE_SIZE;
Status = gBS->AllocatePool (EfiBootServicesData, MemMapSize, &MemMap);
ASSERT (Status == EFI_SUCCESS);
Status = gBS->GetMemoryMap (&MemMapSize, MemMap, &MapKey, &DescriptorSize, &DescriptorVersion);
ASSERT (Status == EFI_SUCCESS);
MemMapPtr = MemMap;
ASSERT (DescriptorVersion == EFI_MEMORY_DESCRIPTOR_VERSION);
for (Index = 0; Index < MemMapSize / DescriptorSize; Index ++) {
Bytes = LShiftU64 (MemMap->NumberOfPages, 12);
DEBUG ((EFI_D_ERROR, "%lX-%lX %lX %lX %X\n",
MemMap->PhysicalStart,
MemMap->PhysicalStart + Bytes - 1,
MemMap->NumberOfPages,
MemMap->Attribute,
(UINTN)MemMap->Type));
MemMap = (EFI_MEMORY_DESCRIPTOR *)((UINTN)MemMap + DescriptorSize);
}
gBS->FreePool (MemMapPtr);
}
#endif
VOID
UpdateMemoryMap (
VOID
)
{
EFI_STATUS Status;
EFI_PEI_HOB_POINTERS GuidHob;
VOID *Table;
MEMORY_DESC_HOB MemoryDescHob;
UINTN Index;
EFI_PHYSICAL_ADDRESS Memory;
//
// Get Hob List
//
GuidHob.Raw = GetHobList();
GuidHob.Raw = GetNextGuidHob (&gEfiLdrMemoryDescriptorGuid, GuidHob.Raw);
if (GuidHob.Raw == NULL) {
DEBUG ((EFI_D_ERROR, "Fail to get gEfiLdrMemoryDescriptorGuid from GUID HOB LIST!\n"));
return;
}
Table = GET_GUID_HOB_DATA (GuidHob.Guid);
if (Table == NULL) {
DEBUG ((EFI_D_ERROR, "Fail to get gEfiLdrMemoryDescriptorGuid from GUID HOB LIST!\n"));
return;
}
MemoryDescHob.MemDescCount = *(UINTN *)Table;
MemoryDescHob.MemDesc = *(EFI_MEMORY_DESCRIPTOR **)((UINTN)Table + sizeof(UINTN));
//
// Add ACPINVS, ACPIReclaim, and Reserved memory to MemoryMap
//
for (Index = 0; Index < MemoryDescHob.MemDescCount; Index++) {
if (MemoryDescHob.MemDesc[Index].PhysicalStart < 0x100000) {
continue;
}
if (MemoryDescHob.MemDesc[Index].PhysicalStart >= 0x100000000ULL) {
continue;
}
if ((MemoryDescHob.MemDesc[Index].Type == EfiReservedMemoryType) ||
(MemoryDescHob.MemDesc[Index].Type == EfiRuntimeServicesData) ||
(MemoryDescHob.MemDesc[Index].Type == EfiRuntimeServicesCode) ||
(MemoryDescHob.MemDesc[Index].Type == EfiACPIReclaimMemory) ||
(MemoryDescHob.MemDesc[Index].Type == EfiACPIMemoryNVS)) {
DEBUG ((EFI_D_ERROR, "PhysicalStart - 0x%x, ", MemoryDescHob.MemDesc[Index].PhysicalStart));
DEBUG ((EFI_D_ERROR, "PageNumber - 0x%x, ", MemoryDescHob.MemDesc[Index].NumberOfPages));
DEBUG ((EFI_D_ERROR, "Type - 0x%x\n", MemoryDescHob.MemDesc[Index].Type));
if ((MemoryDescHob.MemDesc[Index].Type == EfiRuntimeServicesData) ||
(MemoryDescHob.MemDesc[Index].Type == EfiRuntimeServicesCode)) {
//
// Skip RuntimeSevicesData and RuntimeServicesCode, they are BFV
//
continue;
}
Status = gDS->AddMemorySpace (
EfiGcdMemoryTypeSystemMemory,
MemoryDescHob.MemDesc[Index].PhysicalStart,
LShiftU64 (MemoryDescHob.MemDesc[Index].NumberOfPages, EFI_PAGE_SHIFT),
MemoryDescHob.MemDesc[Index].Attribute
);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "AddMemorySpace fail!\n"));
if ((MemoryDescHob.MemDesc[Index].Type == EfiACPIReclaimMemory) ||
(MemoryDescHob.MemDesc[Index].Type == EfiACPIMemoryNVS)) {
//
// For EfiACPIReclaimMemory and EfiACPIMemoryNVS, it must success.
// For EfiReservedMemoryType, there maybe overlap. So skip check here.
//
// ASSERT_EFI_ERROR (Status);
}
continue;
}
Memory = MemoryDescHob.MemDesc[Index].PhysicalStart;
Status = gBS->AllocatePages (
AllocateAddress,
(EFI_MEMORY_TYPE)MemoryDescHob.MemDesc[Index].Type,
(UINTN)MemoryDescHob.MemDesc[Index].NumberOfPages,
&Memory
);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "AllocatePages fail!\n"));
//
// For the page added, it must be allocated.
//
// ASSERT_EFI_ERROR (Status);
continue;
}
}
}
}
EFI_STATUS
DisableUsbLegacySupport(
void
)
/*++
Routine Description:
Disabble the USB legacy Support in all Ehci and Uhci.
This function assume all PciIo handles have been created in system.
Arguments:
None
Returns:
EFI_SUCCESS
EFI_NOT_FOUND
--*/
{
EFI_STATUS Status;
EFI_HANDLE *HandleArray;
UINTN HandleArrayCount;
UINTN Index;
EFI_PCI_IO_PROTOCOL *PciIo;
UINT8 Class[3];
UINT16 Command;
UINT32 HcCapParams;
UINT32 ExtendCap;
UINT32 Value;
UINT32 TimeOut;
//
// Find the usb host controller
//
Status = gBS->LocateHandleBuffer (
ByProtocol,
&gEfiPciIoProtocolGuid,
NULL,
&HandleArrayCount,
&HandleArray
);
if (!EFI_ERROR (Status)) {
for (Index = 0; Index < HandleArrayCount; Index++) {
Status = gBS->HandleProtocol (
HandleArray[Index],
&gEfiPciIoProtocolGuid,
(VOID **)&PciIo
);
if (!EFI_ERROR (Status)) {
//
// Find the USB host controller controller
//
Status = PciIo->Pci.Read (PciIo, EfiPciIoWidthUint8, 0x09, 3, &Class);
if (!EFI_ERROR (Status)) {
if ((PCI_CLASS_SERIAL == Class[2]) &&
(PCI_CLASS_SERIAL_USB == Class[1])) {
if (PCI_CLASSC_PI_UHCI == Class[0]) {
//
// Found the UHCI, then disable the legacy support
//
Command = 0;
Status = PciIo->Pci.Write (PciIo, EfiPciIoWidthUint16, 0xC0, 1, &Command);
} else if (PCI_CLASSC_PI_EHCI == Class[0]) {
//
// Found the EHCI, then disable the legacy support
//
Status = PciIo->Mem.Read (
PciIo,
EfiPciIoWidthUint32,
0, //EHC_BAR_INDEX
(UINT64) 0x08, //EHC_HCCPARAMS_OFFSET
1,
&HcCapParams
);
ExtendCap = (HcCapParams >> 8) & 0xFF;
//
// Disable the SMI in USBLEGCTLSTS firstly
//
PciIo->Pci.Read (PciIo, EfiPciIoWidthUint32, ExtendCap + 0x4, 1, &Value);
Value &= 0xFFFF0000;
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, ExtendCap + 0x4, 1, &Value);
//
// Get EHCI Ownership from legacy bios
//
PciIo->Pci.Read (PciIo, EfiPciIoWidthUint32, ExtendCap, 1, &Value);
Value |= (0x1 << 24);
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, ExtendCap, 1, &Value);
TimeOut = 40;
while (TimeOut--) {
gBS->Stall (500);
PciIo->Pci.Read (PciIo, EfiPciIoWidthUint32, ExtendCap, 1, &Value);
if ((Value & 0x01010000) == 0x01000000) {
break;
}
}
}
}
}
}
}
} else {
return Status;
}
gBS->FreePool (HandleArray);
return EFI_SUCCESS;
}
VOID
PlatformBdsInit (
IN EFI_BDS_ARCH_PROTOCOL_INSTANCE *PrivateData
)
/*++
Routine Description:
Platform Bds init. Incude the platform firmware vendor, revision
and so crc check.
Arguments:
PrivateData - The EFI_BDS_ARCH_PROTOCOL_INSTANCE instance
Returns:
None.
--*/
{
//
// set firmwarevendor, here can be IBV/OEM customize
//
gST->FirmwareVendor = AllocateRuntimeCopyPool (
sizeof (mFirmwareVendor),
&mFirmwareVendor
);
ASSERT (gST->FirmwareVendor != NULL);
gST->FirmwareRevision = 0;
//
// Fixup Tasble CRC after we updated Firmware Vendor and Revision
//
gBS->CalculateCrc32 ((VOID *) gST, sizeof (EFI_SYSTEM_TABLE), &gST->Hdr.CRC32);
GetSystemTablesFromHob ();
UpdateMemoryMap ();
//
// Append Usb Keyboard short form DevicePath into "ConInDev"
//
BdsLibUpdateConsoleVariable (
VarConsoleInpDev,
(EFI_DEVICE_PATH_PROTOCOL *) &gUsbClassKeyboardDevicePath,
NULL
);
}
UINT64
GetPciExpressBaseAddressForRootBridge (
IN UINTN HostBridgeNumber,
IN UINTN RootBridgeNumber
)
/*++
Routine Description:
This routine is to get PciExpress Base Address for this RootBridge
Arguments:
HostBridgeNumber - The number of HostBridge
RootBridgeNumber - The number of RootBridge
Returns:
UINT64 - PciExpressBaseAddress for this HostBridge and RootBridge
--*/
{
EFI_PCI_EXPRESS_BASE_ADDRESS_INFORMATION *PciExpressBaseAddressInfo;
UINTN BufferSize;
UINT32 Index;
UINT32 Number;
EFI_PEI_HOB_POINTERS GuidHob;
//
// Get PciExpressAddressInfo Hob
//
PciExpressBaseAddressInfo = NULL;
BufferSize = 0;
GuidHob.Raw = GetFirstGuidHob (&gEfiPciExpressBaseAddressGuid);
if (GuidHob.Raw != NULL) {
PciExpressBaseAddressInfo = GET_GUID_HOB_DATA (GuidHob.Guid);
BufferSize = GET_GUID_HOB_DATA_SIZE (GuidHob.Guid);
} else {
return 0;
}
//
// Search the PciExpress Base Address in the Hob for current RootBridge
//
Number = (UINT32)(BufferSize / sizeof(EFI_PCI_EXPRESS_BASE_ADDRESS_INFORMATION));
for (Index = 0; Index < Number; Index++) {
if ((PciExpressBaseAddressInfo[Index].HostBridgeNumber == HostBridgeNumber) &&
(PciExpressBaseAddressInfo[Index].RootBridgeNumber == RootBridgeNumber)) {
return PciExpressBaseAddressInfo[Index].PciExpressBaseAddress;
}
}
//
// Do not find the PciExpress Base Address in the Hob
//
return 0;
}
VOID
PatchPciRootBridgeDevicePath (
IN UINTN HostBridgeNumber,
IN UINTN RootBridgeNumber,
IN PLATFORM_ROOT_BRIDGE_DEVICE_PATH *RootBridge
)
{
UINT64 PciExpressBase;
PciExpressBase = GetPciExpressBaseAddressForRootBridge (HostBridgeNumber, RootBridgeNumber);
DEBUG ((EFI_D_INFO, "Get PciExpress Address from Hob: 0x%X\n", PciExpressBase));
if (PciExpressBase != 0) {
RootBridge->PciRootBridge.HID = EISA_PNP_ID(0x0A08);
}
}
EFI_STATUS
ConnectRootBridge (
VOID
)
/*++
Routine Description:
Connect RootBridge
Arguments:
None.
Returns:
EFI_SUCCESS - Connect RootBridge successfully.
EFI_STATUS - Connect RootBridge fail.
--*/
{
EFI_STATUS Status;
EFI_HANDLE RootHandle;
//
// Patch Pci Root Bridge Device Path
//
PatchPciRootBridgeDevicePath (0, 0, &gPlatformRootBridge0);
//
// Make all the PCI_IO protocols on PCI Seg 0 show up
//
BdsLibConnectDevicePath (gPlatformRootBridges[0]);
Status = gBS->LocateDevicePath (
&gEfiDevicePathProtocolGuid,
&gPlatformRootBridges[0],
&RootHandle
);
DEBUG ((EFI_D_INFO, "Pci Root bridge handle is 0x%X\n", RootHandle));
if (EFI_ERROR (Status)) {
return Status;
}
Status = gBS->ConnectController (RootHandle, NULL, NULL, FALSE);
if (EFI_ERROR (Status)) {
return Status;
}
return EFI_SUCCESS;
}
EFI_STATUS
PrepareLpcBridgeDevicePath (
IN EFI_HANDLE DeviceHandle
)
/*++
Routine Description:
Add IsaKeyboard to ConIn,
add IsaSerial to ConOut, ConIn, ErrOut.
LPC Bridge: 06 01 00
Arguments:
DeviceHandle - Handle of PCIIO protocol.
Returns:
EFI_SUCCESS - LPC bridge is added to ConOut, ConIn, and ErrOut.
EFI_STATUS - No LPC bridge is added.
--*/
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *TempDevicePath;
DevicePath = NULL;
Status = gBS->HandleProtocol (
DeviceHandle,
&gEfiDevicePathProtocolGuid,
(VOID*)&DevicePath
);
if (EFI_ERROR (Status)) {
return Status;
}
TempDevicePath = DevicePath;
//
// Register Keyboard
//
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gPnpPs2KeyboardDeviceNode);
BdsLibUpdateConsoleVariable (VarConsoleInp, DevicePath, NULL);
//
// Register COM1
//
DevicePath = TempDevicePath;
gPnp16550ComPortDeviceNode.UID = 0;
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gPnp16550ComPortDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gUartDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gTerminalTypeDeviceNode);
BdsLibUpdateConsoleVariable (VarConsoleOut, DevicePath, NULL);
BdsLibUpdateConsoleVariable (VarConsoleInp, DevicePath, NULL);
BdsLibUpdateConsoleVariable (VarErrorOut, DevicePath, NULL);
//
// Register COM2
//
DevicePath = TempDevicePath;
gPnp16550ComPortDeviceNode.UID = 1;
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gPnp16550ComPortDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gUartDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gTerminalTypeDeviceNode);
BdsLibUpdateConsoleVariable (VarConsoleOut, DevicePath, NULL);
BdsLibUpdateConsoleVariable (VarConsoleInp, DevicePath, NULL);
BdsLibUpdateConsoleVariable (VarErrorOut, DevicePath, NULL);
return EFI_SUCCESS;
}
EFI_STATUS
GetGopDevicePath (
IN EFI_DEVICE_PATH_PROTOCOL *PciDevicePath,
OUT EFI_DEVICE_PATH_PROTOCOL **GopDevicePath
)
{
UINTN Index;
EFI_STATUS Status;
EFI_HANDLE PciDeviceHandle;
EFI_DEVICE_PATH_PROTOCOL *TempDevicePath;
EFI_DEVICE_PATH_PROTOCOL *TempPciDevicePath;
UINTN GopHandleCount;
EFI_HANDLE *GopHandleBuffer;
if (PciDevicePath == NULL || GopDevicePath == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Initialize the GopDevicePath to be PciDevicePath
//
*GopDevicePath = PciDevicePath;
TempPciDevicePath = PciDevicePath;
Status = gBS->LocateDevicePath (
&gEfiDevicePathProtocolGuid,
&TempPciDevicePath,
&PciDeviceHandle
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Try to connect this handle, so that GOP dirver could start on this
// device and create child handles with GraphicsOutput Protocol installed
// on them, then we get device paths of these child handles and select
// them as possible console device.
//
gBS->ConnectController (PciDeviceHandle, NULL, NULL, FALSE);
Status = gBS->LocateHandleBuffer (
ByProtocol,
&gEfiGraphicsOutputProtocolGuid,
NULL,
&GopHandleCount,
&GopHandleBuffer
);
if (!EFI_ERROR (Status)) {
//
// Add all the child handles as possible Console Device
//
for (Index = 0; Index < GopHandleCount; Index++) {
Status = gBS->HandleProtocol (GopHandleBuffer[Index], &gEfiDevicePathProtocolGuid, (VOID*)&TempDevicePath);
if (EFI_ERROR (Status)) {
continue;
}
if (CompareMem (
PciDevicePath,
TempDevicePath,
GetDevicePathSize (PciDevicePath) - END_DEVICE_PATH_LENGTH
) == 0) {
//
// In current implementation, we only enable one of the child handles
// as console device, i.e. sotre one of the child handle's device
// path to variable "ConOut"
// In futhure, we could select all child handles to be console device
//
*GopDevicePath = TempDevicePath;
//
// Delete the PCI device's path that added by GetPlugInPciVgaDevicePath()
// Add the integrity GOP device path.
//
BdsLibUpdateConsoleVariable (VarConsoleOutDev, NULL, PciDevicePath);
BdsLibUpdateConsoleVariable (VarConsoleOutDev, TempDevicePath, NULL);
}
}
gBS->FreePool (GopHandleBuffer);
}
return EFI_SUCCESS;
}
EFI_STATUS
PreparePciVgaDevicePath (
IN EFI_HANDLE DeviceHandle
)
/*++
Routine Description:
Add PCI VGA to ConOut.
PCI VGA: 03 00 00
Arguments:
DeviceHandle - Handle of PCIIO protocol.
Returns:
EFI_SUCCESS - PCI VGA is added to ConOut.
EFI_STATUS - No PCI VGA device is added.
--*/
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *GopDevicePath;
DevicePath = NULL;
Status = gBS->HandleProtocol (
DeviceHandle,
&gEfiDevicePathProtocolGuid,
(VOID*)&DevicePath
);
if (EFI_ERROR (Status)) {
return Status;
}
GetGopDevicePath (DevicePath, &GopDevicePath);
DevicePath = GopDevicePath;
BdsLibUpdateConsoleVariable (VarConsoleOut, DevicePath, NULL);
return EFI_SUCCESS;
}
EFI_STATUS
PreparePciSerialDevicePath (
IN EFI_HANDLE DeviceHandle
)
/*++
Routine Description:
Add PCI Serial to ConOut, ConIn, ErrOut.
PCI Serial: 07 00 02
Arguments:
DeviceHandle - Handle of PCIIO protocol.
Returns:
EFI_SUCCESS - PCI Serial is added to ConOut, ConIn, and ErrOut.
EFI_STATUS - No PCI Serial device is added.
--*/
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
DevicePath = NULL;
Status = gBS->HandleProtocol (
DeviceHandle,
&gEfiDevicePathProtocolGuid,
(VOID*)&DevicePath
);
if (EFI_ERROR (Status)) {
return Status;
}
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gUartDeviceNode);
DevicePath = AppendDevicePathNode (DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gTerminalTypeDeviceNode);
BdsLibUpdateConsoleVariable (VarConsoleOut, DevicePath, NULL);
BdsLibUpdateConsoleVariable (VarConsoleInp, DevicePath, NULL);
BdsLibUpdateConsoleVariable (VarErrorOut, DevicePath, NULL);
return EFI_SUCCESS;
}
EFI_STATUS
DetectAndPreparePlatformPciDevicePath (
BOOLEAN DetectVgaOnly
)
/*++
Routine Description:
Do platform specific PCI Device check and add them to ConOut, ConIn, ErrOut
Arguments:
DetectVgaOnly - Only detect VGA device if it's TRUE.
Returns:
EFI_SUCCESS - PCI Device check and Console variable update successfully.
EFI_STATUS - PCI Device check or Console variable update fail.
--*/
{
EFI_STATUS Status;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
UINTN Index;
EFI_PCI_IO_PROTOCOL *PciIo;
PCI_TYPE00 Pci;
//
// Start to check all the PciIo to find all possible device
//
HandleCount = 0;
HandleBuffer = NULL;
Status = gBS->LocateHandleBuffer (
ByProtocol,
&gEfiPciIoProtocolGuid,
NULL,
&HandleCount,
&HandleBuffer
);
if (EFI_ERROR (Status)) {
return Status;
}
for (Index = 0; Index < HandleCount; Index++) {
Status = gBS->HandleProtocol (HandleBuffer[Index], &gEfiPciIoProtocolGuid, (VOID*)&PciIo);
if (EFI_ERROR (Status)) {
continue;
}
//
// Check for all PCI device
//
Status = PciIo->Pci.Read (
PciIo,
EfiPciIoWidthUint32,
0,
sizeof (Pci) / sizeof (UINT32),
&Pci
);
if (EFI_ERROR (Status)) {
continue;
}
if (!DetectVgaOnly) {
//
// Here we decide whether it is LPC Bridge
//
if ((IS_PCI_LPC (&Pci)) ||
((IS_PCI_ISA_PDECODE (&Pci)) && (Pci.Hdr.VendorId == 0x8086) && (Pci.Hdr.DeviceId == 0x7110))) {
//
// Add IsaKeyboard to ConIn,
// add IsaSerial to ConOut, ConIn, ErrOut
//
DEBUG ((EFI_D_INFO, "Find the LPC Bridge device\n"));
PrepareLpcBridgeDevicePath (HandleBuffer[Index]);
continue;
}
//
// Here we decide which Serial device to enable in PCI bus
//
if (IS_PCI_16550SERIAL (&Pci)) {
//
// Add them to ConOut, ConIn, ErrOut.
//
DEBUG ((EFI_D_INFO, "Find the 16550 SERIAL device\n"));
PreparePciSerialDevicePath (HandleBuffer[Index]);
continue;
}
}
//
// Here we decide which VGA device to enable in PCI bus
//
if (IS_PCI_VGA (&Pci)) {
//
// Add them to ConOut.
//
DEBUG ((EFI_D_INFO, "Find the VGA device\n"));
PreparePciVgaDevicePath (HandleBuffer[Index]);
continue;
}
}
gBS->FreePool (HandleBuffer);
return EFI_SUCCESS;
}
EFI_STATUS
PlatformBdsConnectConsole (
IN BDS_CONSOLE_CONNECT_ENTRY *PlatformConsole
)
/*++
Routine Description:
Connect the predefined platform default console device. Always try to find
and enable the vga device if have.
Arguments:
PlatformConsole - Predfined platform default console device array.
Returns:
EFI_SUCCESS - Success connect at least one ConIn and ConOut
device, there must have one ConOut device is
active vga device.
EFI_STATUS - Return the status of
BdsLibConnectAllDefaultConsoles ()
--*/
{
EFI_STATUS Status;
UINTN Index;
EFI_DEVICE_PATH_PROTOCOL *VarConout;
EFI_DEVICE_PATH_PROTOCOL *VarConin;
UINTN DevicePathSize;
//
// Connect RootBridge
//
ConnectRootBridge ();
VarConout = BdsLibGetVariableAndSize (
VarConsoleOut,
&gEfiGlobalVariableGuid,
&DevicePathSize
);
VarConin = BdsLibGetVariableAndSize (
VarConsoleInp,
&gEfiGlobalVariableGuid,
&DevicePathSize
);
if (VarConout == NULL || VarConin == NULL) {
//
// Do platform specific PCI Device check and add them to ConOut, ConIn, ErrOut
//
DetectAndPreparePlatformPciDevicePath (FALSE);
//
// Have chance to connect the platform default console,
// the platform default console is the minimue device group
// the platform should support
//
for (Index = 0; PlatformConsole[Index].DevicePath != NULL; ++Index) {
//
// Update the console variable with the connect type
//
if ((PlatformConsole[Index].ConnectType & CONSOLE_IN) == CONSOLE_IN) {
BdsLibUpdateConsoleVariable (VarConsoleInp, PlatformConsole[Index].DevicePath, NULL);
}
if ((PlatformConsole[Index].ConnectType & CONSOLE_OUT) == CONSOLE_OUT) {
BdsLibUpdateConsoleVariable (VarConsoleOut, PlatformConsole[Index].DevicePath, NULL);
}
if ((PlatformConsole[Index].ConnectType & STD_ERROR) == STD_ERROR) {
BdsLibUpdateConsoleVariable (VarErrorOut, PlatformConsole[Index].DevicePath, NULL);
}
}
} else {
//
// Only detect VGA device and add them to ConOut
//
DetectAndPreparePlatformPciDevicePath (TRUE);
}
//
// The ConIn devices connection will start the USB bus, should disable all
// Usb legacy support firstly.
// Caution: Must ensure the PCI bus driver has been started. Since the
// ConnectRootBridge() will create all the PciIo protocol, it's safe here now
//
Status = DisableUsbLegacySupport();
//
// Connect the all the default console with current cosole variable
//
Status = BdsLibConnectAllDefaultConsoles ();
if (EFI_ERROR (Status)) {
return Status;
}
return EFI_SUCCESS;
}
VOID
PlatformBdsConnectSequence (
VOID
)
/*++
Routine Description:
Connect with predeined platform connect sequence,
the OEM/IBV can customize with their own connect sequence.
Arguments:
None.
Returns:
None.
--*/
{
UINTN Index;
Index = 0;
//
// Here we can get the customized platform connect sequence
// Notes: we can connect with new variable which record the
// last time boots connect device path sequence
//
while (gPlatformConnectSequence[Index] != NULL) {
//
// Build the platform boot option
//
BdsLibConnectDevicePath (gPlatformConnectSequence[Index]);
Index++;
}
}
VOID
PlatformBdsGetDriverOption (
IN OUT LIST_ENTRY *BdsDriverLists
)
/*++
Routine Description:
Load the predefined driver option, OEM/IBV can customize this
to load their own drivers
Arguments:
BdsDriverLists - The header of the driver option link list.
Returns:
None.
--*/
{
UINTN Index;
Index = 0;
//
// Here we can get the customized platform driver option
//
while (gPlatformDriverOption[Index] != NULL) {
//
// Build the platform boot option
//
BdsLibRegisterNewOption (BdsDriverLists, gPlatformDriverOption[Index], NULL, L"DriverOrder");
Index++;
}
}
VOID
PlatformBdsDiagnostics (
IN EXTENDMEM_COVERAGE_LEVEL MemoryTestLevel,
IN BOOLEAN QuietBoot
)
/*++
Routine Description:
Perform the platform diagnostic, such like test memory. OEM/IBV also
can customize this fuction to support specific platform diagnostic.
Arguments:
MemoryTestLevel - The memory test intensive level
QuietBoot - Indicate if need to enable the quiet boot
Returns:
None.
--*/
{
EFI_STATUS Status;
//
// Here we can decide if we need to show
// the diagnostics screen
// Notes: this quiet boot code should be remove
// from the graphic lib
//
if (QuietBoot) {
Status = EnableQuietBoot (&gEfiDefaultBmpLogoGuid);
if (EFI_ERROR (Status)) {
DisableQuietBoot ();
return;
}
//
// Perform system diagnostic
//
Status = BdsMemoryTest (MemoryTestLevel);
if (EFI_ERROR (Status)) {
DisableQuietBoot ();
}
return ;
}
//
// Perform system diagnostic
//
Status = BdsMemoryTest (MemoryTestLevel);
}
VOID
PlatformBdsPolicyBehavior (
IN EFI_BDS_ARCH_PROTOCOL_INSTANCE *PrivateData,
IN OUT LIST_ENTRY *DriverOptionList,
IN OUT LIST_ENTRY *BootOptionList
)
/*++
Routine Description:
The function will excute with as the platform policy, current policy
is driven by boot mode. IBV/OEM can customize this code for their specific
policy action.
Arguments:
PrivateData - The EFI_BDS_ARCH_PROTOCOL_INSTANCE instance
DriverOptionList - The header of the driver option link list
BootOptionList - The header of the boot option link list
Returns:
None.
--*/
{
EFI_STATUS Status;
UINT16 Timeout;
EFI_EVENT UserInputDurationTime;
LIST_ENTRY *Link;
BDS_COMMON_OPTION *BootOption;
UINTN Index;
EFI_INPUT_KEY Key;
EFI_TPL OldTpl;
//
// Init the time out value
//
Timeout = BdsLibGetTimeout ();
//
// Load the driver option as the driver option list
//
PlatformBdsGetDriverOption (DriverOptionList);
//
// Get current Boot Mode
//
Status = BdsLibGetBootMode (&PrivateData->BootMode);
DEBUG ((EFI_D_ERROR, "Boot Mode:%x\n", PrivateData->BootMode));
//
// Go the different platform policy with different boot mode
// Notes: this part code can be change with the table policy
//
ASSERT (PrivateData->BootMode == BOOT_WITH_FULL_CONFIGURATION);
//
// Connect platform console
//
Status = PlatformBdsConnectConsole (gPlatformConsole);
if (EFI_ERROR (Status)) {
//
// Here OEM/IBV can customize with defined action
//
PlatformBdsNoConsoleAction ();
}
//
// Create a 300ms duration event to ensure user has enough input time to enter Setup
//
Status = gBS->CreateEvent (
EVT_TIMER,
0,
NULL,
NULL,
&UserInputDurationTime
);
ASSERT (Status == EFI_SUCCESS);
Status = gBS->SetTimer (UserInputDurationTime, TimerRelative, 3000000);
ASSERT (Status == EFI_SUCCESS);
//
// Memory test and Logo show
//
PlatformBdsDiagnostics (IGNORE, TRUE);
//
// Perform some platform specific connect sequence
//
PlatformBdsConnectSequence ();
//
// Give one chance to enter the setup if we
// have the time out
//
if (Timeout != 0) {
PlatformBdsEnterFrontPage (Timeout, FALSE);
}
//
//BdsLibConnectAll ();
//BdsLibEnumerateAllBootOption (BootOptionList);
//
// Please uncomment above ConnectAll and EnumerateAll code and remove following first boot
// checking code in real production tip.
//
// In BOOT_WITH_FULL_CONFIGURATION boot mode, should always connect every device
// and do enumerate all the default boot options. But in development system board, the boot mode
// cannot be BOOT_ASSUMING_NO_CONFIGURATION_CHANGES because the machine box
// is always open. So the following code only do the ConnectAll and EnumerateAll at first boot.
//
Status = BdsLibBuildOptionFromVar (BootOptionList, L"BootOrder");
if (EFI_ERROR(Status)) {
//
// If cannot find "BootOrder" variable, it may be first boot.
// Try to connect all devices and enumerate all boot options here.
//
BdsLibConnectAll ();
BdsLibEnumerateAllBootOption (BootOptionList);
}
//
// To give the User a chance to enter Setup here, if user set TimeOut is 0.
// BDS should still give user a chance to enter Setup
//
// Connect first boot option, and then check user input before exit
//
for (Link = BootOptionList->ForwardLink; Link != BootOptionList;Link = Link->ForwardLink) {
BootOption = CR (Link, BDS_COMMON_OPTION, Link, BDS_LOAD_OPTION_SIGNATURE);
if (!IS_LOAD_OPTION_TYPE (BootOption->Attribute, LOAD_OPTION_ACTIVE)) {
//
// skip the header of the link list, becuase it has no boot option
//
continue;
} else {
//
// Make sure the boot option device path connected, but ignore the BBS device path
//
if (DevicePathType (BootOption->DevicePath) != BBS_DEVICE_PATH) {
BdsLibConnectDevicePath (BootOption->DevicePath);
}
break;
}
}
//
// Check whether the user input after the duration time has expired
//
OldTpl = EfiGetCurrentTpl();
gBS->RestoreTPL (TPL_APPLICATION);
gBS->WaitForEvent (1, &UserInputDurationTime, &Index);
gBS->CloseEvent (UserInputDurationTime);
Status = gST->ConIn->ReadKeyStroke (gST->ConIn, &Key);
gBS->RaiseTPL (OldTpl);
if (!EFI_ERROR (Status)) {
//
// Enter Setup if user input
//
Timeout = 0xffff;
PlatformBdsEnterFrontPage (Timeout, FALSE);
}
return ;
}
VOID
PlatformBdsBootSuccess (
IN BDS_COMMON_OPTION *Option
)
/*++
Routine Description:
Hook point after a boot attempt succeeds. We don't expect a boot option to
return, so the EFI 1.0 specification defines that you will default to an
interactive mode and stop processing the BootOrder list in this case. This
is alos a platform implementation and can be customized by IBV/OEM.
Arguments:
Option - Pointer to Boot Option that succeeded to boot.
Returns:
None.
--*/
{
CHAR16 *TmpStr;
//
// If Boot returned with EFI_SUCCESS and there is not in the boot device
// select loop then we need to pop up a UI and wait for user input.
//
TmpStr = Option->StatusString;
if (TmpStr != NULL) {
BdsLibOutputStrings (gST->ConOut, TmpStr, Option->Description, L"\n\r", NULL);
gBS->FreePool (TmpStr);
}
}
VOID
PlatformBdsBootFail (
IN BDS_COMMON_OPTION *Option,
IN EFI_STATUS Status,
IN CHAR16 *ExitData,
IN UINTN ExitDataSize
)
/*++
Routine Description:
Hook point after a boot attempt fails.
Arguments:
Option - Pointer to Boot Option that failed to boot.
Status - Status returned from failed boot.
ExitData - Exit data returned from failed boot.
ExitDataSize - Exit data size returned from failed boot.
Returns:
None.
--*/
{
CHAR16 *TmpStr;
//
// If Boot returned with failed status then we need to pop up a UI and wait
// for user input.
//
TmpStr = Option->StatusString;
if (TmpStr != NULL) {
BdsLibOutputStrings (gST->ConOut, TmpStr, Option->Description, L"\n\r", NULL);
gBS->FreePool (TmpStr);
}
}
EFI_STATUS
PlatformBdsNoConsoleAction (
VOID
)
/*++
Routine Description:
This function is remained for IBV/OEM to do some platform action,
if there no console device can be connected.
Arguments:
None.
Returns:
EFI_SUCCESS - Direct return success now.
--*/
{
return EFI_SUCCESS;
}
EFI_STATUS
ConvertSystemTable (
IN EFI_GUID *TableGuid,
IN OUT VOID **Table
)
/*++
Routine Description:
Convert ACPI Table /Smbios Table /MP Table if its location is lower than Address:0x100000
Assumption here:
As in legacy Bios, ACPI/Smbios/MP table is required to place in E/F Seg,
So here we just check if the range is E/F seg,
and if Not, assume the Memory type is EfiACPIReclaimMemory/EfiACPIMemoryNVS
Arguments:
TableGuid - Guid of the table
Table - pointer to the table
Returns:
EFI_SUCEESS - Convert Table successfully
Other - Failed
--*/
{
EFI_STATUS Status;
VOID *AcpiHeader;
UINTN AcpiTableLen;
//
// If match acpi guid (1.0, 2.0, or later), Convert ACPI table according to version.
//
AcpiHeader = (VOID*)(UINTN)(*(UINT64 *)(*Table));
if (CompareGuid(TableGuid, &gEfiAcpiTableGuid) || CompareGuid(TableGuid, &gEfiAcpi20TableGuid)){
if (((EFI_ACPI_1_0_ROOT_SYSTEM_DESCRIPTION_POINTER *)AcpiHeader)->Reserved == 0x00){
//
// If Acpi 1.0 Table, then RSDP structure doesn't contain Length field, use structure size
//
AcpiTableLen = sizeof (EFI_ACPI_1_0_ROOT_SYSTEM_DESCRIPTION_POINTER);
} else if (((EFI_ACPI_1_0_ROOT_SYSTEM_DESCRIPTION_POINTER *)AcpiHeader)->Reserved >= 0x02){
//
// If Acpi 2.0 or later, use RSDP Length fied.
//
AcpiTableLen = ((EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER *)AcpiHeader)->Length;
} else {
//
// Invalid Acpi Version, return
//
return EFI_UNSUPPORTED;
}
Status = ConvertAcpiTable (AcpiTableLen, Table);
return Status;
}
//
// If matches smbios guid, convert Smbios table.
//
if (CompareGuid(TableGuid, &gEfiSmbiosTableGuid)){
Status = ConvertSmbiosTable (Table);
return Status;
}
//
// If the table is MP table?
//
if (CompareGuid(TableGuid, &gEfiMpsTableGuid)){
Status = ConvertMpsTable (Table);
return Status;
}
return EFI_UNSUPPORTED;
}
UINT8
GetBufferCheckSum (
IN VOID * Buffer,
IN UINTN Length
)
/*++
Routine Description:
Caculate buffer checksum (8-bit)
Arguments:
Buffer - Pointer to Buffer that to be caculated
Length - How many bytes are to be caculated
Returns:
Checksum of the buffer
--*/
{
UINT8 CheckSum;
UINT8 *Ptr8;
CheckSum = 0;
Ptr8 = (UINT8 *) Buffer;
while (Length > 0) {
CheckSum = (UINT8) (CheckSum + *Ptr8++);
Length--;
}
return (UINT8)((0xFF - CheckSum) + 1);
}
EFI_STATUS
ConvertAcpiTable (
IN UINTN TableLen,
IN OUT VOID **Table
)
/*++
Routine Description:
Convert RSDP of ACPI Table if its location is lower than Address:0x100000
Assumption here:
As in legacy Bios, ACPI table is required to place in E/F Seg,
So here we just check if the range is E/F seg,
and if Not, assume the Memory type is EfiACPIReclaimMemory/EfiACPIMemoryNVS
Arguments:
TableLen - Acpi RSDP length
Table - pointer to the table
Returns:
EFI_SUCEESS - Convert Table successfully
Other - Failed
--*/
{
VOID *AcpiTableOri;
VOID *AcpiTableNew;
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS BufferPtr;
AcpiTableOri = (VOID *)(UINTN)(*(UINT64*)(*Table));
if (((UINTN)AcpiTableOri < 0x100000) && ((UINTN)AcpiTableOri > 0xE0000)) {
BufferPtr = EFI_SYSTEM_TABLE_MAX_ADDRESS;
Status = gBS->AllocatePages (
AllocateMaxAddress,
EfiACPIMemoryNVS,
EFI_SIZE_TO_PAGES(TableLen),
&BufferPtr
);
ASSERT_EFI_ERROR (Status);
AcpiTableNew = (VOID *)(UINTN)BufferPtr;
CopyMem (AcpiTableNew, AcpiTableOri, TableLen);
} else {
AcpiTableNew = AcpiTableOri;
}
//
// Change configuration table Pointer
//
*Table = AcpiTableNew;
return EFI_SUCCESS;
}
EFI_STATUS
ConvertSmbiosTable (
IN OUT VOID **Table
)
/*++
Routine Description:
Convert Smbios Table if the Location of the SMBios Table is lower than Addres 0x100000
Assumption here:
As in legacy Bios, Smbios table is required to place in E/F Seg,
So here we just check if the range is F seg,
and if Not, assume the Memory type is EfiACPIMemoryNVS/EfiRuntimeServicesData
Arguments:
Table - pointer to the table
Returns:
EFI_SUCEESS - Convert Table successfully
Other - Failed
--*/
{
SMBIOS_TABLE_ENTRY_POINT *SmbiosTableNew;
SMBIOS_TABLE_ENTRY_POINT *SmbiosTableOri;
EFI_STATUS Status;
UINT32 SmbiosEntryLen;
UINT32 BufferLen;
EFI_PHYSICAL_ADDRESS BufferPtr;
SmbiosTableNew = NULL;
SmbiosTableOri = NULL;
//
// Get Smibos configuration Table
//
SmbiosTableOri = (SMBIOS_TABLE_ENTRY_POINT *)(UINTN)(*(UINT64*)(*Table));
if ((SmbiosTableOri == NULL) ||
((UINTN)SmbiosTableOri > 0x100000) ||
((UINTN)SmbiosTableOri < 0xF0000)){
return EFI_SUCCESS;
}
//
// Relocate the Smibos memory
//
BufferPtr = EFI_SYSTEM_TABLE_MAX_ADDRESS;
if (SmbiosTableOri->SmbiosBcdRevision != 0x21) {
SmbiosEntryLen = SmbiosTableOri->EntryPointLength;
} else {
//
// According to Smbios Spec 2.4, we should set entry point length as 0x1F if version is 2.1
//
SmbiosEntryLen = 0x1F;
}
BufferLen = SmbiosEntryLen + SYS_TABLE_PAD(SmbiosEntryLen) + SmbiosTableOri->TableLength;
Status = gBS->AllocatePages (
AllocateMaxAddress,
EfiACPIMemoryNVS,
EFI_SIZE_TO_PAGES(BufferLen),
&BufferPtr
);
ASSERT_EFI_ERROR (Status);
SmbiosTableNew = (SMBIOS_TABLE_ENTRY_POINT *)(UINTN)BufferPtr;
CopyMem (
SmbiosTableNew,
SmbiosTableOri,
SmbiosEntryLen
);
//
// Get Smbios Structure table address, and make sure the start address is 32-bit align
//
BufferPtr += SmbiosEntryLen + SYS_TABLE_PAD(SmbiosEntryLen);
CopyMem (
(VOID *)(UINTN)BufferPtr,
(VOID *)(UINTN)(SmbiosTableOri->TableAddress),
SmbiosTableOri->TableLength
);
SmbiosTableNew->TableAddress = (UINT32)BufferPtr;
SmbiosTableNew->IntermediateChecksum = 0;
SmbiosTableNew->IntermediateChecksum =
GetBufferCheckSum ((UINT8*)SmbiosTableNew + 0x10, SmbiosEntryLen -0x10);
//
// Change the SMBIOS pointer
//
*Table = SmbiosTableNew;
return EFI_SUCCESS;
}
EFI_STATUS
ConvertMpsTable (
IN OUT VOID **Table
)
/*++
Routine Description:
Convert MP Table if the Location of the SMBios Table is lower than Addres 0x100000
Assumption here:
As in legacy Bios, MP table is required to place in E/F Seg,
So here we just check if the range is E/F seg,
and if Not, assume the Memory type is EfiACPIMemoryNVS/EfiRuntimeServicesData
Arguments:
Table - pointer to the table
Returns:
EFI_SUCEESS - Convert Table successfully
Other - Failed
--*/
{
UINT32 Data32;
UINT32 FPLength;
EFI_LEGACY_MP_TABLE_FLOATING_POINTER *MpsFloatingPointerOri;
EFI_LEGACY_MP_TABLE_FLOATING_POINTER *MpsFloatingPointerNew;
EFI_LEGACY_MP_TABLE_HEADER *MpsTableOri;
EFI_LEGACY_MP_TABLE_HEADER *MpsTableNew;
VOID *OemTableOri;
VOID *OemTableNew;
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS BufferPtr;
//
// Get MP configuration Table
//
MpsFloatingPointerOri = (EFI_LEGACY_MP_TABLE_FLOATING_POINTER *)(UINTN)(*(UINT64*)(*Table));
if (!(((UINTN)MpsFloatingPointerOri <= 0x100000) &&
((UINTN)MpsFloatingPointerOri >= 0xF0000))){
return EFI_SUCCESS;
}
//
// Get Floating pointer structure length
//
FPLength = MpsFloatingPointerOri->Length * 16;
Data32 = FPLength + SYS_TABLE_PAD (FPLength);
MpsTableOri = (EFI_LEGACY_MP_TABLE_HEADER *)(UINTN)(MpsFloatingPointerOri->PhysicalAddress);
if (MpsTableOri != NULL) {
Data32 += MpsTableOri->BaseTableLength;
Data32 += MpsTableOri->ExtendedTableLength;
if (MpsTableOri->OemTablePointer != 0x00) {
Data32 += SYS_TABLE_PAD (Data32);
Data32 += MpsTableOri->OemTableSize;
}
} else {
return EFI_SUCCESS;
}
//
// Relocate memory
//
BufferPtr = EFI_SYSTEM_TABLE_MAX_ADDRESS;
Status = gBS->AllocatePages (
AllocateMaxAddress,
EfiACPIMemoryNVS,
EFI_SIZE_TO_PAGES(Data32),
&BufferPtr
);
ASSERT_EFI_ERROR (Status);
MpsFloatingPointerNew = (EFI_LEGACY_MP_TABLE_FLOATING_POINTER *)(UINTN)BufferPtr;
CopyMem (MpsFloatingPointerNew, MpsFloatingPointerOri, FPLength);
//
// If Mp Table exists
//
if (MpsTableOri != NULL) {
//
// Get Mps table length, including Ext table
//
BufferPtr = BufferPtr + FPLength + SYS_TABLE_PAD (FPLength);
MpsTableNew = (EFI_LEGACY_MP_TABLE_HEADER *)(UINTN)BufferPtr;
CopyMem (MpsTableNew, MpsTableOri, MpsTableOri->BaseTableLength + MpsTableOri->ExtendedTableLength);
if ((MpsTableOri->OemTableSize != 0x0000) && (MpsTableOri->OemTablePointer != 0x0000)){
BufferPtr += MpsTableOri->BaseTableLength + MpsTableOri->ExtendedTableLength;
BufferPtr += SYS_TABLE_PAD (BufferPtr);
OemTableNew = (VOID *)(UINTN)BufferPtr;
OemTableOri = (VOID *)(UINTN)MpsTableOri->OemTablePointer;
CopyMem (OemTableNew, OemTableOri, MpsTableOri->OemTableSize);
MpsTableNew->OemTablePointer = (UINT32)(UINTN)OemTableNew;
}
MpsTableNew->Checksum = 0;
MpsTableNew->Checksum = GetBufferCheckSum (MpsTableNew, MpsTableOri->BaseTableLength);
MpsFloatingPointerNew->PhysicalAddress = (UINT32)(UINTN)MpsTableNew;
MpsFloatingPointerNew->Checksum = 0;
MpsFloatingPointerNew->Checksum = GetBufferCheckSum (MpsFloatingPointerNew, FPLength);
}
//
// Change the pointer
//
*Table = MpsFloatingPointerNew;
return EFI_SUCCESS;
}