audk/MdeModulePkg/Universal/DevicePathDxe/DevicePath.h

433 lines
16 KiB
C
Raw Normal View History

/** @file
Definition for Device Path Utilities driver
Copyright (c) 2006 - 2008, Intel Corporation. <BR>
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _DEVICE_PATH_DRIVER_H_
#define _DEVICE_PATH_DRIVER_H_
#include <Uefi.h>
#include <Protocol/DevicePathUtilities.h>
#include <Protocol/DebugPort.h>
#include <Protocol/DevicePathToText.h>
#include <Protocol/DevicePathFromText.h>
#include <Guid/PcAnsi.h>
#include <Library/DebugLib.h>
#include <Library/PrintLib.h>
#include <Library/UefiDriverEntryPoint.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/DevicePathLib.h>
#include <Library/PcdLib.h>
extern const EFI_GUID mEfiDevicePathMessagingUartFlowControlGuid;
extern const EFI_GUID mEfiDevicePathMessagingSASGuid;
#define MAX_CHAR 480
#define MIN_ALIGNMENT_SIZE sizeof(UINTN)
#define ALIGN_SIZE(a) ((a % MIN_ALIGNMENT_SIZE) ? MIN_ALIGNMENT_SIZE - (a % MIN_ALIGNMENT_SIZE) : 0)
#define IS_COMMA(a) ((a) == L',')
#define IS_HYPHEN(a) ((a) == L'-')
#define IS_DOT(a) ((a) == L'.')
#define IS_LEFT_PARENTH(a) ((a) == L'(')
#define IS_RIGHT_PARENTH(a) ((a) == L')')
#define IS_SLASH(a) ((a) == L'/')
#define IS_NULL(a) ((a) == L'\0')
#define DEVICE_NODE_END 1
#define DEVICE_PATH_INSTANCE_END 2
#define DEVICE_PATH_END 3
#define SET_DEVICE_PATH_INSTANCE_END_NODE(a) { \
(a)->Type = END_DEVICE_PATH_TYPE; \
(a)->SubType = END_INSTANCE_DEVICE_PATH_SUBTYPE; \
(a)->Length[0] = sizeof (EFI_DEVICE_PATH_PROTOCOL); \
(a)->Length[1] = 0; \
}
//
// Private Data structure
//
typedef struct {
CHAR16 *Str;
UINTN Len;
UINTN MaxLen;
} POOL_PRINT;
typedef
EFI_DEVICE_PATH_PROTOCOL *
(*DUMP_NODE) (
IN CHAR16 *DeviceNodeStr
);
typedef struct {
UINT8 Type;
UINT8 SubType;
VOID (*Function) (POOL_PRINT *, VOID *, BOOLEAN, BOOLEAN);
} DEVICE_PATH_TO_TEXT_TABLE;
typedef struct {
CHAR16 *DevicePathNodeText;
DUMP_NODE Function;
} DEVICE_PATH_FROM_TEXT_TABLE;
typedef struct {
BOOLEAN ClassExist;
UINT8 Class;
BOOLEAN SubClassExist;
UINT8 SubClass;
} USB_CLASS_TEXT;
#define USB_CLASS_AUDIO 1
#define USB_CLASS_CDCCONTROL 2
#define USB_CLASS_HID 3
#define USB_CLASS_IMAGE 6
#define USB_CLASS_PRINTER 7
#define USB_CLASS_MASS_STORAGE 8
#define USB_CLASS_HUB 9
#define USB_CLASS_CDCDATA 10
#define USB_CLASS_SMART_CARD 11
#define USB_CLASS_VIDEO 14
#define USB_CLASS_DIAGNOSTIC 220
#define USB_CLASS_WIRELESS 224
#define USB_CLASS_RESERVE 254
#define USB_SUBCLASS_FW_UPDATE 1
#define USB_SUBCLASS_IRDA_BRIDGE 2
#define USB_SUBCLASS_TEST 3
#pragma pack(1)
typedef struct {
EFI_DEVICE_PATH_PROTOCOL Header;
EFI_GUID Guid;
UINT8 VendorDefinedData[1];
} VENDOR_DEFINED_HARDWARE_DEVICE_PATH;
typedef struct {
EFI_DEVICE_PATH_PROTOCOL Header;
EFI_GUID Guid;
UINT8 VendorDefinedData[1];
} VENDOR_DEFINED_MESSAGING_DEVICE_PATH;
typedef struct {
EFI_DEVICE_PATH_PROTOCOL Header;
EFI_GUID Guid;
UINT8 VendorDefinedData[1];
} VENDOR_DEFINED_MEDIA_DEVICE_PATH;
typedef struct {
EFI_DEVICE_PATH_PROTOCOL Header;
UINT32 HID;
UINT32 UID;
UINT32 CID;
CHAR8 HidUidCidStr[3];
} ACPI_EXTENDED_HID_DEVICE_PATH_WITH_STR;
typedef struct {
EFI_DEVICE_PATH_PROTOCOL Header;
UINT16 NetworkProtocol;
UINT16 LoginOption;
UINT64 Lun;
UINT16 TargetPortalGroupTag;
CHAR8 iSCSITargetName[1];
} ISCSI_DEVICE_PATH_WITH_NAME;
typedef struct {
EFI_DEVICE_PATH_PROTOCOL Header;
EFI_GUID Guid;
UINT8 VendorDefinedData[1];
} VENDOR_DEVICE_PATH_WITH_DATA;
#pragma pack()
/**
Converts a device node to its string representation.
@param DeviceNode A Pointer to the device node to be converted.
@param DisplayOnly If DisplayOnly is TRUE, then the shorter text representation
of the display node is used, where applicable. If DisplayOnly
is FALSE, then the longer text representation of the display node
is used.
@param AllowShortcuts If AllowShortcuts is TRUE, then the shortcut forms of text
representation for a device node can be used, where applicable.
@return A pointer to the allocated text representation of the device node or NULL if DeviceNode
is NULL or there was insufficient memory.
**/
CHAR16 *
EFIAPI
ConvertDeviceNodeToText (
IN CONST EFI_DEVICE_PATH_PROTOCOL *DeviceNode,
IN BOOLEAN DisplayOnly,
IN BOOLEAN AllowShortcuts
);
/**
Converts a device path to its text representation.
@param DevicePath A Pointer to the device to be converted.
@param DisplayOnly If DisplayOnly is TRUE, then the shorter text representation
of the display node is used, where applicable. If DisplayOnly
is FALSE, then the longer text representation of the display node
is used.
@param AllowShortcuts If AllowShortcuts is TRUE, then the shortcut forms of text
representation for a device node can be used, where applicable.
@return A pointer to the allocated text representation of the device path or
NULL if DeviceNode is NULL or there was insufficient memory.
**/
CHAR16 *
EFIAPI
ConvertDevicePathToText (
IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
IN BOOLEAN DisplayOnly,
IN BOOLEAN AllowShortcuts
);
/**
Convert text to the binary representation of a device node.
@param TextDeviceNode TextDeviceNode points to the text representation of a device
node. Conversion starts with the first character and continues
until the first non-device node character.
@return A pointer to the EFI device node or NULL if TextDeviceNode is NULL or there was
insufficient memory or text unsupported.
**/
EFI_DEVICE_PATH_PROTOCOL *
EFIAPI
ConvertTextToDeviceNode (
IN CONST CHAR16 *TextDeviceNode
);
/**
Convert text to the binary representation of a device path.
@param TextDevicePath TextDevicePath points to the text representation of a device
path. Conversion starts with the first character and continues
until the first non-device node character.
@return A pointer to the allocated device path or NULL if TextDeviceNode is NULL or
there was insufficient memory.
**/
EFI_DEVICE_PATH_PROTOCOL *
EFIAPI
ConvertTextToDevicePath (
IN CONST CHAR16 *TextDevicePath
);
/**
Returns the size of a device path in bytes.
This function returns the size, in bytes, of the device path data structure specified by
DevicePath including the end of device path node. If DevicePath is NULL, then 0 is returned.
@param DevicePath A pointer to a device path data structure.
@return The size of a device path in bytes.
**/
UINTN
EFIAPI
GetDevicePathSizeProtocolInterface (
IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
/**
Creates a new device path by appending a second device path to a first device path.
This function allocates space for a new copy of the device path specified by DevicePath. If
DevicePath is NULL, then NULL is returned. If the memory is successfully allocated, then the
contents of DevicePath are copied to the newly allocated buffer, and a pointer to that buffer
is returned. Otherwise, NULL is returned.
@param DevicePath A pointer to a device path data structure.
@return A pointer to the duplicated device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
EFIAPI
DuplicateDevicePathProtocolInterface (
IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
/**
Creates a new device path by appending a second device path to a first device path.
This function creates a new device path by appending a copy of SecondDevicePath to a copy of
FirstDevicePath in a newly allocated buffer. Only the end-of-device-path device node from
SecondDevicePath is retained. The newly created device path is returned.
If FirstDevicePath is NULL, then it is ignored, and a duplicate of SecondDevicePath is returned.
If SecondDevicePath is NULL, then it is ignored, and a duplicate of FirstDevicePath is returned.
If both FirstDevicePath and SecondDevicePath are NULL, then a copy of an end-of-device-path is
returned.
If there is not enough memory for the newly allocated buffer, then NULL is returned.
The memory for the new device path is allocated from EFI boot services memory. It is the
responsibility of the caller to free the memory allocated.
@param FirstDevicePath A pointer to a device path data structure.
@param SecondDevicePath A pointer to a device path data structure.
@return A pointer to the new device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
EFIAPI
AppendDevicePathProtocolInterface (
IN CONST EFI_DEVICE_PATH_PROTOCOL *FirstDevicePath,
IN CONST EFI_DEVICE_PATH_PROTOCOL *SecondDevicePath
);
/**
Creates a new path by appending the device node to the device path.
This function creates a new device path by appending a copy of the device node specified by
DevicePathNode to a copy of the device path specified by DevicePath in an allocated buffer.
The end-of-device-path device node is moved after the end of the appended device node.
If DevicePathNode is NULL then a copy of DevicePath is returned.
If DevicePath is NULL then a copy of DevicePathNode, followed by an end-of-device path device
node is returned.
If both DevicePathNode and DevicePath are NULL then a copy of an end-of-device-path device node
is returned.
If there is not enough memory to allocate space for the new device path, then NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility of the caller to
free the memory allocated.
@param DevicePath A pointer to a device path data structure.
@param DevicePathNode A pointer to a single device path node.
@return A pointer to the new device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
EFIAPI
AppendDeviceNodeProtocolInterface (
IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathNode
);
/**
Creates a new device path by appending the specified device path instance to the specified device
path.
This function creates a new device path by appending a copy of the device path instance specified
by DevicePathInstance to a copy of the device path secified by DevicePath in a allocated buffer.
The end-of-device-path device node is moved after the end of the appended device path instance
and a new end-of-device-path-instance node is inserted between.
If DevicePath is NULL, then a copy if DevicePathInstance is returned.
If DevicePathInstance is NULL, then NULL is returned.
If there is not enough memory to allocate space for the new device path, then NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility of the caller to
free the memory allocated.
@param DevicePath A pointer to a device path data structure.
@param DevicePathInstance A pointer to a device path instance.
@return A pointer to the new device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
EFIAPI
AppendDevicePathInstanceProtocolInterface (
IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath,
IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePathInstance
);
/**
Creates a copy of the current device path instance and returns a pointer to the next device path
instance.
This function creates a copy of the current device path instance. It also updates DevicePath to
point to the next device path instance in the device path (or NULL if no more) and updates Size
to hold the size of the device path instance copy.
If DevicePath is NULL, then NULL is returned.
If there is not enough memory to allocate space for the new device path, then NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility of the caller to
free the memory allocated.
If Size is NULL, then ASSERT().
@param DevicePath On input, this holds the pointer to the current device path
instance. On output, this holds the pointer to the next device
path instance or NULL if there are no more device path
instances in the device path pointer to a device path data
structure.
@param Size On output, this holds the size of the device path instance, in
bytes or zero, if DevicePath is NULL.
@return A pointer to the current device path instance.
**/
EFI_DEVICE_PATH_PROTOCOL *
EFIAPI
GetNextDevicePathInstanceProtocolInterface (
IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath,
OUT UINTN *Size
);
/**
Determines if a device path is single or multi-instance.
This function returns TRUE if the device path specified by DevicePath is multi-instance.
Otherwise, FALSE is returned. If DevicePath is NULL, then FALSE is returned.
@param DevicePath A pointer to a device path data structure.
@retval TRUE DevicePath is multi-instance.
@retval FALSE DevicePath is not multi-instance or DevicePath is NULL.
**/
BOOLEAN
EFIAPI
IsDevicePathMultiInstanceProtocolInterface (
IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
/**
Creates a copy of the current device path instance and returns a pointer to the next device path
instance.
This function creates a new device node in a newly allocated buffer of size NodeLength and
initializes the device path node header with NodeType and NodeSubType. The new device path node
is returned.
If NodeLength is smaller than a device path header, then NULL is returned.
If there is not enough memory to allocate space for the new device path, then NULL is returned.
The memory is allocated from EFI boot services memory. It is the responsibility of the caller to
free the memory allocated.
@param NodeType The device node type for the new device node.
@param NodeSubType The device node sub-type for the new device node.
@param NodeLength The length of the new device node.
@return The new device path.
**/
EFI_DEVICE_PATH_PROTOCOL *
EFIAPI
CreateDeviceNodeProtocolInterface (
IN UINT8 NodeType,
IN UINT8 NodeSubType,
IN UINT16 NodeLength
);
#endif