2010-04-23 19:00:32 +02:00
|
|
|
/** @file
|
|
|
|
* Utility functions used by the Dp application.
|
|
|
|
*
|
2010-04-24 14:09:16 +02:00
|
|
|
* Copyright (c) 2009 - 2010, Intel Corporation. All rights reserved.<BR>
|
2010-04-23 19:00:32 +02:00
|
|
|
* This program and the accompanying materials
|
|
|
|
* are licensed and made available under the terms and conditions of the BSD License
|
|
|
|
* which accompanies this distribution. The full text of the license may be found at
|
|
|
|
* http://opensource.org/licenses/bsd-license.php
|
|
|
|
*
|
|
|
|
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
**/
|
|
|
|
|
|
|
|
#include <Library/BaseLib.h>
|
|
|
|
#include <Library/BaseMemoryLib.h>
|
|
|
|
#include <Library/MemoryAllocationLib.h>
|
|
|
|
#include <Library/DebugLib.h>
|
|
|
|
#include <Library/UefiBootServicesTableLib.h>
|
|
|
|
#include <Library/TimerLib.h>
|
|
|
|
#include <Library/PeCoffGetEntryPointLib.h>
|
|
|
|
#include <Library/PrintLib.h>
|
|
|
|
#include <Library/HiiLib.h>
|
|
|
|
#include <Library/PcdLib.h>
|
|
|
|
|
|
|
|
#include <Protocol/LoadedImage.h>
|
2010-09-29 17:49:20 +02:00
|
|
|
#include <Protocol/DriverBinding.h>
|
2010-04-23 19:00:32 +02:00
|
|
|
|
|
|
|
#include <Guid/Performance.h>
|
|
|
|
|
|
|
|
#include "Dp.h"
|
|
|
|
#include "Literals.h"
|
|
|
|
#include "DpInternal.h"
|
|
|
|
|
|
|
|
/** Calculate an event's duration in timer ticks.
|
|
|
|
*
|
|
|
|
* Given the count direction and the event's start and end timer values,
|
|
|
|
* calculate the duration of the event in timer ticks. Information for
|
|
|
|
* the current measurement is pointed to by the parameter.
|
|
|
|
*
|
|
|
|
* If the measurement's start time is 1, it indicates that the developer
|
|
|
|
* is indicating that the measurement began at the release of reset.
|
|
|
|
* The start time is adjusted to the timer's starting count before performing
|
|
|
|
* the elapsed time calculation.
|
|
|
|
*
|
|
|
|
* The calculated duration, in ticks, is the absolute difference between
|
|
|
|
* the measurement's ending and starting counts.
|
|
|
|
*
|
|
|
|
* @pre The global TimerInfo structure must have already been initialized
|
|
|
|
* before this function is called.
|
|
|
|
*
|
|
|
|
* @param[in,out] Measurement Pointer to a MEASUREMENT_RECORD structure containing
|
|
|
|
* data for the current measurement.
|
|
|
|
*
|
|
|
|
* @return The 64-bit duration of the event.
|
|
|
|
**/
|
|
|
|
UINT64
|
|
|
|
GetDuration (
|
|
|
|
IN OUT MEASUREMENT_RECORD *Measurement
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT64 Duration;
|
|
|
|
BOOLEAN Error;
|
|
|
|
|
|
|
|
// PERF_START macros are called with a value of 1 to indicate
|
|
|
|
// the beginning of time. So, adjust the start ticker value
|
|
|
|
// to the real beginning of time.
|
|
|
|
// Assumes no wraparound. Even then, there is a very low probability
|
|
|
|
// of having a valid StartTicker value of 1.
|
|
|
|
if (Measurement->StartTimeStamp == 1) {
|
|
|
|
Measurement->StartTimeStamp = TimerInfo.StartCount;
|
|
|
|
}
|
|
|
|
if (TimerInfo.CountUp) {
|
|
|
|
Duration = Measurement->EndTimeStamp - Measurement->StartTimeStamp;
|
|
|
|
Error = (BOOLEAN)(Duration > Measurement->EndTimeStamp);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
Duration = Measurement->StartTimeStamp - Measurement->EndTimeStamp;
|
|
|
|
Error = (BOOLEAN)(Duration > Measurement->StartTimeStamp);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Error) {
|
|
|
|
DEBUG ((EFI_D_ERROR, ALit_TimerLibError));
|
|
|
|
Duration = 0;
|
|
|
|
}
|
|
|
|
return Duration;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Determine whether the Measurement record is for an EFI Phase.
|
|
|
|
*
|
|
|
|
* The Token and Module members of the measurement record are checked.
|
|
|
|
* Module must be empty and Token must be one of SEC, PEI, DXE, BDS, or SHELL.
|
|
|
|
*
|
|
|
|
* @param[in] Measurement A pointer to the Measurement record to test.
|
|
|
|
*
|
|
|
|
* @retval TRUE The measurement record is for an EFI Phase.
|
|
|
|
* @retval FALSE The measurement record is NOT for an EFI Phase.
|
|
|
|
**/
|
|
|
|
BOOLEAN
|
|
|
|
IsPhase(
|
|
|
|
IN MEASUREMENT_RECORD *Measurement
|
|
|
|
)
|
|
|
|
{
|
|
|
|
BOOLEAN RetVal;
|
|
|
|
|
|
|
|
RetVal = (BOOLEAN)( ( *Measurement->Module == '\0') &&
|
|
|
|
((AsciiStrnCmp (Measurement->Token, ALit_SEC, PERF_TOKEN_LENGTH) == 0) ||
|
|
|
|
(AsciiStrnCmp (Measurement->Token, ALit_PEI, PERF_TOKEN_LENGTH) == 0) ||
|
|
|
|
(AsciiStrnCmp (Measurement->Token, ALit_DXE, PERF_TOKEN_LENGTH) == 0) ||
|
|
|
|
(AsciiStrnCmp (Measurement->Token, ALit_BDS, PERF_TOKEN_LENGTH) == 0))
|
|
|
|
);
|
|
|
|
return RetVal;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Get the file name portion of the Pdb File Name.
|
|
|
|
*
|
|
|
|
* The portion of the Pdb File Name between the last backslash and
|
|
|
|
* either a following period or the end of the string is converted
|
|
|
|
* to Unicode and copied into UnicodeBuffer. The name is truncated,
|
|
|
|
* if necessary, to ensure that UnicodeBuffer is not overrun.
|
|
|
|
*
|
|
|
|
* @param[in] PdbFileName Pdb file name.
|
|
|
|
* @param[out] UnicodeBuffer The resultant Unicode File Name.
|
|
|
|
*
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
GetShortPdbFileName (
|
|
|
|
IN CHAR8 *PdbFileName,
|
|
|
|
OUT CHAR16 *UnicodeBuffer
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINTN IndexA; // Current work location within an ASCII string.
|
|
|
|
UINTN IndexU; // Current work location within a Unicode string.
|
|
|
|
UINTN StartIndex;
|
|
|
|
UINTN EndIndex;
|
|
|
|
|
|
|
|
ZeroMem (UnicodeBuffer, DXE_PERFORMANCE_STRING_LENGTH * sizeof (CHAR16));
|
|
|
|
|
|
|
|
if (PdbFileName == NULL) {
|
|
|
|
StrCpy (UnicodeBuffer, L" ");
|
|
|
|
} else {
|
|
|
|
StartIndex = 0;
|
|
|
|
for (EndIndex = 0; PdbFileName[EndIndex] != 0; EndIndex++)
|
|
|
|
;
|
|
|
|
for (IndexA = 0; PdbFileName[IndexA] != 0; IndexA++) {
|
|
|
|
if (PdbFileName[IndexA] == '\\') {
|
|
|
|
StartIndex = IndexA + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (PdbFileName[IndexA] == '.') {
|
|
|
|
EndIndex = IndexA;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
IndexU = 0;
|
|
|
|
for (IndexA = StartIndex; IndexA < EndIndex; IndexA++) {
|
|
|
|
UnicodeBuffer[IndexU] = (CHAR16) PdbFileName[IndexA];
|
|
|
|
IndexU++;
|
|
|
|
if (IndexU >= DXE_PERFORMANCE_STRING_LENGTH) {
|
|
|
|
UnicodeBuffer[DXE_PERFORMANCE_STRING_LENGTH] = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Get a human readable name for an image handle.
|
|
|
|
*
|
|
|
|
* @param[in] Handle
|
|
|
|
*
|
|
|
|
* @post The resulting Unicode name string is stored in the
|
|
|
|
* mGaugeString global array.
|
|
|
|
*
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
GetNameFromHandle (
|
|
|
|
IN EFI_HANDLE Handle
|
|
|
|
)
|
|
|
|
{
|
|
|
|
EFI_STATUS Status;
|
|
|
|
EFI_LOADED_IMAGE_PROTOCOL *Image;
|
|
|
|
CHAR8 *PdbFileName;
|
|
|
|
EFI_DRIVER_BINDING_PROTOCOL *DriverBinding;
|
|
|
|
EFI_STRING StringPtr;
|
|
|
|
|
|
|
|
// Proactively get the error message so it will be ready if needed
|
|
|
|
StringPtr = HiiGetString (gHiiHandle, STRING_TOKEN (STR_DP_ERROR_NAME), NULL);
|
|
|
|
ASSERT (StringPtr != NULL);
|
|
|
|
|
|
|
|
// Get handle name from image protocol
|
|
|
|
//
|
|
|
|
Status = gBS->HandleProtocol (
|
|
|
|
Handle,
|
|
|
|
&gEfiLoadedImageProtocolGuid,
|
2010-09-29 17:49:20 +02:00
|
|
|
(VOID**) &Image
|
2010-04-23 19:00:32 +02:00
|
|
|
);
|
|
|
|
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
|
|
Status = gBS->OpenProtocol (
|
|
|
|
Handle,
|
|
|
|
&gEfiDriverBindingProtocolGuid,
|
|
|
|
(VOID **) &DriverBinding,
|
|
|
|
NULL,
|
|
|
|
NULL,
|
|
|
|
EFI_OPEN_PROTOCOL_GET_PROTOCOL
|
|
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
|
|
StrCpy (mGaugeString, StringPtr);
|
|
|
|
return ;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get handle name from image protocol
|
|
|
|
//
|
|
|
|
Status = gBS->HandleProtocol (
|
|
|
|
DriverBinding->ImageHandle,
|
|
|
|
&gEfiLoadedImageProtocolGuid,
|
2010-09-29 17:49:20 +02:00
|
|
|
(VOID**) &Image
|
2010-04-23 19:00:32 +02:00
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
PdbFileName = PeCoffLoaderGetPdbPointer (Image->ImageBase);
|
|
|
|
|
|
|
|
if (PdbFileName != NULL) {
|
|
|
|
GetShortPdbFileName (PdbFileName, mGaugeString);
|
|
|
|
} else {
|
|
|
|
StrCpy (mGaugeString, StringPtr);
|
|
|
|
}
|
|
|
|
return ;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Calculate the Duration in microseconds.
|
|
|
|
*
|
|
|
|
* Duration is multiplied by 1000, instead of Frequency being divided by 1000 or
|
|
|
|
* multiplying the result by 1000, in order to maintain precision. Since Duration is
|
|
|
|
* a 64-bit value, multiplying it by 1000 is unlikely to produce an overflow.
|
|
|
|
*
|
|
|
|
* The time is calculated as (Duration * 1000) / Timer_Frequency.
|
|
|
|
*
|
|
|
|
* @param[in] Duration The event duration in timer ticks.
|
|
|
|
*
|
|
|
|
* @return A 64-bit value which is the Elapsed time in microseconds.
|
|
|
|
**/
|
|
|
|
UINT64
|
|
|
|
DurationInMicroSeconds (
|
|
|
|
IN UINT64 Duration
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT64 Temp;
|
|
|
|
|
|
|
|
Temp = MultU64x32 (Duration, 1000);
|
|
|
|
return DivU64x32 (Temp, TimerInfo.Frequency);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Formatted Print using a Hii Token to reference the localized format string.
|
|
|
|
*
|
|
|
|
* @param[in] Token A HII token associated with a localized Unicode string.
|
|
|
|
*
|
|
|
|
* @return The number of characters converted by UnicodeVSPrint().
|
|
|
|
*
|
|
|
|
**/
|
|
|
|
UINTN
|
|
|
|
PrintToken (
|
|
|
|
IN UINT16 Token,
|
|
|
|
...
|
|
|
|
)
|
|
|
|
{
|
|
|
|
VA_LIST Marker;
|
|
|
|
EFI_STRING StringPtr;
|
|
|
|
UINTN Return;
|
|
|
|
UINTN BufferSize;
|
|
|
|
|
|
|
|
StringPtr = HiiGetString (gHiiHandle, Token, NULL);
|
|
|
|
ASSERT (StringPtr != NULL);
|
|
|
|
|
|
|
|
VA_START (Marker, Token);
|
|
|
|
|
|
|
|
BufferSize = (PcdGet32 (PcdUefiLibMaxPrintBufferSize) + 1) * sizeof (CHAR16);
|
|
|
|
|
|
|
|
if (mPrintTokenBuffer == NULL) {
|
|
|
|
mPrintTokenBuffer = AllocatePool (BufferSize);
|
|
|
|
ASSERT (mPrintTokenBuffer != NULL);
|
|
|
|
}
|
|
|
|
SetMem( mPrintTokenBuffer, BufferSize, 0);
|
|
|
|
|
|
|
|
Return = UnicodeVSPrint (mPrintTokenBuffer, BufferSize, StringPtr, Marker);
|
|
|
|
if (Return > 0 && gST->ConOut != NULL) {
|
|
|
|
gST->ConOut->OutputString (gST->ConOut, mPrintTokenBuffer);
|
|
|
|
}
|
|
|
|
return Return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Get index of Measurement Record's match in the CumData array.
|
|
|
|
*
|
|
|
|
* If the Measurement's Token value matches a Token in one of the CumData
|
|
|
|
* records, the index of the matching record is returned. The returned
|
|
|
|
* index is a signed value so that negative values can indicate that
|
|
|
|
* the Measurement didn't match any entry in the CumData array.
|
|
|
|
*
|
|
|
|
* @param[in] Measurement A pointer to a Measurement Record to match against the CumData array.
|
|
|
|
*
|
|
|
|
* @retval <0 Token is not in the CumData array.
|
|
|
|
* @retval >=0 Return value is the index into CumData where Token is found.
|
|
|
|
**/
|
|
|
|
INTN
|
|
|
|
GetCumulativeItem(
|
|
|
|
IN MEASUREMENT_RECORD *Measurement
|
|
|
|
)
|
|
|
|
{
|
|
|
|
INTN Index;
|
|
|
|
|
|
|
|
for( Index = 0; Index < (INTN)NumCum; ++Index) {
|
|
|
|
if (AsciiStrnCmp (Measurement->Token, CumData[Index].Name, PERF_TOKEN_LENGTH) == 0) {
|
|
|
|
return Index; // Exit, we found a match
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// If the for loop exits, Token was not found.
|
|
|
|
return -1; // Indicate failure
|
|
|
|
}
|