audk/MdeModulePkg/Bus/Pci/XhciDxe/XhciSched.c

2380 lines
74 KiB
C
Raw Normal View History

/** @file
XHCI transfer scheduling routines.
Copyright (c) 2011, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "Xhci.h"
/**
Allocates a buffer of a certain pool type at a specified alignment.
Allocates the number bytes specified by AllocationSize of a certain pool type with an alignment
specified by Alignment. The allocated buffer is returned. If AllocationSize is 0, then a valid
buffer of 0 size is returned. If there is not enough memory at the specified alignment remaining
to satisfy the request, then NULL is returned.
If Alignment is not a power of two and Alignment is not zero, then ASSERT().
@param PoolType The type of pool to allocate.
@param AllocationSize The number of bytes to allocate.
@param Alignment The requested alignment of the allocation. Must be a power of two.
If Alignment is zero, then byte alignment is used.
@return A pointer to the allocated buffer or NULL if allocation fails.
**/
VOID *
InternalAllocateAlignedPool (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN AllocationSize,
IN UINTN Alignment
)
{
VOID *RawAddress;
UINTN AlignedAddress;
UINTN AlignmentMask;
UINTN OverAllocationSize;
UINTN RealAllocationSize;
VOID **FreePointer;
//
// Alignment must be a power of two or zero.
//
ASSERT ((Alignment & (Alignment - 1)) == 0);
if (Alignment == 0) {
AlignmentMask = Alignment;
} else {
AlignmentMask = Alignment - 1;
}
//
// Calculate the extra memory size, over-allocate memory pool and get the aligned memory address.
//
OverAllocationSize = sizeof (RawAddress) + AlignmentMask;
RealAllocationSize = AllocationSize + OverAllocationSize;
//
// Make sure that AllocationSize plus OverAllocationSize does not overflow.
//
ASSERT (RealAllocationSize > AllocationSize);
RawAddress = NULL;
gBS->AllocatePool (PoolType, RealAllocationSize, &RawAddress);
if (RawAddress == NULL) {
return NULL;
}
AlignedAddress = ((UINTN) RawAddress + OverAllocationSize) & ~AlignmentMask;
//
// Save the original memory address just before the aligned address.
//
FreePointer = (VOID **)(AlignedAddress - sizeof (RawAddress));
*FreePointer = RawAddress;
return (VOID *) AlignedAddress;
}
/**
Allocates and zeros a buffer of a certain pool type at a specified alignment.
Allocates the number bytes specified by AllocationSize of a certain pool type with an alignment
specified by Alignment, clears the buffer with zeros, and returns a pointer to the allocated
buffer. If AllocationSize is 0, then a valid buffer of 0 size is returned. If there is not
enough memory at the specified alignment remaining to satisfy the request, then NULL is returned.
If Alignment is not a power of two and Alignment is not zero, then ASSERT().
@param PoolType The type of pool to allocate.
@param AllocationSize The number of bytes to allocate.
@param Alignment The requested alignment of the allocation. Must be a power of two.
If Alignment is zero, then byte alignment is used.
@return A pointer to the allocated buffer or NULL if allocation fails.
**/
VOID *
InternalAllocateAlignedZeroPool (
IN EFI_MEMORY_TYPE PoolType,
IN UINTN AllocationSize,
IN UINTN Alignment
)
{
VOID *Memory;
Memory = InternalAllocateAlignedPool (PoolType, AllocationSize, Alignment);
if (Memory != NULL) {
ZeroMem (Memory, AllocationSize);
}
return Memory;
}
/**
Allocates and zeros a buffer of type EfiBootServicesData at a specified alignment.
Allocates the number bytes specified by AllocationSize of type EfiBootServicesData with an
alignment specified by Alignment, clears the buffer with zeros, and returns a pointer to the
allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is returned. If there
is not enough memory at the specified alignment remaining to satisfy the request, then NULL is
returned.
If Alignment is not a power of two and Alignment is not zero, then ASSERT().
@param AllocationSize The number of bytes to allocate.
@param Alignment The requested alignment of the allocation. Must be a power of two.
If Alignment is zero, then byte alignment is used.
@return A pointer to the allocated buffer or NULL if allocation fails.
**/
VOID *
EFIAPI
AllocateAlignedZeroPool (
IN UINTN AllocationSize,
IN UINTN Alignment
)
{
return InternalAllocateAlignedZeroPool (EfiBootServicesData, AllocationSize, Alignment);
}
/**
Frees a buffer that was previously allocated with one of the aligned pool allocation functions
in the Memory Allocation Library.
Frees the buffer specified by Buffer. Buffer must have been allocated on a previous call to the
aligned pool allocation services of the Memory Allocation Library.
If Buffer was not allocated with an aligned pool allocation function in the Memory Allocation
Library, then ASSERT().
@param Buffer Pointer to the buffer to free.
**/
VOID
EFIAPI
FreeAlignedPool (
IN VOID *Buffer
)
{
VOID *RawAddress;
VOID **FreePointer;
EFI_STATUS Status;
//
// Get the pre-saved original address in the over-allocate pool.
//
FreePointer = (VOID **)((UINTN) Buffer - sizeof (RawAddress));
RawAddress = *FreePointer;
Status = gBS->FreePool (RawAddress);
ASSERT_EFI_ERROR (Status);
}
/**
Create a command transfer TRB to support XHCI command interfaces.
@param Xhc The XHCI device.
@param CmdTrb The cmd TRB to be executed.
@return Created URB or NULL.
**/
URB*
XhcCreateCmdTrb (
IN USB_XHCI_DEV *Xhc,
IN TRB *CmdTrb
)
{
URB *Urb;
Urb = AllocateZeroPool (sizeof (URB));
if (Urb == NULL) {
return NULL;
}
Urb->Signature = XHC_URB_SIG;
Urb->Ring = &Xhc->CmdRing;
XhcSyncTrsRing (Xhc, Urb->Ring);
Urb->TrbNum = 1;
Urb->TrbStart = Urb->Ring->RingEnqueue;
CopyMem (Urb->TrbStart, CmdTrb, sizeof (TRB));
Urb->TrbStart->CycleBit = Urb->Ring->RingPCS & BIT0;
Urb->TrbEnd = Urb->TrbStart;
Urb->EvtRing = &Xhc->CmdEventRing;
XhcSyncEventRing (Xhc, Urb->EvtRing);
Urb->EvtTrbStart = Urb->EvtRing->EventRingEnqueue;
return Urb;
}
/**
Execute a XHCI cmd TRB pointed by CmdTrb.
@param Xhc The XHCI device.
@param CmdTrb The cmd TRB to be executed.
@param TimeOut Indicates the maximum time, in millisecond, which the
transfer is allowed to complete.
@param EvtTrb The event TRB corresponding to the cmd TRB.
@retval EFI_SUCCESS The transfer was completed successfully.
@retval EFI_INVALID_PARAMETER Some parameters are invalid.
@retval EFI_TIMEOUT The transfer failed due to timeout.
@retval EFI_DEVICE_ERROR The transfer failed due to host controller error.
**/
EFI_STATUS
EFIAPI
XhcCmdTransfer (
IN USB_XHCI_DEV *Xhc,
IN TRB *CmdTrb,
IN UINTN TimeOut,
OUT TRB **EvtTrb
)
{
EFI_STATUS Status;
URB *Urb;
//
// Validate the parameters
//
if ((Xhc == NULL) || (CmdTrb == NULL)) {
return EFI_INVALID_PARAMETER;
}
Status = EFI_DEVICE_ERROR;
if (XhcIsHalt (Xhc) || XhcIsSysError (Xhc)) {
DEBUG ((EFI_D_ERROR, "XhcCmdTransfer: HC is halted\n"));
goto ON_EXIT;
}
//
// Create a new URB, then poll the execution status.
//
Urb = XhcCreateCmdTrb (Xhc, CmdTrb);
if (Urb == NULL) {
DEBUG ((EFI_D_ERROR, "XhcCmdTransfer: failed to create URB\n"));
Status = EFI_OUT_OF_RESOURCES;
goto ON_EXIT;
}
ASSERT (Urb->EvtRing == &Xhc->CmdEventRing);
Status = XhcExecTransfer (Xhc, TRUE, Urb, TimeOut);
*EvtTrb = Urb->EvtTrbStart;
if (Urb->Result == EFI_USB_NOERROR) {
Status = EFI_SUCCESS;
}
FreePool (Urb);
ON_EXIT:
return Status;
}
/**
Create a new URB for a new transaction.
@param Xhc The XHCI device
@param DevAddr The device address
@param EpAddr Endpoint addrress
@param DevSpeed The device speed
@param MaxPacket The max packet length of the endpoint
@param Type The transaction type
@param Request The standard USB request for control transfer
@param Data The user data to transfer
@param DataLen The length of data buffer
@param Callback The function to call when data is transferred
@param Context The context to the callback
@return Created URB or NULL
**/
URB*
XhcCreateUrb (
IN USB_XHCI_DEV *Xhc,
IN UINT8 DevAddr,
IN UINT8 EpAddr,
IN UINT8 DevSpeed,
IN UINTN MaxPacket,
IN UINTN Type,
IN EFI_USB_DEVICE_REQUEST *Request,
IN VOID *Data,
IN UINTN DataLen,
IN EFI_ASYNC_USB_TRANSFER_CALLBACK Callback,
IN VOID *Context
)
{
USB_ENDPOINT *Ep;
EFI_STATUS Status;
URB *Urb;
Urb = AllocateZeroPool (sizeof (URB));
if (Urb == NULL) {
return NULL;
}
Urb->Signature = XHC_URB_SIG;
InitializeListHead (&Urb->UrbList);
Ep = &Urb->Ep;
Ep->DevAddr = DevAddr;
Ep->EpAddr = (UINT8)(EpAddr & 0x0F);
Ep->Direction = ((EpAddr & 0x80) != 0) ? EfiUsbDataIn : EfiUsbDataOut;
Ep->DevSpeed = DevSpeed;
Ep->MaxPacket = MaxPacket;
Ep->Type = Type;
Urb->Request = Request;
Urb->Data = Data;
Urb->DataLen = DataLen;
Urb->Callback = Callback;
Urb->Context = Context;
Status = XhcCreateTransferTrb (Xhc, Urb);
return Urb;
}
/**
Create a transfer TRB.
@param Xhc The XHCI device
@param Urb The urb used to construct the transfer TRB.
@return Created TRB or NULL
**/
EFI_STATUS
XhcCreateTransferTrb (
IN USB_XHCI_DEV *Xhc,
IN URB *Urb
)
{
DEVICE_CONTEXT *OutputDevContxt;
TRANSFER_RING *EPRing;
UINT8 EPType;
UINT8 SlotId;
UINT8 Dci;
TRB *TrbStart;
UINTN TotalLen;
UINTN Len;
UINTN TrbNum;
SlotId = XhcDevAddrToSlotId(Urb->Ep.DevAddr);
Dci = XhcEndpointToDci (Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
EPRing = (TRANSFER_RING *)(UINTN) UsbDevContext[SlotId].EndpointTransferRing[Dci-1];
Urb->Ring = EPRing;
OutputDevContxt = (DEVICE_CONTEXT *)(UINTN) Xhc->DCBAA[SlotId];
EPType = (UINT8) OutputDevContxt->EP[Dci-1].EPType;
//
// Construct the TRB
//
XhcSyncTrsRing (Xhc, EPRing);
Urb->TrbStart = EPRing->RingEnqueue;
switch (EPType) {
case ED_CONTROL_BIDIR:
Urb->EvtRing = &Xhc->CtrlTrEventRing;
XhcSyncEventRing (Xhc, Urb->EvtRing);
Urb->EvtTrbStart = Urb->EvtRing->EventRingEnqueue;
//
// For control transfer, create SETUP_STAGE_TRB first.
//
TrbStart = EPRing->RingEnqueue;
((TRANSFER_TRB_CONTROL_SETUP *) TrbStart)->bmRequestType = Urb->Request->RequestType;
((TRANSFER_TRB_CONTROL_SETUP *) TrbStart)->bRequest = Urb->Request->Request;
((TRANSFER_TRB_CONTROL_SETUP *) TrbStart)->wValue = Urb->Request->Value;
((TRANSFER_TRB_CONTROL_SETUP *) TrbStart)->wIndex = Urb->Request->Index;
((TRANSFER_TRB_CONTROL_SETUP *) TrbStart)->wLength = Urb->Request->Length;
((TRANSFER_TRB_CONTROL_SETUP *) TrbStart)->Lenth = 8;
((TRANSFER_TRB_CONTROL_SETUP *) TrbStart)->IntTarget = Urb->EvtRing->EventInterrupter;
((TRANSFER_TRB_CONTROL_SETUP *) TrbStart)->IOC = 1;
((TRANSFER_TRB_CONTROL_SETUP *) TrbStart)->IDT = 1;
((TRANSFER_TRB_CONTROL_SETUP *) TrbStart)->Type = TRB_TYPE_SETUP_STAGE;
if (Urb->Ep.Direction == EfiUsbDataIn) {
((TRANSFER_TRB_CONTROL_SETUP *) TrbStart)->TRT = 3;
} else if (Urb->Ep.Direction == EfiUsbDataOut) {
((TRANSFER_TRB_CONTROL_SETUP *) TrbStart)->TRT = 2;
} else {
((TRANSFER_TRB_CONTROL_SETUP *) TrbStart)->TRT = 0;
}
//
// Update the cycle bit
//
((TRANSFER_TRB_CONTROL_SETUP *) TrbStart)->CycleBit = EPRing->RingPCS & BIT0;
Urb->TrbNum++;
//
// For control transfer, create DATA_STAGE_TRB.
//
if (Urb->DataLen > 0) {
XhcSyncTrsRing (Xhc, EPRing);
TrbStart = EPRing->RingEnqueue;
((TRANSFER_TRB_CONTROL_DATA *) TrbStart)->TRBPtrLo = XHC_LOW_32BIT(Urb->Data);
((TRANSFER_TRB_CONTROL_DATA *) TrbStart)->TRBPtrHi = XHC_HIGH_32BIT(Urb->Data);
((TRANSFER_TRB_CONTROL_DATA *) TrbStart)->Lenth = (UINT32) Urb->DataLen;
((TRANSFER_TRB_CONTROL_DATA *) TrbStart)->TDSize = 0;
((TRANSFER_TRB_CONTROL_DATA *) TrbStart)->IntTarget = Urb->EvtRing->EventInterrupter;
((TRANSFER_TRB_CONTROL_DATA *) TrbStart)->ISP = 1;
((TRANSFER_TRB_CONTROL_DATA *) TrbStart)->IOC = 1;
((TRANSFER_TRB_CONTROL_DATA *) TrbStart)->IDT = 0;
((TRANSFER_TRB_CONTROL_DATA *) TrbStart)->CH = 0;
((TRANSFER_TRB_CONTROL_DATA *) TrbStart)->Type = TRB_TYPE_DATA_STAGE;
if (Urb->Ep.Direction == EfiUsbDataIn) {
((TRANSFER_TRB_CONTROL_DATA *) TrbStart)->DIR = 1;
} else if (Urb->Ep.Direction == EfiUsbDataOut) {
((TRANSFER_TRB_CONTROL_DATA *) TrbStart)->DIR = 0;
} else {
((TRANSFER_TRB_CONTROL_DATA *) TrbStart)->DIR = 0;
}
//
// Update the cycle bit
//
((TRANSFER_TRB_CONTROL_DATA *) TrbStart)->CycleBit = EPRing->RingPCS & BIT0;
Urb->TrbNum++;
}
//
// For control transfer, create STATUS_STAGE_TRB.
// Get the pointer to next TRB for status stage use
//
XhcSyncTrsRing (Xhc, EPRing);
TrbStart = EPRing->RingEnqueue;
((TRANSFER_TRB_CONTROL_STATUS *) TrbStart)->IntTarget = Urb->EvtRing->EventInterrupter;
((TRANSFER_TRB_CONTROL_STATUS *) TrbStart)->IOC = 1;
((TRANSFER_TRB_CONTROL_STATUS *) TrbStart)->CH = 0;
((TRANSFER_TRB_CONTROL_STATUS *) TrbStart)->Type = TRB_TYPE_STATUS_STAGE;
if (Urb->Ep.Direction == EfiUsbDataIn) {
((TRANSFER_TRB_CONTROL_STATUS *) TrbStart)->DIR = 0;
} else if (Urb->Ep.Direction == EfiUsbDataOut) {
((TRANSFER_TRB_CONTROL_STATUS *) TrbStart)->DIR = 1;
} else {
((TRANSFER_TRB_CONTROL_STATUS *) TrbStart)->DIR = 0;
}
//
// Update the cycle bit
//
((TRANSFER_TRB_CONTROL_STATUS *) TrbStart)->CycleBit = EPRing->RingPCS & BIT0;
//
// Update the enqueue pointer
//
XhcSyncTrsRing (Xhc, EPRing);
Urb->TrbNum++;
Urb->TrbEnd = TrbStart;
break;
case ED_BULK_OUT:
case ED_BULK_IN:
Urb->EvtRing = &Xhc->BulkTrEventRing;
XhcSyncEventRing (Xhc, Urb->EvtRing);
Urb->EvtTrbStart = Urb->EvtRing->EventRingEnqueue;
TotalLen = 0;
Len = 0;
TrbNum = 0;
TrbStart = EPRing->RingEnqueue;
while (TotalLen < Urb->DataLen) {
if ((TotalLen + 0x10000) >= Urb->DataLen) {
Len = Urb->DataLen - TotalLen;
} else {
Len = 0x10000;
}
TrbStart = EPRing->RingEnqueue;
((TRANSFER_TRB_NORMAL *) TrbStart)->TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->Data + TotalLen);
((TRANSFER_TRB_NORMAL *) TrbStart)->TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->Data + TotalLen);
((TRANSFER_TRB_NORMAL *) TrbStart)->Lenth = (UINT32) Len;
((TRANSFER_TRB_NORMAL *) TrbStart)->TDSize = 0;
((TRANSFER_TRB_NORMAL *) TrbStart)->IntTarget = Urb->EvtRing->EventInterrupter;
((TRANSFER_TRB_NORMAL *) TrbStart)->ISP = 1;
((TRANSFER_TRB_NORMAL *) TrbStart)->IOC = 1;
((TRANSFER_TRB_NORMAL *) TrbStart)->Type = TRB_TYPE_NORMAL;
//
// Update the cycle bit
//
((TRANSFER_TRB_NORMAL *) TrbStart)->CycleBit = EPRing->RingPCS & BIT0;
XhcSyncTrsRing (Xhc, EPRing);
TrbNum++;
TotalLen += Len;
}
Urb->TrbNum = TrbNum;
Urb->TrbEnd = TrbStart;
break;
case ED_INTERRUPT_OUT:
case ED_INTERRUPT_IN:
if (Urb->Ep.Type == XHC_INT_TRANSFER_ASYNC) {
Urb->EvtRing = &Xhc->AsynIntTrEventRing;
} else if(Urb->Ep.Type == XHC_INT_TRANSFER_SYNC){
Urb->EvtRing = &Xhc->IntTrEventRing;
} else {
DEBUG ((EFI_D_ERROR, "EP Interrupt type error!\n"));
ASSERT(FALSE);
}
XhcSyncEventRing (Xhc, Urb->EvtRing);
Urb->EvtTrbStart = Urb->EvtRing->EventRingEnqueue;
TotalLen = 0;
Len = 0;
TrbNum = 0;
TrbStart = EPRing->RingEnqueue;
while (TotalLen < Urb->DataLen) {
if ((TotalLen + 0x10000) >= Urb->DataLen) {
Len = Urb->DataLen - TotalLen;
} else {
Len = 0x10000;
}
TrbStart = EPRing->RingEnqueue;
((TRANSFER_TRB_NORMAL *) TrbStart)->TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->Data + TotalLen);
((TRANSFER_TRB_NORMAL *) TrbStart)->TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->Data + TotalLen);
((TRANSFER_TRB_NORMAL *) TrbStart)->Lenth = (UINT32) Len;
((TRANSFER_TRB_NORMAL *) TrbStart)->TDSize = 0;
((TRANSFER_TRB_NORMAL *) TrbStart)->IntTarget = Urb->EvtRing->EventInterrupter;
((TRANSFER_TRB_NORMAL *) TrbStart)->ISP = 1;
((TRANSFER_TRB_NORMAL *) TrbStart)->IOC = 1;
((TRANSFER_TRB_NORMAL *) TrbStart)->Type = TRB_TYPE_NORMAL;
//
// Update the cycle bit
//
((TRANSFER_TRB_NORMAL *) TrbStart)->CycleBit = EPRing->RingPCS & BIT0;
XhcSyncTrsRing (Xhc, EPRing);
TrbNum++;
TotalLen += Len;
}
Urb->TrbNum = TrbNum;
Urb->TrbEnd = TrbStart;
break;
default:
DEBUG ((EFI_D_INFO, "Not supported EPType 0x%x!\n",EPType));
ASSERT (FALSE);
break;
}
return EFI_SUCCESS;
}
/**
Initialize the XHCI host controller for schedule.
@param Xhc The XHCI device to be initialized.
**/
VOID
XhcInitSched (
IN USB_XHCI_DEV *Xhc
)
{
VOID *Dcbaa;
UINT64 CmdRing;
UINTN Entries;
UINT32 MaxScratchpadBufs;
UINT64 *ScratchBuf;
UINT64 *ScratchEntryBuf;
UINT32 Index;
//
// Program the Max Device Slots Enabled (MaxSlotsEn) field in the CONFIG register (5.4.7)
// to enable the device slots that system software is going to use.
//
Xhc->MaxSlotsEn = Xhc->HcSParams1.Data.MaxSlots;
ASSERT (Xhc->MaxSlotsEn >= 1 && Xhc->MaxSlotsEn <= 255);
XhcWriteOpReg (Xhc, XHC_CONFIG_OFFSET, Xhc->MaxSlotsEn);
//
// The Device Context Base Address Array entry associated with each allocated Device Slot
// shall contain a 64-bit pointer to the base of the associated Device Context.
// The Device Context Base Address Array shall contain MaxSlotsEn + 1 entries.
// Software shall set Device Context Base Address Array entries for unallocated Device Slots to '0'.
//
Entries = (Xhc->MaxSlotsEn + 1) * sizeof(UINT64);
Dcbaa = AllocateAlignedZeroPool(Entries, 64);
ASSERT (Dcbaa != NULL);
//
// A Scratchpad Buffer is a PAGESIZE block of system memory located on a PAGESIZE boundary.
// System software shall allocate the Scratchpad Buffer(s) before placing the xHC in to Run
// mode (Run/Stop(R/S) ='1').
//
MaxScratchpadBufs = ((Xhc->HcSParams2.Data.ScratchBufHi) << 5) | (Xhc->HcSParams2.Data.ScratchBufLo);
Xhc->MaxScratchpadBufs = MaxScratchpadBufs;
ASSERT (MaxScratchpadBufs <= 1023);
if (MaxScratchpadBufs != 0) {
ScratchBuf = AllocateAlignedZeroPool(MaxScratchpadBufs * sizeof (UINT64), Xhc->PageSize);
ASSERT (ScratchBuf != NULL);
Xhc->ScratchBuf = ScratchBuf;
for (Index = 0; Index < MaxScratchpadBufs; Index++) {
ScratchEntryBuf = AllocateAlignedZeroPool(Xhc->PageSize, Xhc->PageSize);
*ScratchBuf++ = (UINT64)(UINTN)ScratchEntryBuf;
}
//
// The Scratchpad Buffer Array contains pointers to the Scratchpad Buffers. Entry 0 of the
// Device Context Base Address Array points to the Scratchpad Buffer Array.
//
*(UINT64 *)Dcbaa = (UINT64)(UINTN)Xhc->ScratchBuf;
}
//
// Program the Device Context Base Address Array Pointer (DCBAAP) register (5.4.6) with
// a 64-bit address pointing to where the Device Context Base Address Array is located.
//
Xhc->DCBAA = (UINT64 *)(UINTN)Dcbaa;
XhcWriteOpReg64 (Xhc, XHC_DCBAAP_OFFSET, (UINT64)(UINTN)Xhc->DCBAA);
DEBUG ((EFI_D_INFO, "XhcInitSched:DCBAA=0x%x\n", (UINT64)(UINTN)Xhc->DCBAA));
//
// Define the Command Ring Dequeue Pointer by programming the Command Ring Control Register
// (5.4.5) with a 64-bit address pointing to the starting address of the first TRB of the Command Ring.
// Note: The Command Ring is 64 byte aligned, so the low order 6 bits of the Command Ring Pointer shall
// always be '0'.
//
CreateTransferRing (Xhc, CMD_RING_TRB_NUMBER, &Xhc->CmdRing);
//
// The xHC uses the Enqueue Pointer to determine when a Transfer Ring is empty. As it fetches TRBs from a
// Transfer Ring it checks for a Cycle bit transition. If a transition detected, the ring is empty.
// So we set RCS as inverted PCS init value to let Command Ring empty
//
CmdRing = (UINT64)(UINTN)Xhc->CmdRing.RingSeg0;
ASSERT ((CmdRing & 0x3F) == 0);
CmdRing |= XHC_CRCR_RCS;
XhcWriteOpReg64 (Xhc, XHC_CRCR_OFFSET, CmdRing);
DEBUG ((EFI_D_INFO, "XhcInitSched:XHC_CRCR=0x%x\n", Xhc->CmdRing.RingSeg0));
//
// Disable the 'interrupter enable' bit in USB_CMD
// and clear IE & IP bit in all Interrupter X Management Registers.
//
XhcClearOpRegBit (Xhc, XHC_USBCMD_OFFSET, XHC_USBCMD_INTE);
for (Index = 0; Index < (UINT16)(Xhc->HcSParams1.Data.MaxIntrs); Index++) {
XhcClearRuntimeRegBit (Xhc, XHC_IMAN_OFFSET + (Index * 32), XHC_IMAN_IE);
XhcSetRuntimeRegBit (Xhc, XHC_IMAN_OFFSET + (Index * 32), XHC_IMAN_IP);
}
//
// Allocate EventRing for Cmd, Ctrl, Bulk, Interrupt, AsynInterrupt transfer
//
CreateEventRing (Xhc, CMD_INTER, &Xhc->CmdEventRing);
CreateEventRing (Xhc, CTRL_INTER, &Xhc->CtrlTrEventRing);
CreateEventRing (Xhc, BULK_INTER, &Xhc->BulkTrEventRing);
CreateEventRing (Xhc, INT_INTER, &Xhc->IntTrEventRing);
CreateEventRing (Xhc, INT_INTER_ASYNC, &Xhc->AsynIntTrEventRing);
}
/**
System software shall use a Reset Endpoint Command (section 4.11.4.7) to remove the Halted
condition in the xHC. After the successful completion of the Reset Endpoint Command, the Endpoint
Context is transitioned from the Halted to the Stopped state and the Transfer Ring of the endpoint is
reenabled. The next write to the Doorbell of the Endpoint will transition the Endpoint Context from the
Stopped to the Running state.
@param Xhc The XHCI device.
@param Urb The urb which makes the endpoint halted.
@retval EFI_SUCCESS The recovery is successful.
@retval Others Failed to recovery halted endpoint.
**/
EFI_STATUS
EFIAPI
XhcRecoverHaltedEndpoint (
IN USB_XHCI_DEV *Xhc,
IN URB *Urb
)
{
EFI_STATUS Status;
EVT_TRB_COMMAND *EvtTrb;
CMD_TRB_RESET_ED CmdTrbResetED;
CMD_SET_TR_DEQ CmdSetTRDeq;
UINT8 Dci;
UINT8 SlotId;
Status = EFI_SUCCESS;
SlotId = XhcDevAddrToSlotId(Urb->Ep.DevAddr);
Dci = XhcEndpointToDci(Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
DEBUG ((EFI_D_INFO, "Recovery Halted Slot = %x,Dci = %x\n", SlotId, Dci));
//
// 1) Send Reset endpoint command to transit from halt to stop state
//
ZeroMem (&CmdTrbResetED, sizeof (CmdTrbResetED));
CmdTrbResetED.CycleBit = 1;
CmdTrbResetED.Type = TRB_TYPE_RESET_ENDPOINT;
CmdTrbResetED.EDID = Dci;
CmdTrbResetED.SlotId = SlotId;
Status = XhcCmdTransfer (
Xhc,
(TRB *) (UINTN) &CmdTrbResetED,
XHC_GENERIC_TIMEOUT,
(TRB **) (UINTN) &EvtTrb
);
ASSERT (!EFI_ERROR(Status));
//
// 2)Set dequeue pointer
//
ZeroMem (&CmdSetTRDeq, sizeof (CmdSetTRDeq));
CmdSetTRDeq.PtrLo = XHC_LOW_32BIT (Urb->Ring->RingEnqueue) | Urb->Ring->RingPCS;
CmdSetTRDeq.PtrHi = XHC_HIGH_32BIT (Urb->Ring->RingEnqueue);
CmdSetTRDeq.CycleBit = 1;
CmdSetTRDeq.Type = TRB_TYPE_SET_TR_DEQUE;
CmdSetTRDeq.Endpoint = Dci;
CmdSetTRDeq.SlotId = SlotId;
Status = XhcCmdTransfer (
Xhc,
(TRB *) (UINTN) &CmdSetTRDeq,
XHC_GENERIC_TIMEOUT,
(TRB **) (UINTN) &EvtTrb
);
ASSERT (!EFI_ERROR(Status));
//
// 3)Ring the doorbell to transit from stop to active
//
XhcRingDoorBell (Xhc, SlotId, Dci);
return Status;
}
/**
Create XHCI event ring.
@param Xhc The XHCI device.
@param EventInterrupter The interrupter of event.
@param EventRing The created event ring.
**/
VOID
CreateEventRing (
IN USB_XHCI_DEV *Xhc,
IN UINT8 EventInterrupter,
OUT EVENT_RING *EventRing
)
{
VOID *Buf;
EVENT_RING_SEG_TABLE_ENTRY *ERSTBase;
ASSERT (EventRing != NULL);
Buf = AllocateAlignedZeroPool(sizeof (TRB) * EVENT_RING_TRB_NUMBER, 64);
ASSERT (Buf != NULL);
ASSERT (((UINTN) Buf & 0x3F) == 0);
EventRing->EventRingSeg0 = Buf;
EventRing->EventInterrupter = EventInterrupter;
EventRing->TrbNumber = EVENT_RING_TRB_NUMBER;
EventRing->EventRingDequeue = (TRB *) EventRing->EventRingSeg0;
EventRing->EventRingEnqueue = (TRB *) EventRing->EventRingSeg0;
//
// Software maintains an Event Ring Consumer Cycle State (CCS) bit, initializing it to '1'
// and toggling it every time the Event Ring Dequeue Pointer wraps back to the beginning of the Event Ring.
//
EventRing->EventRingCCS = 1;
Buf = AllocateAlignedZeroPool(sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER, 64);
ASSERT (Buf != NULL);
ASSERT (((UINTN) Buf & 0x3F) == 0);
ERSTBase = (EVENT_RING_SEG_TABLE_ENTRY *) Buf;
EventRing->ERSTBase = ERSTBase;
ERSTBase->PtrLo = XHC_LOW_32BIT (EventRing->EventRingSeg0);
ERSTBase->PtrHi = XHC_HIGH_32BIT (EventRing->EventRingSeg0);
ERSTBase->RingTrbSize = EVENT_RING_TRB_NUMBER;
//
// Program the Interrupter Event Ring Segment Table Size (ERSTSZ) register (5.5.2.3.1)
//
XhcWriteRuntimeReg (
Xhc,
XHC_ERSTSZ_OFFSET + (32 * EventRing->EventInterrupter),
ERST_NUMBER
);
//
// Program the Interrupter Event Ring Dequeue Pointer (ERDP) register (5.5.2.3.3)
//
XhcWriteRuntimeReg64 (
Xhc,
XHC_ERDP_OFFSET + (32 * EventRing->EventInterrupter),
(UINT64)(UINTN)EventRing->EventRingDequeue
);
//
// Program the Interrupter Event Ring Segment Table Base Address (ERSTBA) register(5.5.2.3.2)
//
XhcWriteRuntimeReg64 (
Xhc,
XHC_ERSTBA_OFFSET + (32 * EventRing->EventInterrupter),
(UINT64)(UINTN)ERSTBase
);
//
// Need set IMAN IE bit to enble the ring interrupt
//
XhcSetRuntimeRegBit (Xhc, XHC_IMAN_OFFSET + (32 * EventRing->EventInterrupter), XHC_IMAN_IE);
}
/**
Create XHCI transfer ring.
@param Xhc The XHCI device.
@param TrbNum The number of TRB in the ring.
@param TransferRing The created transfer ring.
**/
VOID
CreateTransferRing (
IN USB_XHCI_DEV *Xhc,
IN UINTN TrbNum,
OUT TRANSFER_RING *TransferRing
)
{
VOID *Buf;
LNK_TRB *EndTrb;
Buf = AllocateAlignedZeroPool(sizeof (TRB) * TrbNum, 64);
ASSERT (Buf != NULL);
ASSERT (((UINTN) Buf & 0x3F) == 0);
TransferRing->RingSeg0 = Buf;
TransferRing->TrbNumber = TrbNum;
TransferRing->RingEnqueue = (TRB *) TransferRing->RingSeg0;
TransferRing->RingDequeue = (TRB *) TransferRing->RingSeg0;
TransferRing->RingPCS = 1;
//
// 4.9.2 Transfer Ring Management
// To form a ring (or circular queue) a Link TRB may be inserted at the end of a ring to
// point to the first TRB in the ring.
//
EndTrb = (LNK_TRB*) ((UINTN)Buf + sizeof (TRB) * (TrbNum - 1));
EndTrb->Type = TRB_TYPE_LINK;
EndTrb->PtrLo = XHC_LOW_32BIT (Buf);
EndTrb->PtrHi = XHC_HIGH_32BIT (Buf);
//
// Toggle Cycle (TC). When set to '1', the xHC shall toggle its interpretation of the Cycle bit.
//
EndTrb->TC = 1;
//
// Set Cycle bit as other TRB PCS init value
//
EndTrb->CycleBit = 0;
}
/**
Free XHCI event ring.
@param Xhc The XHCI device.
@param EventRing The event ring to be freed.
**/
EFI_STATUS
EFIAPI
XhcFreeEventRing (
IN USB_XHCI_DEV *Xhc,
IN EVENT_RING *EventRing
)
{
UINT8 Index;
EVENT_RING_SEG_TABLE_ENTRY *TablePtr;
VOID *RingBuf;
EVENT_RING_SEG_TABLE_ENTRY *EventRingPtr;
UINTN InterrupterTarget;
if(EventRing->EventRingSeg0 == NULL) {
return EFI_SUCCESS;
}
InterrupterTarget = EventRing->EventInterrupter;
//
// Get the Event Ring Segment Table base address
//
TablePtr = (EVENT_RING_SEG_TABLE_ENTRY *)(EventRing->ERSTBase);
//
// Get all the TRBs Ring and release
//
for (Index = 0; Index < ERST_NUMBER; Index++) {
EventRingPtr = TablePtr + Index;
RingBuf = (VOID *)(UINTN)(EventRingPtr->PtrLo | ((UINT64)EventRingPtr->PtrHi << 32));
if(RingBuf != NULL) {
FreeAlignedPool (RingBuf);
ZeroMem (EventRingPtr, sizeof (EVENT_RING_SEG_TABLE_ENTRY));
}
}
FreeAlignedPool (TablePtr);
return EFI_SUCCESS;
}
/**
Free the resouce allocated at initializing schedule.
@param Xhc The XHCI device.
**/
VOID
XhcFreeSched (
IN USB_XHCI_DEV *Xhc
)
{
UINT32 Index;
if (Xhc->ScratchBuf != NULL) {
for (Index = 0; Index < Xhc->MaxScratchpadBufs; Index++) {
FreeAlignedPool ((VOID*)(UINTN)*Xhc->ScratchBuf++);
}
}
if (Xhc->DCBAA != NULL) {
FreeAlignedPool (Xhc->DCBAA);
Xhc->DCBAA = NULL;
}
if (Xhc->CmdRing.RingSeg0 != NULL){
FreeAlignedPool (Xhc->CmdRing.RingSeg0);
Xhc->CmdRing.RingSeg0 = NULL;
}
XhcFreeEventRing (Xhc,&Xhc->CmdEventRing);
XhcFreeEventRing (Xhc,&Xhc->CtrlTrEventRing);
XhcFreeEventRing (Xhc,&Xhc->BulkTrEventRing);
XhcFreeEventRing (Xhc,&Xhc->AsynIntTrEventRing);
XhcFreeEventRing (Xhc,&Xhc->IntTrEventRing);
}
/**
Check if it is ring TRB.
@param Ring The transfer ring
@param Trb The TRB to check if it's in the transfer ring
@retval TRUE It is in the ring
@retval FALSE It is not in the ring
**/
BOOLEAN
IsTransferRingTrb (
IN TRANSFER_RING *Ring,
IN TRB *Trb
)
{
BOOLEAN Flag;
TRB *Trb1;
UINTN Index;
Trb1 = Ring->RingSeg0;
Flag = FALSE;
ASSERT (Ring->TrbNumber == CMD_RING_TRB_NUMBER || Ring->TrbNumber == TR_RING_TRB_NUMBER);
for (Index = 0; Index < Ring->TrbNumber; Index++) {
if (Trb == Trb1) {
Flag = TRUE;
break;
}
Trb1++;
}
return Flag;
}
/**
Check the URB's execution result and update the URB's
result accordingly.
@param Xhc The XHCI device.
@param Urb The URB to check result.
@return Whether the result of URB transfer is finialized.
**/
EFI_STATUS
XhcCheckUrbResult (
IN USB_XHCI_DEV *Xhc,
IN URB *Urb
)
{
BOOLEAN StartDone;
BOOLEAN EndDone;
EVT_TRB_TRANSFER *EvtTrb;
TRB *TRBPtr;
UINTN Index;
UINT8 TRBType;
EFI_STATUS Status;
ASSERT ((Xhc != NULL) && (Urb != NULL));
Urb->Completed = 0;
Urb->Result = EFI_USB_NOERROR;
Status = EFI_SUCCESS;
EvtTrb = NULL;
if (XhcIsHalt (Xhc) || XhcIsSysError (Xhc)) {
Urb->Result |= EFI_USB_ERR_SYSTEM;
Status = EFI_DEVICE_ERROR;
goto EXIT;
}
//
// Restore the EventRingDequeue and poll the transfer event ring from beginning
//
StartDone = FALSE;
EndDone = FALSE;
Urb->EvtRing->EventRingDequeue = Urb->EvtTrbStart;
for (Index = 0; Index < Urb->EvtRing->TrbNumber; Index++) {
XhcSyncEventRing (Xhc, Urb->EvtRing);
Status = XhcCheckNewEvent (Xhc, Urb->EvtRing, ((TRB **)&EvtTrb));
if (Status == EFI_NOT_READY) {
Urb->Result |= EFI_USB_ERR_TIMEOUT;
goto EXIT;
}
TRBPtr = (TRB *)(UINTN)(EvtTrb->TRBPtrLo | (UINT64) EvtTrb->TRBPtrHi << 32);
switch (EvtTrb->Completcode) {
case TRB_COMPLETION_STALL_ERROR:
Urb->Result |= EFI_USB_ERR_STALL;
Status = EFI_DEVICE_ERROR;
DEBUG ((EFI_D_ERROR, "XhcCheckUrbResult: STALL_ERROR! Completcode = %x\n",EvtTrb->Completcode));
goto EXIT;
break;
case TRB_COMPLETION_BABBLE_ERROR:
Urb->Result |= EFI_USB_ERR_BABBLE;
Status = EFI_DEVICE_ERROR;
DEBUG ((EFI_D_ERROR, "XhcCheckUrbResult: BABBLE_ERROR! Completcode = %x\n",EvtTrb->Completcode));
goto EXIT;
break;
case TRB_COMPLETION_DATA_BUFFER_ERROR:
Urb->Result |= EFI_USB_ERR_BUFFER;
Status = EFI_DEVICE_ERROR;
DEBUG ((EFI_D_ERROR, "XhcCheckUrbResult: ERR_BUFFER! Completcode = %x\n",EvtTrb->Completcode));
goto EXIT;
break;
case TRB_COMPLETION_USB_TRANSACTION_ERROR:
Urb->Result |= EFI_USB_ERR_TIMEOUT;
Status = EFI_DEVICE_ERROR;
DEBUG ((EFI_D_ERROR, "XhcCheckUrbResult: TRANSACTION_ERROR! Completcode = %x\n",EvtTrb->Completcode));
goto EXIT;
break;
case TRB_COMPLETION_SHORT_PACKET:
case TRB_COMPLETION_SUCCESS:
if (IsTransferRingTrb (Urb->Ring, TRBPtr)) {
if (EvtTrb->Completcode == TRB_COMPLETION_SHORT_PACKET) {
DEBUG ((EFI_D_ERROR, "XhcCheckUrbResult: short packet happens!\n"));
}
TRBType = (UINT8) (TRBPtr->Type);
if ((TRBType == TRB_TYPE_DATA_STAGE) ||
(TRBType == TRB_TYPE_NORMAL) ||
(TRBType == TRB_TYPE_ISOCH)) {
Urb->Completed += (Urb->DataLen - EvtTrb->Lenth);
}
}
Status = EFI_SUCCESS;
break;
default:
DEBUG ((EFI_D_ERROR, "Transfer Default Error Occur! Completcode = 0x%x!\n",EvtTrb->Completcode));
Urb->Result |= EFI_USB_ERR_TIMEOUT;
Status = EFI_DEVICE_ERROR;
goto EXIT;
break;
}
//
// Only check first and end Trb event address
//
if (TRBPtr == Urb->TrbStart) {
StartDone = TRUE;
}
if (TRBPtr == Urb->TrbEnd) {
EndDone = TRUE;
}
if (StartDone && EndDone) {
break;
}
}
EXIT:
return Status;
}
/**
Execute the transfer by polling the URB. This is a synchronous operation.
@param Xhc The XHCI device.
@param CmdTransfer The executed URB is for cmd transfer or not.
@param Urb The URB to execute.
@param TimeOut The time to wait before abort, in millisecond.
@return EFI_DEVICE_ERROR The transfer failed due to transfer error.
@return EFI_TIMEOUT The transfer failed due to time out.
@return EFI_SUCCESS The transfer finished OK.
**/
EFI_STATUS
XhcExecTransfer (
IN USB_XHCI_DEV *Xhc,
IN BOOLEAN CmdTransfer,
IN URB *Urb,
IN UINTN TimeOut
)
{
EFI_STATUS Status;
UINTN Index;
UINTN Loop;
UINT8 SlotId;
UINT8 Dci;
if (CmdTransfer) {
SlotId = 0;
Dci = 0;
} else {
SlotId = XhcDevAddrToSlotId(Urb->Ep.DevAddr);
Dci = XhcEndpointToDci(Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
}
Status = EFI_SUCCESS;
Loop = (TimeOut * XHC_1_MILLISECOND / XHC_SYNC_POLL_INTERVAL) + 1;
if (TimeOut == 0) {
Loop = 0xFFFFFFFF;
}
XhcRingDoorBell (Xhc, SlotId, Dci);
for (Index = 0; Index < Loop; Index++) {
Status = XhcCheckUrbResult (Xhc, Urb);
if ((Status != EFI_NOT_READY)) {
break;
}
gBS->Stall (XHC_SYNC_POLL_INTERVAL);
}
return Status;
}
/**
Delete a single asynchronous interrupt transfer for
the device and endpoint.
@param Xhc The XHCI device.
@param DevAddr The address of the target device.
@param EpNum The endpoint of the target.
@retval EFI_SUCCESS An asynchronous transfer is removed.
@retval EFI_NOT_FOUND No transfer for the device is found.
**/
EFI_STATUS
XhciDelAsyncIntTransfer (
IN USB_XHCI_DEV *Xhc,
IN UINT8 DevAddr,
IN UINT8 EpNum
)
{
LIST_ENTRY *Entry;
LIST_ENTRY *Next;
URB *Urb;
EFI_USB_DATA_DIRECTION Direction;
BOOLEAN Found;
Direction = ((EpNum & 0x80) != 0) ? EfiUsbDataIn : EfiUsbDataOut;
EpNum &= 0x0F;
Found = FALSE;
Urb = NULL;
EFI_LIST_FOR_EACH_SAFE (Entry, Next, &Xhc->AsyncIntTransfers) {
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
if ((Urb->Ep.DevAddr == DevAddr) &&
(Urb->Ep.EpAddr == EpNum) &&
(Urb->Ep.Direction == Direction)) {
RemoveEntryList (&Urb->UrbList);
FreePool (Urb->Data);
FreePool (Urb);
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
/**
Remove all the asynchronous interrutp transfers.
@param Xhc The XHCI device.
**/
VOID
XhciDelAllAsyncIntTransfers (
IN USB_XHCI_DEV *Xhc
)
{
LIST_ENTRY *Entry;
LIST_ENTRY *Next;
URB *Urb;
EFI_LIST_FOR_EACH_SAFE (Entry, Next, &Xhc->AsyncIntTransfers) {
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
RemoveEntryList (&Urb->UrbList);
FreePool (Urb->Data);
FreePool (Urb);
}
}
/**
Update the queue head for next round of asynchronous transfer
@param Xhc The XHCI device.
@param Urb The URB to update
**/
VOID
XhcUpdateAsyncRequest (
IN USB_XHCI_DEV* Xhc,
IN URB *Urb
)
{
EFI_STATUS Status;
if (Urb->Result == EFI_USB_NOERROR) {
Status = XhcCreateTransferTrb (Xhc, Urb);
ASSERT_EFI_ERROR (Status);
Status = RingIntTransferDoorBell (Xhc, Urb);
ASSERT_EFI_ERROR (Status);
}
}
/**
Interrupt transfer periodic check handler.
@param Event Interrupt event.
@param Context Pointer to USB_XHCI_DEV.
**/
VOID
EFIAPI
XhcMonitorAsyncRequests (
IN EFI_EVENT Event,
IN VOID *Context
)
{
USB_XHCI_DEV *Xhc;
LIST_ENTRY *Entry;
LIST_ENTRY *Next;
UINT8 *ProcBuf;
URB *Urb;
UINT8 SlotId;
EFI_STATUS Status;
EFI_TPL OldTpl;
OldTpl = gBS->RaiseTPL (XHC_TPL);
Xhc = (USB_XHCI_DEV*) Context;
EFI_LIST_FOR_EACH_SAFE (Entry, Next, &Xhc->AsyncIntTransfers) {
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
//
// Make sure that the device is available before every check.
//
SlotId = XhcDevAddrToSlotId(Urb->Ep.DevAddr);
if (SlotId == 0) {
continue;
}
//
// Check the result of URB execution. If it is still
// active, check the next one.
//
Status = XhcCheckUrbResult (Xhc, Urb);
if (Status == EFI_NOT_READY) {
continue;
}
//
// Allocate a buffer then copy the transferred data for user.
// If failed to allocate the buffer, update the URB for next
// round of transfer. Ignore the data of this round.
//
ProcBuf = NULL;
if (Urb->Result == EFI_USB_NOERROR) {
ASSERT (Urb->Completed <= Urb->DataLen);
ProcBuf = AllocatePool (Urb->Completed);
if (ProcBuf == NULL) {
XhcUpdateAsyncRequest (Xhc, Urb);
continue;
}
CopyMem (ProcBuf, Urb->Data, Urb->Completed);
}
XhcUpdateAsyncRequest (Xhc, Urb);
//
// Leave error recovery to its related device driver. A
// common case of the error recovery is to re-submit the
// interrupt transfer which is linked to the head of the
// list. This function scans from head to tail. So the
// re-submitted interrupt transfer's callback function
// will not be called again in this round. Don't touch this
// URB after the callback, it may have been removed by the
// callback.
//
if (Urb->Callback != NULL) {
//
// Restore the old TPL, USB bus maybe connect device in
// his callback. Some drivers may has a lower TPL restriction.
//
gBS->RestoreTPL (OldTpl);
(Urb->Callback) (ProcBuf, Urb->Completed, Urb->Context, Urb->Result);
OldTpl = gBS->RaiseTPL (XHC_TPL);
}
if (ProcBuf != NULL) {
gBS->FreePool (ProcBuf);
}
}
gBS->RestoreTPL (OldTpl);
}
/**
Monitor the port status change. Enable/Disable device slot if there is a device attached/detached.
@param Xhc The XHCI device.
@param ParentRouteChart The route string pointed to the parent device if it exists.
@param Port The port to be polled.
@param PortState The port state.
@retval EFI_SUCCESS Successfully enable/disable device slot according to port state.
@retval Others Should not appear.
**/
EFI_STATUS
EFIAPI
XhcPollPortStatusChange (
IN USB_XHCI_DEV* Xhc,
IN USB_DEV_ROUTE ParentRouteChart,
IN UINT8 Port,
IN EFI_USB_PORT_STATUS *PortState
)
{
EFI_STATUS Status;
UINT8 Speed;
UINT8 SlotId;
USB_DEV_ROUTE RouteChart;
Status = EFI_SUCCESS;
if (ParentRouteChart.Dword == 0) {
RouteChart.Field.RouteString = 0;
RouteChart.Field.RootPortNum = Port + 1;
RouteChart.Field.TierNum = 1;
} else {
if(Port < 14) {
RouteChart.Field.RouteString = ParentRouteChart.Field.RouteString | (Port << (4 * (ParentRouteChart.Field.TierNum - 1)));
} else {
RouteChart.Field.RouteString = ParentRouteChart.Field.RouteString | (15 << (4 * (ParentRouteChart.Field.TierNum - 1)));
}
RouteChart.Field.RootPortNum = ParentRouteChart.Field.RootPortNum;
RouteChart.Field.TierNum = ParentRouteChart.Field.TierNum + 1;
}
if (((PortState->PortStatus & USB_PORT_STAT_ENABLE) != 0) &&
((PortState->PortStatus & USB_PORT_STAT_CONNECTION) != 0)) {
//
// Has a device attached, Identify device speed after port is enabled.
//
Speed = EFI_USB_SPEED_FULL;
if ((PortState->PortStatus & USB_PORT_STAT_LOW_SPEED) != 0) {
Speed = EFI_USB_SPEED_LOW;
} else if ((PortState->PortStatus & USB_PORT_STAT_HIGH_SPEED) != 0) {
Speed = EFI_USB_SPEED_HIGH;
} else if ((PortState->PortStatus & USB_PORT_STAT_SUPER_SPEED) != 0) {
Speed = EFI_USB_SPEED_SUPER;
}
//
// Execute Enable_Slot cmd for attached device, initialize device context and assign device address.
//
SlotId = XhcRouteStringToSlotId (RouteChart);
if (SlotId == 0) {
Status = XhcInitializeDeviceSlot (Xhc, ParentRouteChart, Port, RouteChart, Speed);
ASSERT_EFI_ERROR (Status);
}
} else if ((PortState->PortStatus & USB_PORT_STAT_CONNECTION) == 0) {
//
// Device is detached. Disable the allocated device slot and release resource.
//
SlotId = XhcRouteStringToSlotId (RouteChart);
if (SlotId != 0) {
Status = XhcDisableSlotCmd (Xhc, SlotId);
ASSERT_EFI_ERROR (Status);
}
}
return Status;
}
/**
Calculate the device context index by endpoint address and direction.
@param EpAddr The target endpoint number.
@param Direction The direction of the target endpoint.
@return The device context index of endpoint.
**/
UINT8
XhcEndpointToDci (
IN UINT8 EpAddr,
IN UINT8 Direction
)
{
UINT8 Index;
if (EpAddr == 0) {
return 1;
} else {
Index = (UINT8) (2 * EpAddr);
if (Direction == EfiUsbDataIn) {
Index += 1;
}
return Index;
}
}
/**
Find out the slot id according to device address assigned by XHCI's Address_Device cmd.
@param DevAddr The device address of the target device.
@return The slot id used by the device.
**/
UINT8
XhcDevAddrToSlotId (
IN UINT8 DevAddr
)
{
UINT8 Index;
for (Index = 0; Index < 255; Index++) {
if (UsbDevContext[Index + 1].Enabled &&
(UsbDevContext[Index + 1].SlotId != 0) &&
(UsbDevContext[Index + 1].XhciDevAddr == DevAddr)) {
break;
}
}
if (Index == 255) {
return 0;
}
return UsbDevContext[Index + 1].SlotId;
}
/**
Find out the actual device address according to the requested device address from UsbBus.
@param BusDevAddr The requested device address by UsbBus upper driver.
@return The actual device address assigned to the device.
**/
UINT8
EFIAPI
XhcBusDevAddrToSlotId (
IN UINT8 BusDevAddr
)
{
UINT8 Index;
for (Index = 0; Index < 255; Index++) {
if (UsbDevContext[Index + 1].Enabled &&
(UsbDevContext[Index + 1].SlotId != 0) &&
(UsbDevContext[Index + 1].BusDevAddr == BusDevAddr)) {
break;
}
}
if (Index == 255) {
return 0;
}
return UsbDevContext[Index + 1].SlotId;
}
/**
Find out the slot id according to the device's route string.
@param RouteString The route string described the device location.
@return The slot id used by the device.
**/
UINT8
EFIAPI
XhcRouteStringToSlotId (
IN USB_DEV_ROUTE RouteString
)
{
UINT8 Index;
for (Index = 0; Index < 255; Index++) {
if (UsbDevContext[Index + 1].Enabled &&
(UsbDevContext[Index + 1].SlotId != 0) &&
(UsbDevContext[Index + 1].RouteString.Dword == RouteString.Dword)) {
break;
}
}
if (Index == 255) {
return 0;
}
return UsbDevContext[Index + 1].SlotId;
}
/**
Synchronize the specified event ring to update the enqueue and dequeue pointer.
@param Xhc The XHCI device.
@param EvtRing The event ring to sync.
@retval EFI_SUCCESS The event ring is synchronized successfully.
**/
EFI_STATUS
EFIAPI
XhcSyncEventRing (
IN USB_XHCI_DEV *Xhc,
IN EVENT_RING *EvtRing
)
{
UINTN Index;
TRB *EvtTrb1;
TRB *EvtTrb2;
TRB *XhcDequeue;
ASSERT (EvtRing != NULL);
//
// Calculate the EventRingEnqueue and EventRingCCS.
// Note: only support single Segment
//
EvtTrb1 = EvtRing->EventRingSeg0;
EvtTrb2 = EvtRing->EventRingSeg0;
for (Index = 0; Index < EvtRing->TrbNumber; Index++) {
if (EvtTrb1->CycleBit != EvtTrb2->CycleBit) {
break;
}
EvtTrb1++;
}
if (Index < EvtRing->TrbNumber) {
EvtRing->EventRingEnqueue = EvtTrb1;
EvtRing->EventRingCCS = (EvtTrb2->CycleBit) ? 1 : 0;
} else {
EvtRing->EventRingEnqueue = EvtTrb2;
EvtRing->EventRingCCS = (EvtTrb2->CycleBit) ? 0 : 1;
}
//
// Apply the EventRingDequeue to Xhc
//
XhcDequeue = (TRB *)(UINTN) XhcReadRuntimeReg64 (
Xhc,
XHC_ERDP_OFFSET + (32 * EvtRing->EventInterrupter)
);
if (((UINT64)(UINTN)XhcDequeue & (~0x0F)) != ((UINT64)(UINTN)EvtRing->EventRingDequeue & (~0x0F))) {
XhcWriteRuntimeReg64 (
Xhc,
XHC_ERDP_OFFSET + (32 * EvtRing->EventInterrupter),
(UINT64)(UINTN)EvtRing->EventRingDequeue | BIT3
);
}
return EFI_SUCCESS;
}
/**
Synchronize the specified transfer ring to update the enqueue and dequeue pointer.
@param Xhc The XHCI device.
@param TrsRing The transfer ring to sync.
@retval EFI_SUCCESS The transfer ring is synchronized successfully.
**/
EFI_STATUS
EFIAPI
XhcSyncTrsRing (
IN USB_XHCI_DEV *Xhc,
IN TRANSFER_RING *TrsRing
)
{
UINTN Index;
TRB *TrsTrb;
ASSERT (TrsRing != NULL);
//
// Calculate the latest RingEnqueue and RingPCS
//
TrsTrb = TrsRing->RingEnqueue;
ASSERT (TrsTrb != NULL);
for (Index = 0; Index < TrsRing->TrbNumber; Index++) {
if (TrsTrb->CycleBit != (TrsRing->RingPCS & BIT0)) {
break;
}
TrsTrb++;
if ((UINT8) TrsTrb->Type == TRB_TYPE_LINK) {
ASSERT (((LNK_TRB*)TrsTrb)->TC != 0);
//
// set cycle bit in Link TRB as normal
//
((LNK_TRB*)TrsTrb)->CycleBit = TrsRing->RingPCS & BIT0;
//
// Toggle PCS maintained by software
//
TrsRing->RingPCS = (TrsRing->RingPCS & BIT0) ? 0 : 1;
TrsTrb = (TRB*)(UINTN)((TrsTrb->Dword1 | ((UINT64)TrsTrb->Dword2 << 32)) & ~0x0F);
}
}
ASSERT (Index != TrsRing->TrbNumber);
if (TrsTrb != TrsRing->RingEnqueue) {
TrsRing->RingEnqueue = TrsTrb;
}
//
// Clear the Trb context for enqueue, but reserve the PCS bit
//
TrsTrb->Dword1 = 0;
TrsTrb->Dword2 = 0;
TrsTrb->Dword3 = 0;
TrsTrb->RsvdZ1 = 0;
TrsTrb->Type = 0;
TrsTrb->RsvdZ2 = 0;
return EFI_SUCCESS;
}
/**
Check if there is a new generated event.
@param Xhc The XHCI device.
@param EvtRing The event ring to check.
@param NewEvtTrb The new event TRB found.
@retval EFI_SUCCESS Found a new event TRB at the event ring.
@retval EFI_NOT_READY The event ring has no new event.
**/
EFI_STATUS
EFIAPI
XhcCheckNewEvent (
IN USB_XHCI_DEV *Xhc,
IN EVENT_RING *EvtRing,
OUT TRB **NewEvtTrb
)
{
EFI_STATUS Status;
TRB *EvtTrb;
ASSERT (EvtRing != NULL);
EvtTrb = EvtRing->EventRingDequeue;
*NewEvtTrb = EvtRing->EventRingDequeue;
if (EvtRing->EventRingDequeue == EvtRing->EventRingEnqueue) {
return EFI_NOT_READY;
}
Status = EFI_SUCCESS;
if (((EvtTrb->Dword3 >> 24) & 0xFF) != TRB_COMPLETION_SUCCESS) {
Status = EFI_DEVICE_ERROR;
}
EvtRing->EventRingDequeue++;
//
// If the dequeue pointer is beyond the ring, then roll-back it to the begining of the ring.
//
if ((UINTN)EvtRing->EventRingDequeue >= ((UINTN) EvtRing->EventRingSeg0 + sizeof (TRB) * EvtRing->TrbNumber)) {
EvtRing->EventRingDequeue = EvtRing->EventRingSeg0;
}
return Status;
}
/**
Ring the door bell to notify XHCI there is a transaction to be executed.
@param Xhc The XHCI device.
@param SlotId The slot id of the target device.
@param Dci The device context index of the target slot or endpoint.
@retval EFI_SUCCESS Successfully ring the door bell.
**/
EFI_STATUS
EFIAPI
XhcRingDoorBell (
IN USB_XHCI_DEV *Xhc,
IN UINT8 SlotId,
IN UINT8 Dci
)
{
if (SlotId == 0) {
XhcWriteDoorBellReg (Xhc, 0, 0);
} else {
XhcWriteDoorBellReg (Xhc, SlotId * sizeof (UINT32), Dci);
}
return EFI_SUCCESS;
}
/**
Ring the door bell to notify XHCI there is a transaction to be executed through URB.
@param Xhc The XHCI device.
@param Urb The URB to be rung.
@retval EFI_SUCCESS Successfully ring the door bell.
**/
EFI_STATUS
RingIntTransferDoorBell (
IN USB_XHCI_DEV *Xhc,
IN URB *Urb
)
{
UINT8 SlotId;
UINT8 Dci;
SlotId = XhcDevAddrToSlotId(Urb->Ep.DevAddr);
Dci = XhcEndpointToDci(Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
XhcRingDoorBell (Xhc, SlotId, Dci);
return EFI_SUCCESS;
}
/**
Assign and initialize the device slot for a new device.
@param Xhc The XHCI device.
@param ParentRouteChart The route string pointed to the parent device.
@param ParentPort The port at which the device is located.
@param RouteChart The route string pointed to the device.
@param DeviceSpeed The device speed.
@retval EFI_SUCCESS Successfully assign a slot to the device and assign an address to it.
**/
EFI_STATUS
EFIAPI
XhcInitializeDeviceSlot (
IN USB_XHCI_DEV *Xhc,
IN USB_DEV_ROUTE ParentRouteChart,
IN UINT16 ParentPort,
IN USB_DEV_ROUTE RouteChart,
IN UINT8 DeviceSpeed
)
{
EFI_STATUS Status;
EVT_TRB_COMMAND *EvtTrb;
INPUT_CONTEXT *InputContext;
DEVICE_CONTEXT *OutputDevContxt;
TRANSFER_RING *EndpointTransferRing;
CMD_TRB_ADDR_DEV CmdTrbAddr;
UINT8 DeviceAddress;
CMD_TRB_EN_SLOT CmdTrb;
UINT8 SlotId;
UINT8 ParentSlotId;
DEVICE_CONTEXT *ParentDeviceContext;
ZeroMem (&CmdTrb, sizeof (CMD_TRB_EN_SLOT));
CmdTrb.CycleBit = 1;
CmdTrb.Type = TRB_TYPE_EN_SLOT;
Status = XhcCmdTransfer (
Xhc,
(TRB *) (UINTN) &CmdTrb,
XHC_GENERIC_TIMEOUT,
(TRB **) (UINTN) &EvtTrb
);
ASSERT_EFI_ERROR (Status);
ASSERT (EvtTrb->SlotId <= Xhc->MaxSlotsEn);
DEBUG ((EFI_D_INFO, "Enable Slot Successfully, The Slot ID = 0x%x\n", EvtTrb->SlotId));
SlotId = (UINT8)EvtTrb->SlotId;
ASSERT (SlotId != 0);
ZeroMem (&UsbDevContext[SlotId], sizeof (USB_DEV_CONTEXT));
UsbDevContext[SlotId].Enabled = TRUE;
UsbDevContext[SlotId].SlotId = SlotId;
UsbDevContext[SlotId].RouteString.Dword = RouteChart.Dword;
UsbDevContext[SlotId].ParentRouteString.Dword = ParentRouteChart.Dword;
//
// 4.3.3 Device Slot Initialization
// 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'.
//
InputContext = AllocateAlignedZeroPool(sizeof (INPUT_CONTEXT), 64);
ASSERT (InputContext != NULL);
ASSERT (((UINTN) InputContext & 0x3F) == 0);
UsbDevContext[SlotId].InputContext = (VOID *) InputContext;
//
// 2) Initialize the Input Control Context (6.2.5.1) of the Input Context by setting the A0 and A1
// flags to '1'. These flags indicate that the Slot Context and the Endpoint 0 Context of the Input
// Context are affected by the command.
//
InputContext->InputControlContext.Dword2 |= (BIT0 | BIT1);
//
// 3) Initialize the Input Slot Context data structure
//
InputContext->Slot.RouteStr = RouteChart.Field.RouteString;
InputContext->Slot.Speed = DeviceSpeed + 1;
InputContext->Slot.ContextEntries = 1;
InputContext->Slot.RootHubPortNum = RouteChart.Field.RootPortNum;
if (RouteChart.Field.RouteString) {
//
// The device is behind of hub device.
//
ParentSlotId = XhcRouteStringToSlotId(ParentRouteChart);
ASSERT (ParentSlotId != 0);
//
//if the Full/Low device attached to a High Speed Hub, Init the TTPortNum and TTHubSlotId field of slot context
//
ParentDeviceContext = (DEVICE_CONTEXT *)UsbDevContext[ParentSlotId].OutputDevContxt;
if ((ParentDeviceContext->Slot.TTPortNum == 0) &&
(ParentDeviceContext->Slot.TTHubSlotId == 0)) {
if ((ParentDeviceContext->Slot.Speed == (EFI_USB_SPEED_HIGH + 1)) && (DeviceSpeed < EFI_USB_SPEED_HIGH)) {
//
// Full/Low device attached to High speed hub port that isolates the high speed signaling
// environment from Full/Low speed signaling environment for a device
//
InputContext->Slot.TTPortNum = ParentPort;
InputContext->Slot.TTHubSlotId = ParentSlotId;
}
} else {
//
// Inherit the TT parameters from parent device.
//
InputContext->Slot.TTPortNum = ParentDeviceContext->Slot.TTPortNum;
InputContext->Slot.TTHubSlotId = ParentDeviceContext->Slot.TTHubSlotId;
//
// If the device is a High speed device then down the speed to be the same as its parent Hub
//
if (DeviceSpeed == EFI_USB_SPEED_HIGH) {
InputContext->Slot.Speed = ParentDeviceContext->Slot.Speed;
}
}
}
//
// 4) Allocate and initialize the Transfer Ring for the Default Control Endpoint.
//
EndpointTransferRing = AllocateAlignedZeroPool(sizeof (TRANSFER_RING), 64);
UsbDevContext[SlotId].EndpointTransferRing[0] = EndpointTransferRing;
CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)UsbDevContext[SlotId].EndpointTransferRing[0]);
//
// 5) Initialize the Input default control Endpoint 0 Context (6.2.3).
//
InputContext->EP[0].EPType = ED_CONTROL_BIDIR;
if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
InputContext->EP[0].MaxPacketSize = 512;
} else if (DeviceSpeed == EFI_USB_SPEED_HIGH) {
InputContext->EP[0].MaxPacketSize = 64;
} else {
InputContext->EP[0].MaxPacketSize = 8;
}
//
// Initial value of Average TRB Length for Control endpoints would be 8B, Interrupt endpoints
// 1KB, and Bulk and Isoch endpoints 3KB.
//
InputContext->EP[0].AverageTRBLength = 8;
InputContext->EP[0].MaxBurstSize = 0;
InputContext->EP[0].Interval = 0;
InputContext->EP[0].MaxPStreams = 0;
InputContext->EP[0].Mult = 0;
InputContext->EP[0].CErr = 3;
//
// Init the DCS(dequeue cycle state) as the transfer ring's CCS
//
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0) | BIT0;
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0);
//
// 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'.
//
OutputDevContxt = AllocateAlignedZeroPool(sizeof (DEVICE_CONTEXT), 64);
ASSERT (OutputDevContxt != NULL);
ASSERT (((UINTN) OutputDevContxt & 0x3F) == 0);
UsbDevContext[SlotId].OutputDevContxt = OutputDevContxt;
//
// 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with
// a pointer to the Output Device Context data structure (6.2.1).
//
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) OutputDevContxt;
//
// 8) Issue an Address Device Command for the Device Slot, where the command points to the Input
// Context data structure described above.
//
ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr));
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (UsbDevContext[SlotId].InputContext);
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (UsbDevContext[SlotId].InputContext);
CmdTrbAddr.CycleBit = 1;
CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV;
CmdTrbAddr.SlotId = UsbDevContext[SlotId].SlotId;
Status = XhcCmdTransfer (
Xhc,
(TRB *) (UINTN) &CmdTrbAddr,
XHC_GENERIC_TIMEOUT,
(TRB **) (UINTN) &EvtTrb
);
ASSERT (!EFI_ERROR(Status));
DeviceAddress = (UINT8) ((DEVICE_CONTEXT *) OutputDevContxt)->Slot.DeviceAddress;
DEBUG ((EFI_D_INFO, " Address %d assigned succeefully\n", DeviceAddress));
UsbDevContext[SlotId].XhciDevAddr = DeviceAddress;
return Status;
}
/**
Disable the specified device slot.
@param Xhc The XHCI device.
@param SlotId The slot id to be disabled.
@retval EFI_SUCCESS Successfully disable the device slot.
**/
EFI_STATUS
EFIAPI
XhcDisableSlotCmd (
IN USB_XHCI_DEV *Xhc,
IN UINT8 SlotId
)
{
EFI_STATUS Status;
TRB *EvtTrb;
CMD_TRB_DIS_SLOT CmdTrbDisSlot;
UINT8 Index;
VOID *RingSeg;
//
// Disable the device slots occupied by these devices on its downstream ports.
// Entry 0 is reserved.
//
for (Index = 0; Index < 255; Index++) {
if (!UsbDevContext[Index + 1].Enabled ||
(UsbDevContext[Index + 1].SlotId == 0) ||
(UsbDevContext[Index + 1].ParentRouteString.Dword != UsbDevContext[SlotId].RouteString.Dword)) {
continue;
}
Status = XhcDisableSlotCmd (Xhc, UsbDevContext[Index + 1].SlotId);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "XhcDisableSlotCmd: failed to disable child, ignore error\n"));
UsbDevContext[Index + 1].SlotId = 0;
}
}
//
// Construct the disable slot command
//
DEBUG ((EFI_D_INFO, "Disable device slot %d!\n", SlotId));
ZeroMem (&CmdTrbDisSlot, sizeof (CmdTrbDisSlot));
CmdTrbDisSlot.CycleBit = 1;
CmdTrbDisSlot.Type = TRB_TYPE_DIS_SLOT;
CmdTrbDisSlot.SlotId = SlotId;
Status = XhcCmdTransfer (
Xhc,
(TRB *) (UINTN) &CmdTrbDisSlot,
XHC_GENERIC_TIMEOUT,
(TRB **) (UINTN) &EvtTrb
);
ASSERT_EFI_ERROR(Status);
//
// Free the slot's device context entry
//
Xhc->DCBAA[SlotId] = 0;
//
// Free the slot related data structure
//
for (Index = 0; Index < 31; Index++) {
if (UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) {
RingSeg = ((TRANSFER_RING *)(UINTN)UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0;
if (RingSeg != NULL) {
FreeAlignedPool(RingSeg);
}
FreeAlignedPool(UsbDevContext[SlotId].EndpointTransferRing[Index]);
}
}
for (Index = 0; Index < UsbDevContext[SlotId].DevDesc.NumConfigurations; Index++) {
if (UsbDevContext[SlotId].ConfDesc[Index] != NULL) {
FreePool (UsbDevContext[SlotId].ConfDesc[Index]);
}
}
if (UsbDevContext[SlotId].InputContext != NULL) {
FreeAlignedPool (UsbDevContext[SlotId].InputContext);
}
if (UsbDevContext[SlotId].OutputDevContxt != NULL) {
FreeAlignedPool (UsbDevContext[SlotId].OutputDevContxt);
}
//
// Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established
// asynchronous interrupt pipe after the device is disabled. It needs the device address mapping info to
// remove urb from XHCI's asynchronous transfer list.
//
UsbDevContext[SlotId].Enabled = FALSE;
return Status;
}
/**
Configure all the device endpoints through XHCI's Configure_Endpoint cmd.
@param Xhc The XHCI device.
@param SlotId The slot id to be configured.
@param DeviceSpeed The device's speed.
@param ConfigDesc The pointer to the usb device configuration descriptor.
@retval EFI_SUCCESS Successfully configure all the device endpoints.
**/
EFI_STATUS
EFIAPI
XhcSetConfigCmd (
IN USB_XHCI_DEV *Xhc,
IN UINT8 SlotId,
IN UINT8 DeviceSpeed,
IN USB_CONFIG_DESCRIPTOR *ConfigDesc
)
{
EFI_STATUS Status;
USB_INTERFACE_DESCRIPTOR *IfDesc;
USB_ENDPOINT_DESCRIPTOR *EpDesc;
UINT8 Index;
UINTN NumEp;
UINTN EpIndex;
UINT8 EpAddr;
UINT8 Direction;
UINT8 Dci;
UINT8 MaxDci;
UINT32 PhyAddr;
UINT8 Interval;
TRANSFER_RING *EndpointTransferRing;
CMD_CFG_ED CmdTrbCfgEP;
INPUT_CONTEXT *InputContext;
DEVICE_CONTEXT *OutputDevContxt;
EVT_TRB_COMMAND *EvtTrb;
//
// 4.6.6 Configure Endpoint
//
InputContext = UsbDevContext[SlotId].InputContext;
OutputDevContxt = UsbDevContext[SlotId].OutputDevContxt;
ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
CopyMem (&InputContext->Slot, &OutputDevContxt->Slot, sizeof (SLOT_CONTEXT));
ASSERT (ConfigDesc != NULL);
MaxDci = 0;
IfDesc = (USB_INTERFACE_DESCRIPTOR *)(ConfigDesc + 1);
for (Index = 0; Index < ConfigDesc->NumInterfaces; Index++) {
while (IfDesc->DescriptorType != USB_DESC_TYPE_INTERFACE) {
IfDesc = (USB_INTERFACE_DESCRIPTOR *)((UINTN)IfDesc + IfDesc->Length);
}
NumEp = IfDesc->NumEndpoints;
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)(IfDesc + 1);
for (EpIndex = 0; EpIndex < NumEp; EpIndex++) {
while (EpDesc->DescriptorType != USB_DESC_TYPE_ENDPOINT) {
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
}
EpAddr = (UINT8)(EpDesc->EndpointAddress & 0x0F);
Direction = (UINT8)((EpDesc->EndpointAddress & 0x80) ? EfiUsbDataIn : EfiUsbDataOut);
Dci = XhcEndpointToDci (EpAddr, Direction);
if (Dci > MaxDci) {
MaxDci = Dci;
}
InputContext->InputControlContext.Dword2 |= (BIT0 << Dci);
InputContext->EP[Dci-1].MaxPacketSize = EpDesc->MaxPacketSize;
if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
//
// 6.2.3.4, shall be set to the value defined in the bMaxBurst field of the SuperSpeed Endpoint Companion Descriptor.
//
InputContext->EP[Dci-1].MaxBurstSize = 0x0;
} else {
InputContext->EP[Dci-1].MaxBurstSize = 0x0;
}
switch (EpDesc->Attributes & USB_ENDPOINT_TYPE_MASK) {
case USB_ENDPOINT_BULK:
if (Direction == EfiUsbDataIn) {
InputContext->EP[Dci-1].CErr = 3;
InputContext->EP[Dci-1].EPType = ED_BULK_IN;
} else {
InputContext->EP[Dci-1].CErr = 3;
InputContext->EP[Dci-1].EPType = ED_BULK_OUT;
}
InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
if (UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) {
EndpointTransferRing = AllocateAlignedZeroPool(sizeof (TRANSFER_RING), 64);
UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing;
CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)UsbDevContext[SlotId].EndpointTransferRing[Dci-1]);
}
break;
case USB_ENDPOINT_ISO:
if (Direction == EfiUsbDataIn) {
InputContext->EP[Dci-1].CErr = 0;
InputContext->EP[Dci-1].EPType = ED_ISOCH_IN;
} else {
InputContext->EP[Dci-1].CErr = 0;
InputContext->EP[Dci-1].EPType = ED_ISOCH_OUT;
}
break;
case USB_ENDPOINT_INTERRUPT:
if (Direction == EfiUsbDataIn) {
InputContext->EP[Dci-1].CErr = 3;
InputContext->EP[Dci-1].EPType = ED_INTERRUPT_IN;
} else {
InputContext->EP[Dci-1].CErr = 3;
InputContext->EP[Dci-1].EPType = ED_INTERRUPT_OUT;
}
InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
InputContext->EP[Dci-1].MaxESITPayload = EpDesc->MaxPacketSize;
//
// Get the bInterval from descriptor and init the the interval field of endpoint context
//
if ((DeviceSpeed == EFI_USB_SPEED_FULL) || (DeviceSpeed == EFI_USB_SPEED_LOW)) {
Interval = EpDesc->Interval;
//
// BUGBUG: Hard code the interval to MAX
//
InputContext->EP[Dci-1].Interval = 6;
} else if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
Interval = EpDesc->Interval;
InputContext->EP[Dci-1].Interval = 0x0F;
InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
InputContext->EP[Dci-1].MaxESITPayload = 0x0002;
InputContext->EP[Dci-1].MaxBurstSize = 0x0;
InputContext->EP[Dci-1].CErr = 3;
}
if (UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) {
EndpointTransferRing = AllocateAlignedZeroPool(sizeof (TRANSFER_RING), 64);
UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing;
CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)UsbDevContext[SlotId].EndpointTransferRing[Dci-1]);
}
break;
case USB_ENDPOINT_CONTROL:
default:
ASSERT (0);
break;
}
PhyAddr = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
PhyAddr &= ~(0x0F);
PhyAddr |= ((TRANSFER_RING *)(UINTN)UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS;
InputContext->EP[Dci-1].PtrLo = PhyAddr;
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
}
IfDesc = (USB_INTERFACE_DESCRIPTOR *)((UINTN)IfDesc + IfDesc->Length);
}
InputContext->InputControlContext.Dword2 |= BIT0;
InputContext->Slot.ContextEntries = MaxDci;
//
// configure endpoint
//
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
CmdTrbCfgEP.CycleBit = 1;
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
CmdTrbCfgEP.SlotId = UsbDevContext[SlotId].SlotId;
DEBUG ((EFI_D_INFO, "Configure Endpoint\n"));
Status = XhcCmdTransfer (
Xhc,
(TRB *) (UINTN) &CmdTrbCfgEP,
XHC_GENERIC_TIMEOUT,
(TRB **) (UINTN) &EvtTrb
);
ASSERT_EFI_ERROR(Status);
return Status;
}
/**
Evaluate the endpoint 0 context through XHCI's Evaluate_Context cmd.
@param Xhc The XHCI device.
@param SlotId The slot id to be evaluated.
@param MaxPacketSize The max packet size supported by the device control transfer.
@retval EFI_SUCCESS Successfully evaluate the device endpoint 0.
**/
EFI_STATUS
EFIAPI
XhcEvaluateContext (
IN USB_XHCI_DEV *Xhc,
IN UINT8 SlotId,
IN UINT32 MaxPacketSize
)
{
EFI_STATUS Status;
CMD_TRB_EVALU_CONTX CmdTrbEvalu;
EVT_TRB_COMMAND *EvtTrb;
INPUT_CONTEXT *InputContext;
ASSERT (UsbDevContext[SlotId].SlotId != 0);
//
// 4.6.7 Evaluate Context
//
InputContext = UsbDevContext[SlotId].InputContext;
ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
InputContext->InputControlContext.Dword2 |= BIT1;
InputContext->EP[0].MaxPacketSize = MaxPacketSize;
ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu));
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (InputContext);
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (InputContext);
CmdTrbEvalu.CycleBit = 1;
CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT;
CmdTrbEvalu.SlotId = UsbDevContext[SlotId].SlotId;
DEBUG ((EFI_D_INFO, "Evaluate context\n"));
Status = XhcCmdTransfer (
Xhc,
(TRB *) (UINTN) &CmdTrbEvalu,
XHC_GENERIC_TIMEOUT,
(TRB **) (UINTN) &EvtTrb
);
ASSERT (!EFI_ERROR(Status));
return Status;
}
/**
Evaluate the slot context for hub device through XHCI's Configure_Endpoint cmd.
@param Xhc The XHCI device.
@param SlotId The slot id to be configured.
@param PortNum The total number of downstream port supported by the hub.
@param TTT The TT think time of the hub device.
@param MTT The multi-TT of the hub device.
@retval EFI_SUCCESS Successfully configure the hub device's slot context.
**/
EFI_STATUS
XhcConfigHubContext (
IN USB_XHCI_DEV *Xhc,
IN UINT8 SlotId,
IN UINT8 PortNum,
IN UINT8 TTT,
IN UINT8 MTT
)
{
EFI_STATUS Status;
EVT_TRB_COMMAND *EvtTrb;
INPUT_CONTEXT *InputContext;
DEVICE_CONTEXT *OutputDevContxt;
CMD_CFG_ED CmdTrbCfgEP;
ASSERT (UsbDevContext[SlotId].SlotId != 0);
InputContext = UsbDevContext[SlotId].InputContext;
OutputDevContxt = UsbDevContext[SlotId].OutputDevContxt;
//
// 4.6.7 Evaluate Context
//
ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
InputContext->InputControlContext.Dword2 |= BIT0;
//
// Copy the slot context from OutputContext to Input context
//
CopyMem(&(InputContext->Slot), &(OutputDevContxt->Slot), sizeof (SLOT_CONTEXT));
InputContext->Slot.Hub = 1;
InputContext->Slot.PortNum = PortNum;
InputContext->Slot.TTT = TTT;
InputContext->Slot.MTT = MTT;
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
CmdTrbCfgEP.CycleBit = 1;
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
CmdTrbCfgEP.SlotId = UsbDevContext[SlotId].SlotId;
DEBUG ((EFI_D_INFO, "Configure Hub Slot Context\n"));
Status = XhcCmdTransfer (
Xhc,
(TRB *) (UINTN) &CmdTrbCfgEP,
XHC_GENERIC_TIMEOUT,
(TRB **) (UINTN) &EvtTrb
);
ASSERT (!EFI_ERROR(Status));
return Status;
}