audk/MdeModulePkg/Bus/Pci/NonDiscoverablePciDeviceDxe/NonDiscoverablePciDeviceIo.c

1503 lines
53 KiB
C
Raw Normal View History

/** @file
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
Copyright (c) 2016, Linaro, Ltd. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "NonDiscoverablePciDeviceIo.h"
#include <Library/DxeServicesTableLib.h>
#include <IndustryStandard/Acpi.h>
#include <Protocol/PciRootBridgeIo.h>
typedef struct {
EFI_PHYSICAL_ADDRESS AllocAddress;
VOID *HostAddress;
EFI_PCI_IO_PROTOCOL_OPERATION Operation;
UINTN NumberOfBytes;
} NON_DISCOVERABLE_PCI_DEVICE_MAP_INFO;
/**
Get the resource associated with BAR number 'BarIndex'.
@param Dev Point to the NON_DISCOVERABLE_PCI_DEVICE instance.
@param BarIndex The BAR index of the standard PCI Configuration header to use as the
base address for the memory operation to perform.
@param Descriptor Points to the address space descriptor
**/
STATIC
EFI_STATUS
GetBarResource (
IN NON_DISCOVERABLE_PCI_DEVICE *Dev,
IN UINT8 BarIndex,
OUT EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR **Descriptor
)
{
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Desc;
if (BarIndex < Dev->BarOffset) {
return EFI_NOT_FOUND;
}
BarIndex -= (UINT8)Dev->BarOffset;
for (Desc = Dev->Device->Resources;
Desc->Desc != ACPI_END_TAG_DESCRIPTOR;
Desc = (VOID *)((UINT8 *)Desc + Desc->Len + 3)) {
if (BarIndex == 0) {
*Descriptor = Desc;
return EFI_SUCCESS;
}
BarIndex -= 1;
}
return EFI_NOT_FOUND;
}
/**
Reads from the memory space of a PCI controller. Returns either when the polling exit criteria is
satisfied or after a defined duration.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Width Signifies the width of the memory or I/O operations.
@param BarIndex The BAR index of the standard PCI Configuration header to use as the
base address for the memory operation to perform.
@param Offset The offset within the selected BAR to start the memory operation.
@param Mask Mask used for the polling criteria.
@param Value The comparison value used for the polling exit criteria.
@param Delay The number of 100 ns units to poll.
@param Result Pointer to the last value read from the memory location.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoPollMem (
IN EFI_PCI_IO_PROTOCOL *This,
IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
IN UINT8 BarIndex,
IN UINT64 Offset,
IN UINT64 Mask,
IN UINT64 Value,
IN UINT64 Delay,
OUT UINT64 *Result
)
{
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
/**
Reads from the memory space of a PCI controller. Returns either when the polling exit criteria is
satisfied or after a defined duration.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Width Signifies the width of the memory or I/O operations.
@param BarIndex The BAR index of the standard PCI Configuration header to use as the
base address for the memory operation to perform.
@param Offset The offset within the selected BAR to start the memory operation.
@param Mask Mask used for the polling criteria.
@param Value The comparison value used for the polling exit criteria.
@param Delay The number of 100 ns units to poll.
@param Result Pointer to the last value read from the memory location.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoPollIo (
IN EFI_PCI_IO_PROTOCOL *This,
IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
IN UINT8 BarIndex,
IN UINT64 Offset,
IN UINT64 Mask,
IN UINT64 Value,
IN UINT64 Delay,
OUT UINT64 *Result
)
{
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
/**
Enable a PCI driver to access PCI controller registers in the PCI memory or I/O space.
@param Width Signifies the width of the memory or I/O operations.
@param Count The number of memory or I/O operations to perform.
@param DstStride The stride of the destination buffer.
@param Dst For read operations, the destination buffer to store the results. For write
operations, the destination buffer to write data to.
@param SrcStride The stride of the source buffer.
@param Src For read operations, the source buffer to read data from. For write
operations, the source buffer to write data from.
@retval EFI_SUCCESS The data was read from or written to the PCI controller.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoMemRW (
IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
IN UINTN Count,
IN UINTN DstStride,
IN VOID *Dst,
IN UINTN SrcStride,
OUT CONST VOID *Src
)
{
volatile UINT8 *Dst8;
volatile UINT16 *Dst16;
volatile UINT32 *Dst32;
volatile CONST UINT8 *Src8;
volatile CONST UINT16 *Src16;
volatile CONST UINT32 *Src32;
//
// Loop for each iteration and move the data
//
switch (Width & 0x3) {
case EfiPciWidthUint8:
Dst8 = (UINT8 *)Dst;
Src8 = (UINT8 *)Src;
for (;Count > 0; Count--, Dst8 += DstStride, Src8 += SrcStride) {
*Dst8 = *Src8;
}
break;
case EfiPciWidthUint16:
Dst16 = (UINT16 *)Dst;
Src16 = (UINT16 *)Src;
for (;Count > 0; Count--, Dst16 += DstStride, Src16 += SrcStride) {
*Dst16 = *Src16;
}
break;
case EfiPciWidthUint32:
Dst32 = (UINT32 *)Dst;
Src32 = (UINT32 *)Src;
for (;Count > 0; Count--, Dst32 += DstStride, Src32 += SrcStride) {
*Dst32 = *Src32;
}
break;
default:
return EFI_INVALID_PARAMETER;
}
return EFI_SUCCESS;
}
/**
Enable a PCI driver to access PCI controller registers in the PCI memory or I/O space.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Width Signifies the width of the memory or I/O operations.
@param BarIndex The BAR index of the standard PCI Configuration header to use as the
base address for the memory or I/O operation to perform.
@param Offset The offset within the selected BAR to start the memory or I/O operation.
@param Count The number of memory or I/O operations to perform.
@param Buffer For read operations, the destination buffer to store the results. For write
operations, the source buffer to write data from.
@retval EFI_SUCCESS The data was read from or written to the PCI controller.
@retval EFI_UNSUPPORTED BarIndex not valid for this PCI controller.
@retval EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is not
valid for the PCI BAR specified by BarIndex.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoMemRead (
IN EFI_PCI_IO_PROTOCOL *This,
IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
IN UINT8 BarIndex,
IN UINT64 Offset,
IN UINTN Count,
IN OUT VOID *Buffer
)
{
NON_DISCOVERABLE_PCI_DEVICE *Dev;
UINTN AlignMask;
VOID *Address;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Desc;
EFI_STATUS Status;
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
Dev = NON_DISCOVERABLE_PCI_DEVICE_FROM_PCI_IO(This);
//
// Only allow accesses to the BARs we emulate
//
Status = GetBarResource (Dev, BarIndex, &Desc);
if (EFI_ERROR (Status)) {
return Status;
}
if (Offset + (Count << (Width & 0x3)) > Desc->AddrLen) {
return EFI_UNSUPPORTED;
}
Address = (VOID *)(UINTN)(Desc->AddrRangeMin + Offset);
AlignMask = (1 << (Width & 0x03)) - 1;
if ((UINTN)Address & AlignMask) {
return EFI_INVALID_PARAMETER;
}
switch (Width) {
case EfiPciIoWidthUint8:
case EfiPciIoWidthUint16:
case EfiPciIoWidthUint32:
case EfiPciIoWidthUint64:
return PciIoMemRW (Width, Count, 1, Buffer, 1, Address);
case EfiPciIoWidthFifoUint8:
case EfiPciIoWidthFifoUint16:
case EfiPciIoWidthFifoUint32:
case EfiPciIoWidthFifoUint64:
return PciIoMemRW (Width, Count, 1, Buffer, 0, Address);
case EfiPciIoWidthFillUint8:
case EfiPciIoWidthFillUint16:
case EfiPciIoWidthFillUint32:
case EfiPciIoWidthFillUint64:
return PciIoMemRW (Width, Count, 0, Buffer, 1, Address);
default:
break;
}
return EFI_INVALID_PARAMETER;
}
/**
Enable a PCI driver to access PCI controller registers in the PCI memory or I/O space.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Width Signifies the width of the memory or I/O operations.
@param BarIndex The BAR index of the standard PCI Configuration header to use as the
base address for the memory or I/O operation to perform.
@param Offset The offset within the selected BAR to start the memory or I/O operation.
@param Count The number of memory or I/O operations to perform.
@param Buffer For read operations, the destination buffer to store the results. For write
operations, the source buffer to write data from.
@retval EFI_SUCCESS The data was read from or written to the PCI controller.
@retval EFI_UNSUPPORTED BarIndex not valid for this PCI controller.
@retval EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is not
valid for the PCI BAR specified by BarIndex.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoMemWrite (
IN EFI_PCI_IO_PROTOCOL *This,
IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
IN UINT8 BarIndex,
IN UINT64 Offset,
IN UINTN Count,
IN OUT VOID *Buffer
)
{
NON_DISCOVERABLE_PCI_DEVICE *Dev;
UINTN AlignMask;
VOID *Address;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Desc;
EFI_STATUS Status;
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
Dev = NON_DISCOVERABLE_PCI_DEVICE_FROM_PCI_IO(This);
//
// Only allow accesses to the BARs we emulate
//
Status = GetBarResource (Dev, BarIndex, &Desc);
if (EFI_ERROR (Status)) {
return Status;
}
if (Offset + (Count << (Width & 0x3)) > Desc->AddrLen) {
return EFI_UNSUPPORTED;
}
Address = (VOID *)(UINTN)(Desc->AddrRangeMin + Offset);
AlignMask = (1 << (Width & 0x03)) - 1;
if ((UINTN)Address & AlignMask) {
return EFI_INVALID_PARAMETER;
}
switch (Width) {
case EfiPciIoWidthUint8:
case EfiPciIoWidthUint16:
case EfiPciIoWidthUint32:
case EfiPciIoWidthUint64:
return PciIoMemRW (Width, Count, 1, Address, 1, Buffer);
case EfiPciIoWidthFifoUint8:
case EfiPciIoWidthFifoUint16:
case EfiPciIoWidthFifoUint32:
case EfiPciIoWidthFifoUint64:
return PciIoMemRW (Width, Count, 0, Address, 1, Buffer);
case EfiPciIoWidthFillUint8:
case EfiPciIoWidthFillUint16:
case EfiPciIoWidthFillUint32:
case EfiPciIoWidthFillUint64:
return PciIoMemRW (Width, Count, 1, Address, 0, Buffer);
default:
break;
}
return EFI_INVALID_PARAMETER;
}
/**
Enable a PCI driver to access PCI controller registers in the PCI memory or I/O space.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Width Signifies the width of the memory or I/O operations.
@param BarIndex The BAR index of the standard PCI Configuration header to use as the
base address for the memory or I/O operation to perform.
@param Offset The offset within the selected BAR to start the memory or I/O operation.
@param Count The number of memory or I/O operations to perform.
@param Buffer For read operations, the destination buffer to store the results. For write
operations, the source buffer to write data from.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoIoRead (
IN EFI_PCI_IO_PROTOCOL *This,
IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
IN UINT8 BarIndex,
IN UINT64 Offset,
IN UINTN Count,
IN OUT VOID *Buffer
)
{
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
/**
Enable a PCI driver to access PCI controller registers in the PCI memory or I/O space.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Width Signifies the width of the memory or I/O operations.
@param BarIndex The BAR index of the standard PCI Configuration header to use as the
base address for the memory or I/O operation to perform.
@param Offset The offset within the selected BAR to start the memory or I/O operation.
@param Count The number of memory or I/O operations to perform.
@param Buffer For read operations, the destination buffer to store the results. For write
operations, the source buffer to write data from.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoIoWrite (
IN EFI_PCI_IO_PROTOCOL *This,
IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
IN UINT8 BarIndex,
IN UINT64 Offset,
IN UINTN Count,
IN OUT VOID *Buffer
)
{
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
/**
Enable a PCI driver to access PCI config space.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Width Signifies the width of the memory or I/O operations.
@param Offset The offset within the selected BAR to start the memory or I/O operation.
@param Count The number of memory or I/O operations to perform.
@param Buffer For read operations, the destination buffer to store the results. For write
operations, the source buffer to write data from.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoPciRead (
IN EFI_PCI_IO_PROTOCOL *This,
IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
IN UINT32 Offset,
IN UINTN Count,
IN OUT VOID *Buffer
)
{
NON_DISCOVERABLE_PCI_DEVICE *Dev;
VOID *Address;
UINTN Length;
if (Width < 0 || Width >= EfiPciIoWidthMaximum || Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
Dev = NON_DISCOVERABLE_PCI_DEVICE_FROM_PCI_IO(This);
Address = (UINT8 *)&Dev->ConfigSpace + Offset;
Length = Count << ((UINTN)Width & 0x3);
if (Offset + Length > sizeof (Dev->ConfigSpace)) {
//
// Read all zeroes for config space accesses beyond the first
// 64 bytes
//
Length -= sizeof (Dev->ConfigSpace) - Offset;
ZeroMem ((UINT8 *)Buffer + sizeof (Dev->ConfigSpace) - Offset, Length);
Count -= Length >> ((UINTN)Width & 0x3);
}
return PciIoMemRW (Width, Count, 1, Buffer, 1, Address);
}
/**
Enable a PCI driver to access PCI config space.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Width Signifies the width of the memory or I/O operations.
@param Offset The offset within the selected BAR to start the memory or I/O operation.
@param Count The number of memory or I/O operations to perform.
@param Buffer For read operations, the destination buffer to store the results. For write
operations, the source buffer to write data from
@retval EFI_SUCCESS The data was read from or written to the PCI controller.
@retval EFI_UNSUPPORTED The address range specified by Offset, Width, and Count is not
valid for the PCI BAR specified by BarIndex.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoPciWrite (
IN EFI_PCI_IO_PROTOCOL *This,
IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
IN UINT32 Offset,
IN UINTN Count,
IN OUT VOID *Buffer
)
{
NON_DISCOVERABLE_PCI_DEVICE *Dev;
VOID *Address;
if (Width < 0 || Width >= EfiPciIoWidthMaximum || Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
Dev = NON_DISCOVERABLE_PCI_DEVICE_FROM_PCI_IO(This);
Address = (UINT8 *)&Dev->ConfigSpace + Offset;
if (Offset + (Count << ((UINTN)Width & 0x3)) > sizeof (Dev->ConfigSpace)) {
return EFI_UNSUPPORTED;
}
return PciIoMemRW (Width, Count, 1, Address, 1, Buffer);
}
/**
Enables a PCI driver to copy one region of PCI memory space to another region of PCI
memory space.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Width Signifies the width of the memory operations.
@param DestBarIndex The BAR index in the standard PCI Configuration header to use as the
base address for the memory operation to perform.
@param DestOffset The destination offset within the BAR specified by DestBarIndex to
start the memory writes for the copy operation.
@param SrcBarIndex The BAR index in the standard PCI Configuration header to use as the
base address for the memory operation to perform.
@param SrcOffset The source offset within the BAR specified by SrcBarIndex to start
the memory reads for the copy operation.
@param Count The number of memory operations to perform. Bytes moved is Width
size * Count, starting at DestOffset and SrcOffset.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoCopyMem (
IN EFI_PCI_IO_PROTOCOL *This,
IN EFI_PCI_IO_PROTOCOL_WIDTH Width,
IN UINT8 DestBarIndex,
IN UINT64 DestOffset,
IN UINT8 SrcBarIndex,
IN UINT64 SrcOffset,
IN UINTN Count
)
{
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
/**
Provides the PCI controller-specific addresses needed to access system memory.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Operation Indicates if the bus master is going to read or write to system memory.
@param HostAddress The system memory address to map to the PCI controller.
@param NumberOfBytes On input the number of bytes to map. On output the number of bytes
that were mapped.
@param DeviceAddress The resulting map address for the bus master PCI controller to use to
access the hosts HostAddress.
@param Mapping A resulting value to pass to Unmap().
@retval EFI_SUCCESS The range was mapped for the returned NumberOfBytes.
@retval EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval EFI_DEVICE_ERROR The system hardware could not map the requested address.
**/
STATIC
EFI_STATUS
EFIAPI
CoherentPciIoMap (
IN EFI_PCI_IO_PROTOCOL *This,
IN EFI_PCI_IO_PROTOCOL_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
)
{
NON_DISCOVERABLE_PCI_DEVICE *Dev;
EFI_STATUS Status;
NON_DISCOVERABLE_PCI_DEVICE_MAP_INFO *MapInfo;
//
// If HostAddress exceeds 4 GB, and this device does not support 64-bit DMA
// addressing, we need to allocate a bounce buffer and copy over the data.
//
Dev = NON_DISCOVERABLE_PCI_DEVICE_FROM_PCI_IO(This);
if ((Dev->Attributes & EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE) == 0 &&
(EFI_PHYSICAL_ADDRESS)(UINTN)HostAddress + *NumberOfBytes > SIZE_4GB) {
//
// Bounce buffering is not possible for consistent mappings
//
if (Operation == EfiPciIoOperationBusMasterCommonBuffer) {
return EFI_UNSUPPORTED;
}
MapInfo = AllocatePool (sizeof *MapInfo);
if (MapInfo == NULL) {
return EFI_OUT_OF_RESOURCES;
}
MapInfo->AllocAddress = MAX_UINT32;
MapInfo->HostAddress = HostAddress;
MapInfo->Operation = Operation;
MapInfo->NumberOfBytes = *NumberOfBytes;
Status = gBS->AllocatePages (AllocateMaxAddress, EfiBootServicesData,
EFI_SIZE_TO_PAGES (MapInfo->NumberOfBytes),
&MapInfo->AllocAddress);
if (EFI_ERROR (Status)) {
//
// If we fail here, it is likely because the system has no memory below
// 4 GB to begin with. There is not much we can do about that other than
// fail the map request.
//
FreePool (MapInfo);
return EFI_DEVICE_ERROR;
}
if (Operation == EfiPciIoOperationBusMasterRead) {
gBS->CopyMem ((VOID *)(UINTN)MapInfo->AllocAddress, HostAddress,
*NumberOfBytes);
}
*DeviceAddress = MapInfo->AllocAddress;
*Mapping = MapInfo;
} else {
*DeviceAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)HostAddress;
*Mapping = NULL;
}
return EFI_SUCCESS;
}
/**
Completes the Map() operation and releases any corresponding resources.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Mapping The mapping value returned from Map().
@retval EFI_SUCCESS The range was unmapped.
**/
STATIC
EFI_STATUS
EFIAPI
CoherentPciIoUnmap (
IN EFI_PCI_IO_PROTOCOL *This,
IN VOID *Mapping
)
{
NON_DISCOVERABLE_PCI_DEVICE_MAP_INFO *MapInfo;
MapInfo = Mapping;
if (MapInfo != NULL) {
if (MapInfo->Operation == EfiPciIoOperationBusMasterWrite) {
gBS->CopyMem (MapInfo->HostAddress, (VOID *)(UINTN)MapInfo->AllocAddress,
MapInfo->NumberOfBytes);
}
gBS->FreePages (MapInfo->AllocAddress,
EFI_SIZE_TO_PAGES (MapInfo->NumberOfBytes));
FreePool (MapInfo);
}
return EFI_SUCCESS;
}
/**
Allocates pages.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Type This parameter is not used and must be ignored.
@param MemoryType The type of memory to allocate, EfiBootServicesData or
EfiRuntimeServicesData.
@param Pages The number of pages to allocate.
@param HostAddress A pointer to store the base system memory address of the
allocated range.
@param Attributes The requested bit mask of attributes for the allocated range.
@retval EFI_SUCCESS The requested memory pages were allocated.
@retval EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are
MEMORY_WRITE_COMBINE and MEMORY_CACHED.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
**/
STATIC
EFI_STATUS
EFIAPI
CoherentPciIoAllocateBuffer (
IN EFI_PCI_IO_PROTOCOL *This,
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT VOID **HostAddress,
IN UINT64 Attributes
)
{
NON_DISCOVERABLE_PCI_DEVICE *Dev;
EFI_PHYSICAL_ADDRESS AllocAddress;
EFI_ALLOCATE_TYPE AllocType;
EFI_STATUS Status;
if ((Attributes & ~(EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE |
EFI_PCI_ATTRIBUTE_MEMORY_CACHED)) != 0) {
return EFI_UNSUPPORTED;
}
//
// Allocate below 4 GB if the dual address cycle attribute has not
// been set. If the system has no memory available below 4 GB, there
// is little we can do except propagate the error.
//
Dev = NON_DISCOVERABLE_PCI_DEVICE_FROM_PCI_IO(This);
if ((Dev->Attributes & EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE) == 0) {
AllocAddress = MAX_UINT32;
AllocType = AllocateMaxAddress;
} else {
AllocType = AllocateAnyPages;
}
Status = gBS->AllocatePages (AllocType, MemoryType, Pages, &AllocAddress);
if (!EFI_ERROR (Status)) {
*HostAddress = (VOID *)(UINTN)AllocAddress;
}
return Status;
}
/**
Frees memory that was allocated in function CoherentPciIoAllocateBuffer ().
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Pages The number of pages to free.
@param HostAddress The base system memory address of the allocated range.
@retval EFI_SUCCESS The requested memory pages were freed.
**/
STATIC
EFI_STATUS
EFIAPI
CoherentPciIoFreeBuffer (
IN EFI_PCI_IO_PROTOCOL *This,
IN UINTN Pages,
IN VOID *HostAddress
)
{
FreePages (HostAddress, Pages);
return EFI_SUCCESS;
}
/**
Frees memory that was allocated in function NonCoherentPciIoAllocateBuffer ().
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Pages The number of pages to free.
@param HostAddress The base system memory address of the allocated range.
@retval EFI_SUCCESS The requested memory pages were freed.
@retval others The operation contain some errors.
**/
STATIC
EFI_STATUS
EFIAPI
NonCoherentPciIoFreeBuffer (
IN EFI_PCI_IO_PROTOCOL *This,
IN UINTN Pages,
IN VOID *HostAddress
)
{
NON_DISCOVERABLE_PCI_DEVICE *Dev;
LIST_ENTRY *Entry;
EFI_STATUS Status;
NON_DISCOVERABLE_DEVICE_UNCACHED_ALLOCATION *Alloc;
BOOLEAN Found;
Dev = NON_DISCOVERABLE_PCI_DEVICE_FROM_PCI_IO(This);
Found = FALSE;
Alloc = NULL;
//
// Find the uncached allocation list entry associated
// with this allocation
//
for (Entry = Dev->UncachedAllocationList.ForwardLink;
Entry != &Dev->UncachedAllocationList;
Entry = Entry->ForwardLink) {
Alloc = BASE_CR (Entry, NON_DISCOVERABLE_DEVICE_UNCACHED_ALLOCATION, List);
if (Alloc->HostAddress == HostAddress && Alloc->NumPages == Pages) {
//
// We are freeing the exact allocation we were given
// before by AllocateBuffer()
//
Found = TRUE;
break;
}
}
if (!Found) {
ASSERT_EFI_ERROR (EFI_NOT_FOUND);
return EFI_NOT_FOUND;
}
RemoveEntryList (&Alloc->List);
Status = gDS->SetMemorySpaceAttributes (
(EFI_PHYSICAL_ADDRESS)(UINTN)HostAddress,
EFI_PAGES_TO_SIZE (Pages),
Alloc->Attributes);
if (EFI_ERROR (Status)) {
goto FreeAlloc;
}
//
// If we fail to restore the original attributes, it is better to leak the
// memory than to return it to the heap
//
FreePages (HostAddress, Pages);
FreeAlloc:
FreePool (Alloc);
return Status;
}
/**
Allocates pages.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Type This parameter is not used and must be ignored.
@param MemoryType The type of memory to allocate, EfiBootServicesData or
EfiRuntimeServicesData.
@param Pages The number of pages to allocate.
@param HostAddress A pointer to store the base system memory address of the
allocated range.
@param Attributes The requested bit mask of attributes for the allocated range.
@retval EFI_SUCCESS The requested memory pages were allocated.
@retval EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are
MEMORY_WRITE_COMBINE and MEMORY_CACHED.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated.
**/
STATIC
EFI_STATUS
EFIAPI
NonCoherentPciIoAllocateBuffer (
IN EFI_PCI_IO_PROTOCOL *This,
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT VOID **HostAddress,
IN UINT64 Attributes
)
{
NON_DISCOVERABLE_PCI_DEVICE *Dev;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
EFI_STATUS Status;
UINT64 MemType;
NON_DISCOVERABLE_DEVICE_UNCACHED_ALLOCATION *Alloc;
VOID *AllocAddress;
Dev = NON_DISCOVERABLE_PCI_DEVICE_FROM_PCI_IO(This);
Status = CoherentPciIoAllocateBuffer (This, Type, MemoryType, Pages,
&AllocAddress, Attributes);
if (EFI_ERROR (Status)) {
return Status;
}
Status = gDS->GetMemorySpaceDescriptor (
(EFI_PHYSICAL_ADDRESS)(UINTN)AllocAddress,
&GcdDescriptor);
if (EFI_ERROR (Status)) {
goto FreeBuffer;
}
if ((GcdDescriptor.Capabilities & (EFI_MEMORY_WC | EFI_MEMORY_UC)) == 0) {
Status = EFI_UNSUPPORTED;
goto FreeBuffer;
}
//
// Set the preferred memory attributes
//
if ((Attributes & EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE) != 0 ||
(GcdDescriptor.Capabilities & EFI_MEMORY_UC) == 0) {
//
// Use write combining if it was requested, or if it is the only
// type supported by the region.
//
MemType = EFI_MEMORY_WC;
} else {
MemType = EFI_MEMORY_UC;
}
Alloc = AllocatePool (sizeof *Alloc);
if (Alloc == NULL) {
goto FreeBuffer;
}
Alloc->HostAddress = AllocAddress;
Alloc->NumPages = Pages;
Alloc->Attributes = GcdDescriptor.Attributes;
//
// Record this allocation in the linked list, so we
// can restore the memory space attributes later
//
InsertHeadList (&Dev->UncachedAllocationList, &Alloc->List);
Status = gDS->SetMemorySpaceAttributes (
(EFI_PHYSICAL_ADDRESS)(UINTN)AllocAddress,
EFI_PAGES_TO_SIZE (Pages),
MemType);
if (EFI_ERROR (Status)) {
goto RemoveList;
}
Status = mCpu->FlushDataCache (
mCpu,
(EFI_PHYSICAL_ADDRESS)(UINTN)AllocAddress,
EFI_PAGES_TO_SIZE (Pages),
EfiCpuFlushTypeInvalidate);
if (EFI_ERROR (Status)) {
goto RemoveList;
}
*HostAddress = AllocAddress;
return EFI_SUCCESS;
RemoveList:
RemoveEntryList (&Alloc->List);
FreePool (Alloc);
FreeBuffer:
CoherentPciIoFreeBuffer (This, Pages, AllocAddress);
return Status;
}
/**
Provides the PCI controller-specific addresses needed to access system memory.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Operation Indicates if the bus master is going to read or write to system memory.
@param HostAddress The system memory address to map to the PCI controller.
@param NumberOfBytes On input the number of bytes to map. On output the number of bytes
that were mapped.
@param DeviceAddress The resulting map address for the bus master PCI controller to use to
access the hosts HostAddress.
@param Mapping A resulting value to pass to Unmap().
@retval EFI_SUCCESS The range was mapped for the returned NumberOfBytes.
@retval EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval EFI_DEVICE_ERROR The system hardware could not map the requested address.
**/
STATIC
EFI_STATUS
EFIAPI
NonCoherentPciIoMap (
IN EFI_PCI_IO_PROTOCOL *This,
IN EFI_PCI_IO_PROTOCOL_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
)
{
NON_DISCOVERABLE_PCI_DEVICE *Dev;
EFI_STATUS Status;
NON_DISCOVERABLE_PCI_DEVICE_MAP_INFO *MapInfo;
UINTN AlignMask;
VOID *AllocAddress;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
BOOLEAN Bounce;
MapInfo = AllocatePool (sizeof *MapInfo);
if (MapInfo == NULL) {
return EFI_OUT_OF_RESOURCES;
}
MapInfo->HostAddress = HostAddress;
MapInfo->Operation = Operation;
MapInfo->NumberOfBytes = *NumberOfBytes;
Dev = NON_DISCOVERABLE_PCI_DEVICE_FROM_PCI_IO(This);
//
// If this device does not support 64-bit DMA addressing, we need to allocate
// a bounce buffer and copy over the data in case HostAddress >= 4 GB.
//
Bounce = ((Dev->Attributes & EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE) == 0 &&
(EFI_PHYSICAL_ADDRESS)(UINTN)HostAddress + *NumberOfBytes > SIZE_4GB);
if (!Bounce) {
switch (Operation) {
case EfiPciIoOperationBusMasterRead:
case EfiPciIoOperationBusMasterWrite:
//
// For streaming DMA, it is sufficient if the buffer is aligned to
// the CPUs DMA buffer alignment.
//
AlignMask = mCpu->DmaBufferAlignment - 1;
if ((((UINTN) HostAddress | *NumberOfBytes) & AlignMask) == 0) {
break;
}
// fall through
case EfiPciIoOperationBusMasterCommonBuffer:
//
// Check whether the host address refers to an uncached mapping.
//
Status = gDS->GetMemorySpaceDescriptor (
(EFI_PHYSICAL_ADDRESS)(UINTN)HostAddress,
&GcdDescriptor);
if (EFI_ERROR (Status) ||
(GcdDescriptor.Attributes & (EFI_MEMORY_WB|EFI_MEMORY_WT)) != 0) {
Bounce = TRUE;
}
break;
default:
ASSERT (FALSE);
}
}
if (Bounce) {
if (Operation == EfiPciIoOperationBusMasterCommonBuffer) {
Status = EFI_DEVICE_ERROR;
goto FreeMapInfo;
}
Status = NonCoherentPciIoAllocateBuffer (This, AllocateAnyPages,
EfiBootServicesData, EFI_SIZE_TO_PAGES (MapInfo->NumberOfBytes),
&AllocAddress, EFI_PCI_ATTRIBUTE_MEMORY_WRITE_COMBINE);
if (EFI_ERROR (Status)) {
goto FreeMapInfo;
}
MapInfo->AllocAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocAddress;
if (Operation == EfiPciIoOperationBusMasterRead) {
gBS->CopyMem (AllocAddress, HostAddress, *NumberOfBytes);
}
*DeviceAddress = MapInfo->AllocAddress;
} else {
MapInfo->AllocAddress = 0;
*DeviceAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)HostAddress;
//
// We are not using a bounce buffer: the mapping is sufficiently
// aligned to allow us to simply flush the caches. Note that cleaning
// the caches is necessary for both data directions:
// - for bus master read, we want the latest data to be present
// in main memory
// - for bus master write, we don't want any stale dirty cachelines that
// may be written back unexpectedly, and clobber the data written to
// main memory by the device.
//
mCpu->FlushDataCache (mCpu, (EFI_PHYSICAL_ADDRESS)(UINTN)HostAddress,
*NumberOfBytes, EfiCpuFlushTypeWriteBack);
}
*Mapping = MapInfo;
return EFI_SUCCESS;
FreeMapInfo:
FreePool (MapInfo);
return Status;
}
/**
Completes the Map() operation and releases any corresponding resources.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Mapping The mapping value returned from Map().
@retval EFI_SUCCESS The range was unmapped.
**/
STATIC
EFI_STATUS
EFIAPI
NonCoherentPciIoUnmap (
IN EFI_PCI_IO_PROTOCOL *This,
IN VOID *Mapping
)
{
NON_DISCOVERABLE_PCI_DEVICE_MAP_INFO *MapInfo;
if (Mapping == NULL) {
return EFI_DEVICE_ERROR;
}
MapInfo = Mapping;
if (MapInfo->AllocAddress != 0) {
//
// We are using a bounce buffer: copy back the data if necessary,
// and free the buffer.
//
if (MapInfo->Operation == EfiPciIoOperationBusMasterWrite) {
gBS->CopyMem (MapInfo->HostAddress, (VOID *)(UINTN)MapInfo->AllocAddress,
MapInfo->NumberOfBytes);
}
NonCoherentPciIoFreeBuffer (This,
EFI_SIZE_TO_PAGES (MapInfo->NumberOfBytes),
(VOID *)(UINTN)MapInfo->AllocAddress);
} else {
//
// We are *not* using a bounce buffer: if this is a bus master write,
// we have to invalidate the caches so the CPU will see the uncached
// data written by the device.
//
if (MapInfo->Operation == EfiPciIoOperationBusMasterWrite) {
mCpu->FlushDataCache (mCpu,
(EFI_PHYSICAL_ADDRESS)(UINTN)MapInfo->HostAddress,
MapInfo->NumberOfBytes, EfiCpuFlushTypeInvalidate);
}
}
FreePool (MapInfo);
return EFI_SUCCESS;
}
/**
Flushes all PCI posted write transactions from a PCI host bridge to system memory.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoFlush (
IN EFI_PCI_IO_PROTOCOL *This
)
{
return EFI_SUCCESS;
}
/**
Retrieves this PCI controller's current PCI bus number, device number, and function number.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param SegmentNumber The PCI controller's current PCI segment number.
@param BusNumber The PCI controller's current PCI bus number.
@param DeviceNumber The PCI controller's current PCI device number.
@param FunctionNumber The PCI controller's current PCI function number.
@retval EFI_SUCCESS The PCI controller location was returned.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoGetLocation (
IN EFI_PCI_IO_PROTOCOL *This,
OUT UINTN *SegmentNumber,
OUT UINTN *BusNumber,
OUT UINTN *DeviceNumber,
OUT UINTN *FunctionNumber
)
{
if (SegmentNumber == NULL ||
BusNumber == NULL ||
DeviceNumber == NULL ||
FunctionNumber == NULL) {
return EFI_INVALID_PARAMETER;
}
*SegmentNumber = 0;
*BusNumber = 0xff;
*DeviceNumber = 0;
*FunctionNumber = 0;
return EFI_SUCCESS;
}
/**
Performs an operation on the attributes that this PCI controller supports. The operations include
getting the set of supported attributes, retrieving the current attributes, setting the current
attributes, enabling attributes, and disabling attributes.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Operation The operation to perform on the attributes for this PCI controller.
@param Attributes The mask of attributes that are used for Set, Enable, and Disable
operations.
@param Result A pointer to the result mask of attributes that are returned for the Get
and Supported operations.
@retval EFI_SUCCESS The operation on the PCI controller's attributes was completed.
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
@retval EFI_UNSUPPORTED one or more of the bits set in
Attributes are not supported by this PCI controller or one of
its parent bridges when Operation is Set, Enable or Disable.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoAttributes (
IN EFI_PCI_IO_PROTOCOL *This,
IN EFI_PCI_IO_PROTOCOL_ATTRIBUTE_OPERATION Operation,
IN UINT64 Attributes,
OUT UINT64 *Result OPTIONAL
)
{
NON_DISCOVERABLE_PCI_DEVICE *Dev;
BOOLEAN Enable;
Dev = NON_DISCOVERABLE_PCI_DEVICE_FROM_PCI_IO(This);
Enable = FALSE;
switch (Operation) {
case EfiPciIoAttributeOperationGet:
if (Result == NULL) {
return EFI_INVALID_PARAMETER;
}
*Result = Dev->Attributes;
break;
case EfiPciIoAttributeOperationSupported:
if (Result == NULL) {
return EFI_INVALID_PARAMETER;
}
*Result = EFI_PCI_DEVICE_ENABLE | EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE;
break;
case EfiPciIoAttributeOperationEnable:
Attributes |= Dev->Attributes;
case EfiPciIoAttributeOperationSet:
Enable = ((~Dev->Attributes & Attributes) & EFI_PCI_DEVICE_ENABLE) != 0;
Dev->Attributes = Attributes;
break;
case EfiPciIoAttributeOperationDisable:
Dev->Attributes &= ~Attributes;
break;
default:
return EFI_INVALID_PARAMETER;
};
//
// If we're setting any of the EFI_PCI_DEVICE_ENABLE bits, perform
// the device specific initialization now.
//
if (Enable && !Dev->Enabled && Dev->Device->Initialize != NULL) {
Dev->Device->Initialize (Dev->Device);
Dev->Enabled = TRUE;
}
return EFI_SUCCESS;
}
/**
Gets the attributes that this PCI controller supports setting on a BAR using
SetBarAttributes(), and retrieves the list of resource descriptors for a BAR.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param BarIndex The BAR index of the standard PCI Configuration header to use as the
base address for resource range. The legal range for this field is 0..5.
@param Supports A pointer to the mask of attributes that this PCI controller supports
setting for this BAR with SetBarAttributes().
@param Resources A pointer to the ACPI 2.0 resource descriptors that describe the current
configuration of this BAR of the PCI controller.
@retval EFI_SUCCESS If Supports is not NULL, then the attributes that the PCI
controller supports are returned in Supports. If Resources
is not NULL, then the ACPI 2.0 resource descriptors that the PCI
controller is currently using are returned in Resources.
@retval EFI_INVALID_PARAMETER Both Supports and Attributes are NULL.
@retval EFI_UNSUPPORTED BarIndex not valid for this PCI controller.
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to allocate
Resources.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoGetBarAttributes (
IN EFI_PCI_IO_PROTOCOL *This,
IN UINT8 BarIndex,
OUT UINT64 *Supports OPTIONAL,
OUT VOID **Resources OPTIONAL
)
{
NON_DISCOVERABLE_PCI_DEVICE *Dev;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptor;
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *BarDesc;
EFI_ACPI_END_TAG_DESCRIPTOR *End;
EFI_STATUS Status;
if (Supports == NULL && Resources == NULL) {
return EFI_INVALID_PARAMETER;
}
Dev = NON_DISCOVERABLE_PCI_DEVICE_FROM_PCI_IO(This);
Status = GetBarResource (Dev, BarIndex, &BarDesc);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Don't expose any configurable attributes for our emulated BAR
//
if (Supports != NULL) {
*Supports = 0;
}
if (Resources != NULL) {
Descriptor = AllocatePool (sizeof (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR) +
sizeof (EFI_ACPI_END_TAG_DESCRIPTOR));
if (Descriptor == NULL) {
return EFI_OUT_OF_RESOURCES;
}
CopyMem (Descriptor, BarDesc, sizeof *Descriptor);
End = (EFI_ACPI_END_TAG_DESCRIPTOR *) (Descriptor + 1);
End->Desc = ACPI_END_TAG_DESCRIPTOR;
End->Checksum = 0;
*Resources = Descriptor;
}
return EFI_SUCCESS;
}
/**
Sets the attributes for a range of a BAR on a PCI controller.
@param This A pointer to the EFI_PCI_IO_PROTOCOL instance.
@param Attributes The mask of attributes to set for the resource range specified by
BarIndex, Offset, and Length.
@param BarIndex The BAR index of the standard PCI Configuration header to use as the
base address for resource range. The legal range for this field is 0..5.
@param Offset A pointer to the BAR relative base address of the resource range to be
modified by the attributes specified by Attributes.
@param Length A pointer to the length of the resource range to be modified by the
attributes specified by Attributes.
**/
STATIC
EFI_STATUS
EFIAPI
PciIoSetBarAttributes (
IN EFI_PCI_IO_PROTOCOL *This,
IN UINT64 Attributes,
IN UINT8 BarIndex,
IN OUT UINT64 *Offset,
IN OUT UINT64 *Length
)
{
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
STATIC CONST EFI_PCI_IO_PROTOCOL PciIoTemplate =
{
PciIoPollMem,
PciIoPollIo,
{ PciIoMemRead, PciIoMemWrite },
{ PciIoIoRead, PciIoIoWrite },
{ PciIoPciRead, PciIoPciWrite },
PciIoCopyMem,
CoherentPciIoMap,
CoherentPciIoUnmap,
CoherentPciIoAllocateBuffer,
CoherentPciIoFreeBuffer,
PciIoFlush,
PciIoGetLocation,
PciIoAttributes,
PciIoGetBarAttributes,
PciIoSetBarAttributes,
0,
0
};
/**
Initialize PciIo Protocol.
@param Dev Point to NON_DISCOVERABLE_PCI_DEVICE instance.
**/
VOID
InitializePciIoProtocol (
NON_DISCOVERABLE_PCI_DEVICE *Dev
)
{
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Desc;
INTN Idx;
InitializeListHead (&Dev->UncachedAllocationList);
Dev->ConfigSpace.Hdr.VendorId = PCI_ID_VENDOR_UNKNOWN;
Dev->ConfigSpace.Hdr.DeviceId = PCI_ID_DEVICE_DONTCARE;
// Copy protocol structure
CopyMem(&Dev->PciIo, &PciIoTemplate, sizeof PciIoTemplate);
if (Dev->Device->DmaType == NonDiscoverableDeviceDmaTypeNonCoherent) {
Dev->PciIo.AllocateBuffer = NonCoherentPciIoAllocateBuffer;
Dev->PciIo.FreeBuffer = NonCoherentPciIoFreeBuffer;
Dev->PciIo.Map = NonCoherentPciIoMap;
Dev->PciIo.Unmap = NonCoherentPciIoUnmap;
}
if (CompareGuid (Dev->Device->Type, &gEdkiiNonDiscoverableAhciDeviceGuid)) {
Dev->ConfigSpace.Hdr.ClassCode[0] = PCI_IF_MASS_STORAGE_AHCI;
Dev->ConfigSpace.Hdr.ClassCode[1] = PCI_CLASS_MASS_STORAGE_SATADPA;
Dev->ConfigSpace.Hdr.ClassCode[2] = PCI_CLASS_MASS_STORAGE;
Dev->BarOffset = 5;
} else if (CompareGuid (Dev->Device->Type,
&gEdkiiNonDiscoverableEhciDeviceGuid)) {
Dev->ConfigSpace.Hdr.ClassCode[0] = PCI_IF_EHCI;
Dev->ConfigSpace.Hdr.ClassCode[1] = PCI_CLASS_SERIAL_USB;
Dev->ConfigSpace.Hdr.ClassCode[2] = PCI_CLASS_SERIAL;
Dev->BarOffset = 0;
} else if (CompareGuid (Dev->Device->Type,
&gEdkiiNonDiscoverableNvmeDeviceGuid)) {
Dev->ConfigSpace.Hdr.ClassCode[0] = 0x2; // PCI_IF_NVMHCI
Dev->ConfigSpace.Hdr.ClassCode[1] = 0x8; // PCI_CLASS_MASS_STORAGE_NVM
Dev->ConfigSpace.Hdr.ClassCode[2] = PCI_CLASS_MASS_STORAGE;
Dev->BarOffset = 0;
} else if (CompareGuid (Dev->Device->Type,
&gEdkiiNonDiscoverableOhciDeviceGuid)) {
Dev->ConfigSpace.Hdr.ClassCode[0] = PCI_IF_OHCI;
Dev->ConfigSpace.Hdr.ClassCode[1] = PCI_CLASS_SERIAL_USB;
Dev->ConfigSpace.Hdr.ClassCode[2] = PCI_CLASS_SERIAL;
Dev->BarOffset = 0;
} else if (CompareGuid (Dev->Device->Type,
&gEdkiiNonDiscoverableSdhciDeviceGuid)) {
Dev->ConfigSpace.Hdr.ClassCode[0] = 0x0; // don't care
Dev->ConfigSpace.Hdr.ClassCode[1] = PCI_SUBCLASS_SD_HOST_CONTROLLER;
Dev->ConfigSpace.Hdr.ClassCode[2] = PCI_CLASS_SYSTEM_PERIPHERAL;
Dev->BarOffset = 0;
} else if (CompareGuid (Dev->Device->Type,
&gEdkiiNonDiscoverableXhciDeviceGuid)) {
Dev->ConfigSpace.Hdr.ClassCode[0] = PCI_IF_XHCI;
Dev->ConfigSpace.Hdr.ClassCode[1] = PCI_CLASS_SERIAL_USB;
Dev->ConfigSpace.Hdr.ClassCode[2] = PCI_CLASS_SERIAL;
Dev->BarOffset = 0;
} else if (CompareGuid (Dev->Device->Type,
&gEdkiiNonDiscoverableUhciDeviceGuid)) {
Dev->ConfigSpace.Hdr.ClassCode[0] = PCI_IF_UHCI;
Dev->ConfigSpace.Hdr.ClassCode[1] = PCI_CLASS_SERIAL_USB;
Dev->ConfigSpace.Hdr.ClassCode[2] = PCI_CLASS_SERIAL;
Dev->BarOffset = 0;
} else if (CompareGuid (Dev->Device->Type,
&gEdkiiNonDiscoverableUfsDeviceGuid)) {
Dev->ConfigSpace.Hdr.ClassCode[0] = 0x0; // don't care
Dev->ConfigSpace.Hdr.ClassCode[1] = 0x9; // UFS controller subclass;
Dev->ConfigSpace.Hdr.ClassCode[2] = PCI_CLASS_MASS_STORAGE;
Dev->BarOffset = 0;
} else {
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
}
//
// Iterate over the resources to populate the virtual BARs
//
Idx = Dev->BarOffset;
for (Desc = Dev->Device->Resources, Dev->BarCount = 0;
Desc->Desc != ACPI_END_TAG_DESCRIPTOR;
Desc = (VOID *)((UINT8 *)Desc + Desc->Len + 3)) {
ASSERT (Desc->Desc == ACPI_ADDRESS_SPACE_DESCRIPTOR);
ASSERT (Desc->ResType == ACPI_ADDRESS_SPACE_TYPE_MEM);
if (Idx >= PCI_MAX_BARS ||
(Idx == PCI_MAX_BARS - 1 && Desc->AddrSpaceGranularity == 64)) {
DEBUG ((DEBUG_ERROR,
"%a: resource count exceeds number of emulated BARs\n",
__FUNCTION__));
ASSERT (FALSE);
break;
}
Dev->ConfigSpace.Device.Bar[Idx] = (UINT32)Desc->AddrRangeMin;
Dev->BarCount++;
if (Desc->AddrSpaceGranularity == 64) {
Dev->ConfigSpace.Device.Bar[Idx] |= 0x4;
Dev->ConfigSpace.Device.Bar[++Idx] = (UINT32)RShiftU64 (
Desc->AddrRangeMin, 32);
}
}
}