audk/StandaloneMmPkg/Drivers/StandaloneMmIplPei/MmFoundationHob.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1032 lines
33 KiB
C
Raw Normal View History

/** @file
Copyright (c) 2024, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <StandaloneMmIplPei.h>
#include <Guid/MpInformation2.h>
#include <Guid/AcpiS3Context.h>
#include <Guid/MmAcpiS3Enable.h>
#include <Guid/MmCpuSyncConfig.h>
#include <Guid/MmProfileData.h>
#include <Guid/MmUnblockRegion.h>
#include <Register/Intel/Cpuid.h>
#include <Register/Intel/ArchitecturalMsr.h>
typedef struct {
EFI_PHYSICAL_ADDRESS Base;
UINT64 Length;
} MM_IPL_MEMORY_REGION;
/**
Add a new HOB to the HOB List.
@param[in] Hob The pointer of new HOB buffer.
@param[in] HobType Type of the new HOB.
@param[in] HobLength Length of the new HOB to allocate.
@return NULL if there is no space to create a hob.
@return The address point to the new created hob.
**/
VOID *
MmIplCreateHob (
IN VOID *Hob,
IN UINT16 HobType,
IN UINT16 HobLength
)
{
//
// Check Length to avoid data overflow.
//
ASSERT (HobLength < MAX_UINT16 - 0x7);
HobLength = (UINT16)ALIGN_VALUE (HobLength, 8);
((EFI_HOB_GENERIC_HEADER *)Hob)->HobType = HobType;
((EFI_HOB_GENERIC_HEADER *)Hob)->HobLength = HobLength;
((EFI_HOB_GENERIC_HEADER *)Hob)->Reserved = 0;
return Hob;
}
/**
Builds a HOB that describes a chunk of system memory.
This function builds a HOB that describes a chunk of system memory.
If there is no additional space for HOB creation, then ASSERT().
@param[in] Hob The pointer of new HOB buffer.
@param[in] ResourceType The type of resource described by this HOB.
@param[in] ResourceAttribute The resource attributes of the memory described by this HOB.
@param[in] PhysicalStart The 64 bit physical address of memory described by this HOB.
@param[in] NumberOfBytes The length of the memory described by this HOB in bytes.
@param[in] Owner The pointer of GUID.
**/
VOID
MmIplBuildMemoryResourceHob (
IN EFI_HOB_RESOURCE_DESCRIPTOR *Hob,
IN EFI_RESOURCE_TYPE ResourceType,
IN EFI_RESOURCE_ATTRIBUTE_TYPE ResourceAttribute,
IN EFI_PHYSICAL_ADDRESS PhysicalStart,
IN UINT64 NumberOfBytes,
IN EFI_GUID *Owner
)
{
ASSERT (Hob != NULL);
MmIplCreateHob (Hob, EFI_HOB_TYPE_RESOURCE_DESCRIPTOR, sizeof (EFI_HOB_RESOURCE_DESCRIPTOR));
Hob->ResourceType = EFI_RESOURCE_SYSTEM_MEMORY;
Hob->ResourceAttribute = ResourceAttribute;
Hob->PhysicalStart = PhysicalStart;
Hob->ResourceLength = NumberOfBytes;
if (Owner != NULL) {
CopyGuid (&Hob->Owner, Owner);
} else {
ZeroMem (&Hob->Owner, sizeof (EFI_GUID));
}
}
/**
Builds a Firmware Volume HOB.
This function builds a Firmware Volume HOB.
It can only be invoked during PEI phase;
If new HOB buffer is NULL, then ASSERT().
@param[in] Hob The pointer of new HOB buffer.
@param[in, out] HobBufferSize The available size of the HOB buffer when as input.
The used size of when as output.
@param[in] BaseAddress The base address of the Firmware Volume.
@param[in] Length The size of the Firmware Volume in bytes.
**/
VOID
MmIplBuildFvHob (
IN UINT8 *Hob,
IN OUT UINTN *HobBufferSize,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
EFI_HOB_FIRMWARE_VOLUME *FvHob;
UINT16 HobLength;
HobLength = ALIGN_VALUE (sizeof (EFI_HOB_FIRMWARE_VOLUME), 8);
if (*HobBufferSize >= HobLength) {
ASSERT (Hob != NULL);
MmIplCreateHob (Hob, EFI_HOB_TYPE_FV, sizeof (EFI_HOB_FIRMWARE_VOLUME));
FvHob = (EFI_HOB_FIRMWARE_VOLUME *)Hob;
FvHob->BaseAddress = BaseAddress;
FvHob->Length = Length;
}
*HobBufferSize = HobLength;
}
/**
Builds MM ACPI S3 Enable HOB.
This function builds MM ACPI S3 Enable HOB.
It can only be invoked during PEI phase;
If new HOB buffer is NULL, then ASSERT().
@param[in] Hob The pointer of new HOB buffer.
@param[in, out] HobBufferSize The available size of the HOB buffer when as input.
The used size of when as output.
**/
VOID
MmIplBuildMmAcpiS3EnableHob (
IN UINT8 *Hob,
IN OUT UINTN *HobBufferSize
)
{
EFI_HOB_GUID_TYPE *GuidHob;
MM_ACPI_S3_ENABLE *MmAcpiS3Enable;
UINT16 HobLength;
HobLength = ALIGN_VALUE (sizeof (EFI_HOB_GUID_TYPE) + sizeof (MM_ACPI_S3_ENABLE), 8);
if (*HobBufferSize >= HobLength) {
ASSERT (Hob != NULL);
MmIplCreateHob (Hob, EFI_HOB_TYPE_GUID_EXTENSION, HobLength);
GuidHob = (EFI_HOB_GUID_TYPE *)Hob;
CopyGuid (&GuidHob->Name, &gMmAcpiS3EnableHobGuid);
MmAcpiS3Enable = (MM_ACPI_S3_ENABLE *)(GuidHob + 1);
MmAcpiS3Enable->AcpiS3Enable = PcdGetBool (PcdAcpiS3Enable);
}
*HobBufferSize = HobLength;
}
/**
Builds MM cpu sync configuration HOB.
This function builds smm cpu sync configuration HOB.
It can only be invoked during PEI phase;
If new HOB buffer is NULL, then ASSERT().
@param[in] Hob The pointer of new HOB buffer.
@param[in, out] HobBufferSize The available size of the HOB buffer when as input.
The used size of when as output.
**/
VOID
MmIplBuildMmCpuSyncConfigHob (
IN UINT8 *Hob,
IN OUT UINTN *HobBufferSize
)
{
EFI_HOB_GUID_TYPE *GuidHob;
MM_CPU_SYNC_CONFIG *MmSyncModeInfoHob;
UINT16 HobLength;
GuidHob = (EFI_HOB_GUID_TYPE *)(UINTN)Hob;
HobLength = ALIGN_VALUE (sizeof (EFI_HOB_GUID_TYPE) + sizeof (MM_CPU_SYNC_CONFIG), 8);
if (*HobBufferSize >= HobLength) {
ASSERT (Hob != NULL);
MmIplCreateHob (GuidHob, EFI_HOB_TYPE_GUID_EXTENSION, HobLength);
CopyGuid (&GuidHob->Name, &gMmCpuSyncConfigHobGuid);
MmSyncModeInfoHob = (MM_CPU_SYNC_CONFIG *)(UINTN)(GuidHob + 1);
MmSyncModeInfoHob->RelaxedApMode = (BOOLEAN)(PcdGet8 (PcdCpuSmmSyncMode) == MmCpuSyncModeRelaxedAp);
MmSyncModeInfoHob->Timeout = PcdGet64 (PcdCpuSmmApSyncTimeout);
MmSyncModeInfoHob->Timeout2 = PcdGet64 (PcdCpuSmmApSyncTimeout2);
}
*HobBufferSize = HobLength;
}
/**
Copies a data buffer to a newly-built HOB for GUID HOB
This function builds a customized HOB tagged with a GUID for identification, copies the
input data to the HOB data field and returns the start address of the GUID HOB data.
If new HOB buffer is NULL or the GUID HOB could not found, then ASSERT().
@param[in] HobBuffer The pointer of HOB buffer.
@param[in, out] HobBufferSize The available size of the HOB buffer when as input.
The used size of when as output.
@param[in] Guid The GUID of the GUID type HOB.
@param[in] MultiInstances TRUE indicating copying multiple HOBs with the same Guid.
**/
VOID
MmIplCopyGuidHob (
IN UINT8 *HobBuffer,
IN OUT UINTN *HobBufferSize,
IN EFI_GUID *Guid,
IN BOOLEAN MultiInstances
)
{
EFI_HOB_GENERIC_HEADER *GuidHob;
UINTN UsedSize;
UsedSize = 0;
GuidHob = GetFirstGuidHob (Guid);
ASSERT (GuidHob != NULL);
while (GuidHob != NULL) {
if (*HobBufferSize >= UsedSize + GuidHob->HobLength) {
ASSERT (HobBuffer != NULL);
CopyMem (HobBuffer + UsedSize, GuidHob, GuidHob->HobLength);
}
UsedSize += GuidHob->HobLength;
if (!MultiInstances) {
break;
}
GuidHob = GetNextGuidHob (Guid, GET_NEXT_HOB (GuidHob));
}
*HobBufferSize = UsedSize;
}
/**
Builds a HOB for a loaded PE32 module.
This function builds a HOB for a loaded PE32 module.
It can only be invoked during PEI phase;
If physical address of the Module is not 4K aligned, then ASSERT().
If new HOB buffer is NULL, then ASSERT().
@param[in] Hob The pointer of new HOB buffer.
@param[in, out] HobBufferSize The available size of the HOB buffer when as input.
The used size of when as output.
@param[in] ModuleName The GUID File Name of the module.
@param[in] Base The 64 bit physical address of the module.
@param[in] Length The length of the module in bytes.
@param[in] EntryPoint The 64 bit physical address of the module entry point.
**/
VOID
MmIplBuildMmCoreModuleHob (
IN UINT8 *Hob,
IN OUT UINTN *HobBufferSize,
IN CONST EFI_GUID *ModuleName,
IN EFI_PHYSICAL_ADDRESS Base,
IN UINT64 Length,
IN EFI_PHYSICAL_ADDRESS EntryPoint
)
{
UINT16 HobLength;
EFI_HOB_MEMORY_ALLOCATION_MODULE *MmCoreModuleHob;
ASSERT (ADDRESS_IS_ALIGNED (Base, EFI_PAGE_SIZE));
ASSERT (IS_ALIGNED (Length, EFI_PAGE_SIZE));
ASSERT (EntryPoint >= Base && EntryPoint < Base + Length);
HobLength = ALIGN_VALUE (sizeof (EFI_HOB_MEMORY_ALLOCATION_MODULE), 8);
if (*HobBufferSize >= HobLength) {
ASSERT (Hob != NULL);
MmIplCreateHob (Hob, EFI_HOB_TYPE_MEMORY_ALLOCATION, sizeof (EFI_HOB_MEMORY_ALLOCATION_MODULE));
MmCoreModuleHob = (EFI_HOB_MEMORY_ALLOCATION_MODULE *)Hob;
CopyGuid (&MmCoreModuleHob->MemoryAllocationHeader.Name, &gEfiHobMemoryAllocModuleGuid);
MmCoreModuleHob->MemoryAllocationHeader.MemoryBaseAddress = Base;
MmCoreModuleHob->MemoryAllocationHeader.MemoryLength = Length;
MmCoreModuleHob->MemoryAllocationHeader.MemoryType = EfiReservedMemoryType;
ZeroMem (MmCoreModuleHob->MemoryAllocationHeader.Reserved, sizeof (MmCoreModuleHob->MemoryAllocationHeader.Reserved));
CopyGuid (&MmCoreModuleHob->ModuleName, ModuleName);
MmCoreModuleHob->EntryPoint = EntryPoint;
}
*HobBufferSize = HobLength;
}
/**
Build memory allocation HOB in PEI HOB list for MM profile data.
This function is to allocate memory for MM profile data.
@return NULL if MM profile data memory allocation HOB build fail.
@return Pointer of MM profile data memory allocation HOB if build successfully.
**/
EFI_HOB_MEMORY_ALLOCATION *
BuildMmProfileDataHobInPeiHobList (
VOID
)
{
EFI_PEI_HOB_POINTERS Hob;
UINTN TotalSize;
VOID *Alloc;
TotalSize = PcdGet32 (PcdCpuSmmProfileSize);
Alloc = AllocateReservedPages (EFI_SIZE_TO_PAGES (TotalSize));
if (Alloc == NULL) {
return NULL;
}
ZeroMem (Alloc, TotalSize);
Hob.Raw = GetFirstHob (EFI_HOB_TYPE_MEMORY_ALLOCATION);
while (Hob.Raw != NULL) {
if (Hob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress == (EFI_PHYSICAL_ADDRESS)(UINTN)Alloc) {
//
// Find the HOB just created and change the Name to gMmProfileDataHobGuid in PEI HOB list
//
CopyGuid (&Hob.MemoryAllocation->AllocDescriptor.Name, &gMmProfileDataHobGuid);
return Hob.MemoryAllocation;
}
Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, GET_NEXT_HOB (Hob));
}
return NULL;
}
/**
Build memory allocation and resource HOB for MM profile data
This function builds HOBs for MM profile data, one is memory
allocation HOB, another is resource HOB.
@param[in] HobBuffer The pointer of new HOB buffer.
@param[in, out] HobBufferSize The total size of the same GUID HOBs when as input.
The size will be 0 for output when build HOB fail.
**/
VOID
MmIplBuildMmProfileHobs (
IN UINT8 *HobBuffer,
IN OUT UINTN *HobBufferSize
)
{
EFI_PEI_HOB_POINTERS Hob;
UINTN HobLength;
Hob.MemoryAllocation = NULL;
HobLength = ALIGN_VALUE (sizeof (EFI_HOB_MEMORY_ALLOCATION), 8) + ALIGN_VALUE (sizeof (EFI_HOB_RESOURCE_DESCRIPTOR), 8);
if (*HobBufferSize >= HobLength) {
Hob.Raw = GetFirstHob (EFI_HOB_TYPE_MEMORY_ALLOCATION);
while (Hob.Raw != NULL) {
if (CompareGuid (&Hob.MemoryAllocation->AllocDescriptor.Name, &gMmProfileDataHobGuid)) {
break;
}
Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, GET_NEXT_HOB (Hob));
}
ASSERT (Hob.MemoryAllocation != NULL);
//
// Build memory allocation HOB
//
ASSERT (Hob.MemoryAllocation->Header.HobLength == ALIGN_VALUE (sizeof (EFI_HOB_MEMORY_ALLOCATION), 8));
ASSERT (HobBuffer != NULL);
CopyMem (HobBuffer, Hob.Raw, Hob.MemoryAllocation->Header.HobLength);
//
// Build resource HOB
//
MmIplBuildMemoryResourceHob (
(EFI_HOB_RESOURCE_DESCRIPTOR *)(HobBuffer + Hob.MemoryAllocation->Header.HobLength),
EFI_RESOURCE_SYSTEM_MEMORY,
0,
Hob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress,
Hob.MemoryAllocation->AllocDescriptor.MemoryLength,
&gMmProfileDataHobGuid
);
}
*HobBufferSize = HobLength;
}
/**
Build resource Hobs from unblocked memory regions
This function builds resource HOBs for all unblocked memory regions.
@param[in] HobBuffer The pointer of new HOB buffer.
@param[in, out] HobBufferSize The total size of the same GUID HOBs when as output.
**/
VOID
MmIplBuildResourceHobForUnblockedRegion (
IN UINT8 *HobBuffer,
IN OUT UINTN *HobBufferSize
)
{
MM_UNBLOCK_REGION *UnblockRegion;
EFI_HOB_GENERIC_HEADER *GuidHob;
UINTN UsedSize;
UsedSize = 0;
GuidHob = GetFirstGuidHob (&gMmUnblockRegionHobGuid);
while (GuidHob != NULL) {
if (*HobBufferSize >= UsedSize + sizeof (EFI_HOB_RESOURCE_DESCRIPTOR)) {
UnblockRegion = GET_GUID_HOB_DATA (GuidHob);
MmIplBuildMemoryResourceHob (
(EFI_HOB_RESOURCE_DESCRIPTOR *)(HobBuffer + UsedSize),
EFI_RESOURCE_SYSTEM_MEMORY,
0,
UnblockRegion->PhysicalStart,
EFI_PAGES_TO_SIZE (UnblockRegion->NumberOfPages),
&UnblockRegion->IdentifierGuid
);
}
UsedSize += sizeof (EFI_HOB_RESOURCE_DESCRIPTOR);
GuidHob = GetNextGuidHob (&gMmUnblockRegionHobGuid, GET_NEXT_HOB (GuidHob));
}
*HobBufferSize = UsedSize;
}
/**
Collect unblock memory regions.
@param[in, out] MemoryRegion Pointer to unblock memory regions.
@param[in, out] MemoryRegionCount Count of unblock memory regions.
**/
VOID
CollectUnblockMemoryRegions (
IN OUT MM_IPL_MEMORY_REGION *MemoryRegion,
IN OUT UINTN *MemoryRegionCount
)
{
UINTN Index;
EFI_HOB_GENERIC_HEADER *GuidHob;
MM_UNBLOCK_REGION *UnblockRegion;
ASSERT (MemoryRegionCount != NULL);
ASSERT (*MemoryRegionCount == 0 || MemoryRegion != NULL);
Index = 0;
//
// Collect unblock memory ranges
//
GuidHob = GetFirstGuidHob (&gMmUnblockRegionHobGuid);
while (GuidHob != NULL) {
if (Index < *MemoryRegionCount) {
UnblockRegion = GET_GUID_HOB_DATA (GuidHob);
MemoryRegion[Index].Base = UnblockRegion->PhysicalStart;
MemoryRegion[Index].Length = EFI_PAGES_TO_SIZE (UnblockRegion->NumberOfPages);
}
Index++;
GuidHob = GetNextGuidHob (&gMmUnblockRegionHobGuid, GET_NEXT_HOB (GuidHob));
}
*MemoryRegionCount = Index;
}
/**
Create MMIO memory map according to platform HOB.
@param[in] PlatformHobList Platform HOB list.
@param[in] PlatformHobSize Platform HOB size.
@param[in, out] MemoryRegion Memory regions.
@param[in, out] MemoryRegionCount Count of MMIO regions
**/
VOID
CollectPlatformMemoryRegions (
IN UINT8 *PlatformHobList,
IN UINTN PlatformHobSize,
IN OUT MM_IPL_MEMORY_REGION *MemoryRegion,
IN OUT UINTN *MemoryRegionCount
)
{
UINTN Index;
EFI_PEI_HOB_POINTERS Hob;
ASSERT (MemoryRegionCount != NULL);
ASSERT (*MemoryRegionCount == 0 || MemoryRegion != NULL);
Index = 0;
//
// Get the HOB list for processing
//
Hob.Raw = PlatformHobList;
//
// Collect memory ranges
//
while (Hob.Raw < PlatformHobList + PlatformHobSize) {
if (Hob.Header->HobType == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
if ( (Hob.ResourceDescriptor->ResourceType == EFI_RESOURCE_MEMORY_MAPPED_IO)
|| (Hob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY)
|| (Hob.ResourceDescriptor->ResourceType == EFI_RESOURCE_FIRMWARE_DEVICE)
|| (Hob.ResourceDescriptor->ResourceType == EFI_RESOURCE_MEMORY_RESERVED))
{
if (Index < *MemoryRegionCount) {
MemoryRegion[Index].Base = Hob.ResourceDescriptor->PhysicalStart;
MemoryRegion[Index].Length = Hob.ResourceDescriptor->ResourceLength;
}
Index++;
}
}
Hob.Raw = GET_NEXT_HOB (Hob);
}
*MemoryRegionCount = Index;
}
/**
Function to compare 2 MM_IPL_MEMORY_REGION pointer based on Base.
@param[in] Buffer1 pointer to MM_IPL_MEMORY_REGION pointer to compare
@param[in] Buffer2 pointer to second MM_IPL_MEMORY_REGION pointer to compare
@retval 0 Buffer1 equal to Buffer2
@retval <0 Buffer1 is less than Buffer2
@retval >0 Buffer1 is greater than Buffer2
**/
INTN
EFIAPI
MemoryRegionBaseAddressCompare (
IN CONST VOID *Buffer1,
IN CONST VOID *Buffer2
)
{
if (((MM_IPL_MEMORY_REGION *)Buffer1)->Base > ((MM_IPL_MEMORY_REGION *)Buffer2)->Base) {
return 1;
} else if (((MM_IPL_MEMORY_REGION *)Buffer1)->Base < ((MM_IPL_MEMORY_REGION *)Buffer2)->Base) {
return -1;
}
return 0;
}
/**
The routine returns TRUE when CPU supports it (CPUID[7,0].ECX.BIT[16] is set) and
the max physical address bits is bigger than 48. Because 4-level paging can support
to address physical address up to 2^48 - 1, there is no need to enable 5-level paging
with max physical address bits <= 48.
@retval TRUE 5-level paging enabling is needed.
@retval FALSE 5-level paging enabling is not needed.
**/
BOOLEAN
MmIplIs5LevelPagingNeeded (
VOID
)
{
CPUID_VIR_PHY_ADDRESS_SIZE_EAX VirPhyAddressSize;
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX ExtFeatureEcx;
UINT32 MaxExtendedFunctionId;
AsmCpuid (CPUID_EXTENDED_FUNCTION, &MaxExtendedFunctionId, NULL, NULL, NULL);
if (MaxExtendedFunctionId >= CPUID_VIR_PHY_ADDRESS_SIZE) {
AsmCpuid (CPUID_VIR_PHY_ADDRESS_SIZE, &VirPhyAddressSize.Uint32, NULL, NULL, NULL);
} else {
VirPhyAddressSize.Bits.PhysicalAddressBits = 36;
}
AsmCpuidEx (
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS,
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO,
NULL,
NULL,
&ExtFeatureEcx.Uint32,
NULL
);
if ((VirPhyAddressSize.Bits.PhysicalAddressBits > 4 * 9 + 12) &&
(ExtFeatureEcx.Bits.FiveLevelPage == 1))
{
return TRUE;
} else {
return FALSE;
}
}
/**
Calculate the maximum support address.
@return the maximum support address.
**/
UINT8
MmIplCalculateMaximumSupportAddress (
VOID
)
{
UINT32 RegEax;
UINT8 PhysicalAddressBits;
VOID *Hob;
//
// Get physical address bits supported.
//
Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
if (Hob != NULL) {
PhysicalAddressBits = ((EFI_HOB_CPU *)Hob)->SizeOfMemorySpace;
} else {
AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);
if (RegEax >= CPUID_VIR_PHY_ADDRESS_SIZE) {
AsmCpuid (CPUID_VIR_PHY_ADDRESS_SIZE, &RegEax, NULL, NULL, NULL);
PhysicalAddressBits = (UINT8)RegEax;
} else {
PhysicalAddressBits = 36;
}
}
//
// 4-level paging supports translating 48-bit linear addresses to 52-bit physical addresses.
// Since linear addresses are sign-extended, the linear-address space of 4-level paging is:
// [0, 2^47-1] and [0xffff8000_00000000, 0xffffffff_ffffffff].
// So only [0, 2^47-1] linear-address range maps to the identical physical-address range when
// 5-Level paging is disabled.
//
ASSERT (PhysicalAddressBits <= 52);
if (!MmIplIs5LevelPagingNeeded () && (PhysicalAddressBits > 47)) {
PhysicalAddressBits = 47;
}
return PhysicalAddressBits;
}
/**
Build resource HOB to cover [0, PhysicalAddressBits length] by excluding
all Mmram ranges, MM Profile data, Unblock memory ranges and MMIO ranges.
@param[in] HobBuffer The pointer of new HOB buffer.
@param[in, out] HobBufferSize The available size of the HOB buffer when as input.
The used size of when as output.
@param[in] PlatformHobList Platform HOB list.
@param[in] PlatformHobSize Platform HOB size.
@param[in] Block Pointer of MMRAM descriptor block.
@param[in] MmProfileDataHob Pointer to MM profile data HOB.
**/
VOID
MmIplBuildResourceHobForAllSystemMemory (
IN UINT8 *HobBuffer,
IN OUT UINTN *HobBufferSize,
IN VOID *PlatformHobList,
IN UINTN PlatformHobSize,
IN EFI_MMRAM_HOB_DESCRIPTOR_BLOCK *Block,
IN EFI_HOB_MEMORY_ALLOCATION *MmProfileDataHob
)
{
UINTN Index;
UINTN Count;
UINTN PlatformRegionCount;
UINTN UsedSize;
UINT64 PreviousAddress;
UINT64 MaxAddress;
MM_IPL_MEMORY_REGION *MemoryRegions;
MM_IPL_MEMORY_REGION SortBuffer;
UINTN UnblockRegionCount;
MaxAddress = LShiftU64 (1, MmIplCalculateMaximumSupportAddress ());
//
// Get the count of platform memory regions
//
PlatformRegionCount = 0;
if ((PlatformHobList != NULL) && (PlatformHobSize != 0)) {
CollectPlatformMemoryRegions (PlatformHobList, PlatformHobSize, NULL, &PlatformRegionCount);
}
//
// Get the count of platform memory regions
//
UnblockRegionCount = 0;
CollectUnblockMemoryRegions (NULL, &UnblockRegionCount);
//
// Allocate buffer for platform memory regions, unblock memory regions,
// MM Profile data, MMRam ranges, an extra terminator.
//
Count = PlatformRegionCount + UnblockRegionCount + Block->NumberOfMmReservedRegions + ((MmProfileDataHob != NULL) ? 1 : 0) + 1;
MemoryRegions = AllocatePages (EFI_SIZE_TO_PAGES (Count * sizeof (*MemoryRegions)));
ASSERT (MemoryRegions != NULL);
if (MemoryRegions == NULL) {
DEBUG ((DEBUG_ERROR, "%a:%d - No enough memory\n", __func__, __LINE__));
CpuDeadLoop ();
return;
}
//
// The very last region is the terminator
//
MemoryRegions[Count - 1].Base = MaxAddress;
MemoryRegions[Count - 1].Length = 0;
//
// Collect platform memory regions
//
if (PlatformRegionCount != 0) {
CollectPlatformMemoryRegions (PlatformHobList, PlatformHobSize, MemoryRegions, &PlatformRegionCount);
}
//
// Collect unblock memory regions
//
if (UnblockRegionCount != 0) {
CollectUnblockMemoryRegions (&MemoryRegions[PlatformRegionCount], &UnblockRegionCount);
}
//
// Collect SMRAM regions
//
for (Index = 0; Index < Block->NumberOfMmReservedRegions; Index++) {
MemoryRegions[PlatformRegionCount + UnblockRegionCount + Index].Base = Block->Descriptor[Index].CpuStart;
MemoryRegions[PlatformRegionCount + UnblockRegionCount + Index].Length = Block->Descriptor[Index].PhysicalSize;
}
//
// Collect MM profile database region
//
if (MmProfileDataHob != NULL) {
MemoryRegions[PlatformRegionCount + UnblockRegionCount + Block->NumberOfMmReservedRegions].Base = MmProfileDataHob->AllocDescriptor.MemoryBaseAddress;
MemoryRegions[PlatformRegionCount + UnblockRegionCount + Block->NumberOfMmReservedRegions].Length = MmProfileDataHob->AllocDescriptor.MemoryLength;
}
//
// Build system memory resource HOBs excluding platform memory regions, SMRAM regions, MmProfile database, Unblocked memory regions.
//
QuickSort (MemoryRegions, Count, sizeof (*MemoryRegions), MemoryRegionBaseAddressCompare, &SortBuffer);
UsedSize = 0;
PreviousAddress = 0;
for (Index = 0; Index < Count; Index++) {
ASSERT (MaxAddress >= MemoryRegions[Index].Base + MemoryRegions[Index].Length);
if (MemoryRegions[Index].Base > PreviousAddress) {
if (*HobBufferSize >= UsedSize + sizeof (EFI_HOB_RESOURCE_DESCRIPTOR)) {
MmIplBuildMemoryResourceHob (
(EFI_HOB_RESOURCE_DESCRIPTOR *)(HobBuffer + UsedSize),
EFI_RESOURCE_SYSTEM_MEMORY,
FeaturePcdGet (PcdCpuSmmProfileEnable) ? MM_RESOURCE_ATTRIBUTE_LOGGING : 0,
PreviousAddress,
MemoryRegions[Index].Base - PreviousAddress,
&gEfiCallerIdGuid
);
}
UsedSize += sizeof (EFI_HOB_RESOURCE_DESCRIPTOR);
}
PreviousAddress = MemoryRegions[Index].Base + MemoryRegions[Index].Length;
}
*HobBufferSize = UsedSize;
FreePages (MemoryRegions, EFI_SIZE_TO_PAGES (Count * sizeof (EFI_MEMORY_DESCRIPTOR)));
}
/**
Get remaining size for building HOBs.
@param[in] TotalHobSize Total size of foundation HOBs.
@param[in] UsedSize Required HOBs' size.
@retval MAX remaining size for building HOBs
**/
UINTN
GetRemainingHobSize (
IN UINTN TotalHobSize,
IN UINTN UsedSize
)
{
if (TotalHobSize > UsedSize) {
return TotalHobSize - UsedSize;
} else {
return 0;
}
}
/**
Check if FV HOB was created.
Check if FV HOB was created on HOB list,
if yes, skip building MM Core FV HOB,
if No, continue to build MM Core FV HOB
@param[in] HobList HOB list.
@param[in] HobSize HOB size.
@retval TRUE Skip building MM Core FV HOB.
FALSE Continue to build MM Core FV HOB.
**/
BOOLEAN
IsFvHobExist (
IN UINT8 *HobList,
IN UINTN HobSize
)
{
EFI_PEI_HOB_POINTERS Hob;
if ((HobList == NULL) || (HobSize == 0)) {
return FALSE;
}
//
// Parse the HOB list until end of list or matching type is found.
//
Hob.Raw = HobList;
while ((UINTN)(Hob.Raw - HobList) < HobSize) {
if (Hob.Header->HobType == EFI_HOB_TYPE_FV) {
return TRUE;
}
Hob.Raw = GET_NEXT_HOB (Hob);
}
return FALSE;
}
/**
Create the MM foundation specific HOB list which StandaloneMm Core needed.
This function build the MM foundation specific HOB list needed by StandaloneMm Core
based on the PEI HOB list.
@param[in] FoundationHobList The foundation HOB list to be used for HOB creation.
@param[in, out] FoundationHobSize The foundation HOB size.
On return, the expected/used size.
@param[in] PlatformHobList Platform HOB list.
@param[in] PlatformHobSize Platform HOB size.
@param[in] MmFvBase Base of firmare volume which included MM core dirver.
@param[in] MmFvSize Size of firmare volume which included MM core dirver.
@param[in] MmCoreFileName File name of MM core dirver.
@param[in] MmCoreImageAddress Image address of MM core dirver.
@param[in] MmCoreImageSize Image size of MM core dirver.
@param[in] MmCoreEntryPoint Entry pinter of MM core dirver.
@param[in] MmProfileDataHob Pointer to Mm profile data HOB.
@param[in] Block Pointer of MMRAM descriptor block.
@retval RETURN_BUFFER_TOO_SMALL The buffer is too small for HOB creation.
BufferSize is updated to indicate the expected buffer size.
When the input BufferSize is bigger than the expected buffer size,
the BufferSize value will be changed the used buffer size.
@retval RETURN_SUCCESS HOB List is created/updated successfully or the input Length is 0.
**/
RETURN_STATUS
CreateMmFoundationHobList (
IN UINT8 *FoundationHobList,
IN OUT UINTN *FoundationHobSize,
IN UINT8 *PlatformHobList,
IN UINTN PlatformHobSize,
IN EFI_PHYSICAL_ADDRESS MmFvBase,
IN UINT64 MmFvSize,
IN EFI_GUID *MmCoreFileName,
IN EFI_PHYSICAL_ADDRESS MmCoreImageAddress,
IN UINT64 MmCoreImageSize,
IN EFI_PHYSICAL_ADDRESS MmCoreEntryPoint,
IN EFI_HOB_MEMORY_ALLOCATION *MmProfileDataHob,
IN EFI_MMRAM_HOB_DESCRIPTOR_BLOCK *Block
)
{
UINTN UsedSize;
RETURN_STATUS Status;
UINTN HobLength;
ASSERT (FoundationHobSize != NULL);
ASSERT (
((*FoundationHobSize != 0) && (FoundationHobList != NULL)) ||
((*FoundationHobSize == 0) && (FoundationHobList == NULL))
);
if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
//
// When SmmProfile is enabled, all DRAM is accessible from SMM drivers' perspective.
// However, underline Cpu SMM driver does not map the DRAM so that every access to it triggers #PF.
// #PF handler records the access then sets up the mapping in the page table to allow the temporary access by current instruction.
// The mapping is revoked before next instruction runs.
//
ASSERT (!PcdGetBool (PcdCpuSmmRestrictedMemoryAccess));
}
UsedSize = 0;
//
// Build communication buffer HOB in MM HOB list
//
HobLength = *FoundationHobSize;
MmIplCopyGuidHob (FoundationHobList + UsedSize, &HobLength, &gMmCommBufferHobGuid, FALSE);
UsedSize += HobLength;
//
// Build MmCore module HOB in MM HOB list
//
HobLength = GetRemainingHobSize (*FoundationHobSize, UsedSize);
MmIplBuildMmCoreModuleHob (
FoundationHobList + UsedSize,
&HobLength,
MmCoreFileName,
MmCoreImageAddress,
MmCoreImageSize,
MmCoreEntryPoint
);
UsedSize += HobLength;
//
// Skip to report FV that contains MmCore when Platform reports FV
//
if (!IsFvHobExist (PlatformHobList, PlatformHobSize)) {
//
// BFV address for StandaloneMm Core
//
HobLength = GetRemainingHobSize (*FoundationHobSize, UsedSize);
MmIplBuildFvHob (FoundationHobList + UsedSize, &HobLength, MmFvBase, MmFvSize);
UsedSize += HobLength;
}
//
// Build MM ACPI S3 Enable HOB
//
HobLength = GetRemainingHobSize (*FoundationHobSize, UsedSize);
MmIplBuildMmAcpiS3EnableHob (FoundationHobList + UsedSize, &HobLength);
UsedSize += HobLength;
//
// Build MM CPU sync configuration HOB
//
HobLength = GetRemainingHobSize (*FoundationHobSize, UsedSize);
MmIplBuildMmCpuSyncConfigHob (FoundationHobList + UsedSize, &HobLength);
UsedSize += HobLength;
//
// Build CPU SMM base HOB in MM HOB list
//
HobLength = GetRemainingHobSize (*FoundationHobSize, UsedSize);
MmIplCopyGuidHob (FoundationHobList + UsedSize, &HobLength, &gSmmBaseHobGuid, TRUE);
UsedSize += HobLength;
//
// Build SMRAM memory Hob in MM HOB list
//
HobLength = GetRemainingHobSize (*FoundationHobSize, UsedSize);
MmIplCopyGuidHob (FoundationHobList + UsedSize, &HobLength, &gEfiSmmSmramMemoryGuid, FALSE);
UsedSize += HobLength;
//
// Build Mp Information2 Hob in MM HOB list
//
HobLength = GetRemainingHobSize (*FoundationHobSize, UsedSize);
MmIplCopyGuidHob (FoundationHobList + UsedSize, &HobLength, &gMpInformation2HobGuid, TRUE);
UsedSize += HobLength;
//
// Build ACPI variable HOB
//
HobLength = GetRemainingHobSize (*FoundationHobSize, UsedSize);
MmIplCopyGuidHob (FoundationHobList + UsedSize, &HobLength, &gEfiAcpiVariableGuid, FALSE);
UsedSize += HobLength;
if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
//
// Build memory allocation and resource HOB for MM profile data
//
HobLength = GetRemainingHobSize (*FoundationHobSize, UsedSize);
MmIplBuildMmProfileHobs (FoundationHobList + UsedSize, &HobLength);
UsedSize += HobLength;
}
//
// Build resource HOB for unblocked region
//
HobLength = GetRemainingHobSize (*FoundationHobSize, UsedSize);
MmIplBuildResourceHobForUnblockedRegion (FoundationHobList + UsedSize, &HobLength);
UsedSize += HobLength;
if (!PcdGetBool (PcdCpuSmmRestrictedMemoryAccess)) {
//
// All system memory (DRAM) is accessible.
// When SMM Profile is enabled:
// * Access to regions included all Mmram ranges, MM Profile data, Unblock memory ranges and MMIO ranges do not require logging.
// * Access to other system memory requires logging.
//
HobLength = GetRemainingHobSize (*FoundationHobSize, UsedSize);
MmIplBuildResourceHobForAllSystemMemory (
FoundationHobList + UsedSize,
&HobLength,
PlatformHobList,
PlatformHobSize,
Block,
MmProfileDataHob
);
UsedSize += HobLength;
}
if (*FoundationHobSize < UsedSize) {
Status = RETURN_BUFFER_TOO_SMALL;
} else {
Status = RETURN_SUCCESS;
}
*FoundationHobSize = UsedSize;
return Status;
}