audk/EdkCompatibilityPkg/Compatibility/MpServicesOnFrameworkMpServ.../MpServicesOnFrameworkMpServ...

1764 lines
52 KiB
C
Raw Normal View History

/** @file
Produces PI MP Services Protocol on top of Framework MP Services Protocol.
Intel's Framework MP Services Protocol is replaced by EFI_MP_SERVICES_PROTOCOL in PI 1.1.
This module produces PI MP Services Protocol on top of Framework MP Services Protocol.
Copyright (c) 2009 - 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
**/
#include "MpServicesOnFrameworkMpServicesThunk.h"
EFI_HANDLE mHandle = NULL;
MP_SYSTEM_DATA mMPSystemData;
EFI_PHYSICAL_ADDRESS mStartupVector;
MP_CPU_EXCHANGE_INFO *mExchangeInfo;
BOOLEAN mStopCheckAPsStatus = FALSE;
UINTN mNumberOfProcessors;
EFI_GENERIC_MEMORY_TEST_PROTOCOL *mGenMemoryTest;
FRAMEWORK_EFI_MP_SERVICES_PROTOCOL *mFrameworkMpService;
EFI_MP_SERVICES_PROTOCOL mMpService = {
GetNumberOfProcessors,
GetProcessorInfo,
StartupAllAPs,
StartupThisAP,
SwitchBSP,
EnableDisableAP,
WhoAmI
};
/**
Implementation of GetNumberOfProcessors() service of MP Services Protocol.
This service retrieves the number of logical processor in the platform
and the number of those logical processors that are enabled on this boot.
This service may only be called from the BSP.
@param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
@param NumberOfProcessors Pointer to the total number of logical processors in the system,
including the BSP and disabled APs.
@param NumberOfEnabledProcessors Pointer to the number of enabled logical processors that exist
in system, including the BSP.
@retval EFI_SUCCESS Number of logical processors and enabled logical processors retrieved..
@retval EFI_DEVICE_ERROR Caller processor is AP.
@retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL
@retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL
**/
EFI_STATUS
EFIAPI
GetNumberOfProcessors (
IN EFI_MP_SERVICES_PROTOCOL *This,
OUT UINTN *NumberOfProcessors,
OUT UINTN *NumberOfEnabledProcessors
)
{
EFI_STATUS Status;
UINTN CallerNumber;
//
// Check whether caller processor is BSP
//
WhoAmI (This, &CallerNumber);
if (CallerNumber != GetBspNumber ()) {
return EFI_DEVICE_ERROR;
}
//
// Check parameter NumberOfProcessors
//
if (NumberOfProcessors == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Check parameter NumberOfEnabledProcessors
//
if (NumberOfEnabledProcessors == NULL) {
return EFI_INVALID_PARAMETER;
}
Status = mFrameworkMpService->GetGeneralMPInfo (
mFrameworkMpService,
NumberOfProcessors,
NULL,
NumberOfEnabledProcessors,
NULL,
NULL
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}
/**
Implementation of GetNumberOfProcessors() service of MP Services Protocol.
Gets detailed MP-related information on the requested processor at the
instant this call is made. This service may only be called from the BSP.
@param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
@param ProcessorNumber The handle number of processor.
@param ProcessorInfoBuffer A pointer to the buffer where information for the requested processor is deposited.
@retval EFI_SUCCESS Processor information successfully returned.
@retval EFI_DEVICE_ERROR Caller processor is AP.
@retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL
@retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist.
**/
EFI_STATUS
EFIAPI
GetProcessorInfo (
IN EFI_MP_SERVICES_PROTOCOL *This,
IN UINTN ProcessorNumber,
OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
)
{
EFI_STATUS Status;
UINTN CallerNumber;
UINTN BufferSize;
EFI_MP_PROC_CONTEXT ProcessorContextBuffer;
//
// Check whether caller processor is BSP
//
WhoAmI (This, &CallerNumber);
if (CallerNumber != GetBspNumber ()) {
return EFI_DEVICE_ERROR;
}
//
// Check parameter ProcessorInfoBuffer
//
if (ProcessorInfoBuffer == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Check whether processor with the handle specified by ProcessorNumber exists
//
if (ProcessorNumber >= mNumberOfProcessors) {
return EFI_NOT_FOUND;
}
BufferSize = sizeof (EFI_MP_PROC_CONTEXT);
Status = mFrameworkMpService->GetProcessorContext (
mFrameworkMpService,
ProcessorNumber,
&BufferSize,
&ProcessorContextBuffer
);
ASSERT_EFI_ERROR (Status);
ProcessorInfoBuffer->ProcessorId = (UINT64) ProcessorContextBuffer.ApicID;
//
// Get Status Flag of specified processor
//
ProcessorInfoBuffer->StatusFlag = 0;
if (ProcessorContextBuffer.Enabled) {
ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
}
if (ProcessorContextBuffer.Designation == EfiCpuBSP) {
ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
}
if (ProcessorContextBuffer.Health.Flags.Uint32 == 0) {
ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
}
ProcessorInfoBuffer->Location.Package = (UINT32) ProcessorContextBuffer.PackageNumber;
ProcessorInfoBuffer->Location.Core = (UINT32) ProcessorContextBuffer.NumberOfCores;
ProcessorInfoBuffer->Location.Thread = (UINT32) ProcessorContextBuffer.NumberOfThreads;
return EFI_SUCCESS;
}
/**
Implementation of StartupAllAPs() service of MP Services Protocol.
This service lets the caller get all enabled APs to execute a caller-provided function.
This service may only be called from the BSP.
@param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
@param Procedure A pointer to the function to be run on enabled APs of the system.
@param SingleThread Indicates whether to execute the function simultaneously or one by one..
@param WaitEvent The event created by the caller.
If it is NULL, then execute in blocking mode.
If it is not NULL, then execute in non-blocking mode.
@param TimeoutInMicroSeconds The time limit in microseconds for this AP to finish the function.
Zero means infinity.
@param ProcedureArgument Pointer to the optional parameter of the assigned function.
@param FailedCpuList The list of processor numbers that fail to finish the function before
TimeoutInMicrosecsond expires.
@retval EFI_SUCCESS In blocking mode, all APs have finished before the timeout expired.
@retval EFI_SUCCESS In non-blocking mode, function has been dispatched to all enabled APs.
@retval EFI_DEVICE_ERROR Caller processor is AP.
@retval EFI_NOT_STARTED No enabled AP exists in the system.
@retval EFI_NOT_READY Any enabled AP is busy.
@retval EFI_TIMEOUT In blocking mode, The timeout expired before all enabled APs have finished.
@retval EFI_INVALID_PARAMETER Procedure is NULL.
**/
EFI_STATUS
EFIAPI
StartupAllAPs (
IN EFI_MP_SERVICES_PROTOCOL *This,
IN EFI_AP_PROCEDURE Procedure,
IN BOOLEAN SingleThread,
IN EFI_EVENT WaitEvent OPTIONAL,
IN UINTN TimeoutInMicroSeconds,
IN VOID *ProcedureArgument OPTIONAL,
OUT UINTN **FailedCpuList OPTIONAL
)
{
EFI_STATUS Status;
UINTN ProcessorNumber;
CPU_DATA_BLOCK *CpuData;
BOOLEAN Blocking;
UINTN BspNumber;
if (FailedCpuList != NULL) {
*FailedCpuList = NULL;
}
//
// Check whether caller processor is BSP
//
BspNumber = GetBspNumber ();
WhoAmI (This, &ProcessorNumber);
if (ProcessorNumber != BspNumber) {
return EFI_DEVICE_ERROR;
}
//
// Check parameter Procedure
//
if (Procedure == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Temporarily suppress CheckAPsStatus()
//
mStopCheckAPsStatus = TRUE;
//
// Check whether all enabled APs are idle.
// If any enabled AP is not idle, return EFI_NOT_READY.
//
for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
CpuData = &mMPSystemData.CpuData[ProcessorNumber];
mMPSystemData.CpuList[ProcessorNumber] = FALSE;
if (ProcessorNumber != BspNumber) {
if (CpuData->State != CpuStateDisabled) {
if (CpuData->State != CpuStateIdle) {
mStopCheckAPsStatus = FALSE;
return EFI_NOT_READY;
} else {
//
// Mark this processor as responsible for current calling.
//
mMPSystemData.CpuList[ProcessorNumber] = TRUE;
}
}
}
}
mMPSystemData.FinishCount = 0;
mMPSystemData.StartCount = 0;
Blocking = FALSE;
//
// Go through all enabled APs to wakeup them for Procedure.
// If in Single Thread mode, then only one AP is woken up, and others are waiting.
//
for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
CpuData = &mMPSystemData.CpuData[ProcessorNumber];
//
// Check whether this processor is responsible for current calling.
//
if (mMPSystemData.CpuList[ProcessorNumber]) {
mMPSystemData.StartCount++;
AcquireSpinLock (&CpuData->CpuDataLock);
CpuData->State = CpuStateReady;
ReleaseSpinLock (&CpuData->CpuDataLock);
if (!Blocking) {
WakeUpAp (
ProcessorNumber,
Procedure,
ProcedureArgument
);
}
if (SingleThread) {
Blocking = TRUE;
}
}
}
//
// If no enabled AP exists, return EFI_NOT_STARTED.
//
if (mMPSystemData.StartCount == 0) {
mStopCheckAPsStatus = FALSE;
return EFI_NOT_STARTED;
}
//
// If WaitEvent is not NULL, execute in non-blocking mode.
// BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
// CheckAPsStatus() will check completion and timeout periodically.
//
mMPSystemData.Procedure = Procedure;
mMPSystemData.ProcArguments = ProcedureArgument;
mMPSystemData.SingleThread = SingleThread;
mMPSystemData.FailedCpuList = FailedCpuList;
mMPSystemData.ExpectedTime = CalculateTimeout (TimeoutInMicroSeconds, &mMPSystemData.CurrentTime);
mMPSystemData.WaitEvent = WaitEvent;
//
// Allow CheckAPsStatus()
//
mStopCheckAPsStatus = FALSE;
if (WaitEvent != NULL) {
return EFI_SUCCESS;
}
//
// If WaitEvent is NULL, execute in blocking mode.
// BSP checks APs'state until all APs finish or TimeoutInMicrosecsond expires.
//
do {
Status = CheckAllAPs ();
} while (Status == EFI_NOT_READY);
return Status;
}
/**
Implementation of StartupThisAP() service of MP Services Protocol.
This service lets the caller get one enabled AP to execute a caller-provided function.
This service may only be called from the BSP.
@param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
@param Procedure A pointer to the function to be run on the designated AP.
@param ProcessorNumber The handle number of AP..
@param WaitEvent The event created by the caller.
If it is NULL, then execute in blocking mode.
If it is not NULL, then execute in non-blocking mode.
@param TimeoutInMicroseconds The time limit in microseconds for this AP to finish the function.
Zero means infinity.
@param ProcedureArgument Pointer to the optional parameter of the assigned function.
@param Finished Indicates whether AP has finished assigned function.
In blocking mode, it is ignored.
@retval EFI_SUCCESS In blocking mode, specified AP has finished before the timeout expires.
@retval EFI_SUCCESS In non-blocking mode, function has been dispatched to specified AP.
@retval EFI_DEVICE_ERROR Caller processor is AP.
@retval EFI_TIMEOUT In blocking mode, the timeout expires before specified AP has finished.
@retval EFI_NOT_READY Specified AP is busy.
@retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist.
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
@retval EFI_INVALID_PARAMETER Procedure is NULL.
**/
EFI_STATUS
EFIAPI
StartupThisAP (
IN EFI_MP_SERVICES_PROTOCOL *This,
IN EFI_AP_PROCEDURE Procedure,
IN UINTN ProcessorNumber,
IN EFI_EVENT WaitEvent OPTIONAL,
IN UINTN TimeoutInMicroseconds,
IN VOID *ProcedureArgument OPTIONAL,
OUT BOOLEAN *Finished OPTIONAL
)
{
CPU_DATA_BLOCK *CpuData;
UINTN CallerNumber;
EFI_STATUS Status;
UINTN BspNumber;
if (Finished != NULL) {
*Finished = TRUE;
}
//
// Check whether caller processor is BSP
//
BspNumber = GetBspNumber ();
WhoAmI (This, &CallerNumber);
if (CallerNumber != BspNumber) {
return EFI_DEVICE_ERROR;
}
//
// Check whether processor with the handle specified by ProcessorNumber exists
//
if (ProcessorNumber >= mNumberOfProcessors) {
return EFI_NOT_FOUND;
}
//
// Check whether specified processor is BSP
//
if (ProcessorNumber == BspNumber) {
return EFI_INVALID_PARAMETER;
}
//
// Check parameter Procedure
//
if (Procedure == NULL) {
return EFI_INVALID_PARAMETER;
}
CpuData = &mMPSystemData.CpuData[ProcessorNumber];
//
// Temporarily suppress CheckAPsStatus()
//
mStopCheckAPsStatus = TRUE;
//
// Check whether specified AP is disabled
//
if (CpuData->State == CpuStateDisabled) {
mStopCheckAPsStatus = FALSE;
return EFI_INVALID_PARAMETER;
}
//
// Check whether specified AP is busy
//
if (CpuData->State != CpuStateIdle) {
mStopCheckAPsStatus = FALSE;
return EFI_NOT_READY;
}
//
// Wakeup specified AP for Procedure.
//
AcquireSpinLock (&CpuData->CpuDataLock);
CpuData->State = CpuStateReady;
ReleaseSpinLock (&CpuData->CpuDataLock);
WakeUpAp (
ProcessorNumber,
Procedure,
ProcedureArgument
);
//
// If WaitEvent is not NULL, execute in non-blocking mode.
// BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
// CheckAPsStatus() will check completion and timeout periodically.
//
CpuData->WaitEvent = WaitEvent;
CpuData->Finished = Finished;
CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
//
// Allow CheckAPsStatus()
//
mStopCheckAPsStatus = FALSE;
if (WaitEvent != NULL) {
return EFI_SUCCESS;
}
//
// If WaitEvent is NULL, execute in blocking mode.
// BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
//
do {
Status = CheckThisAP (ProcessorNumber);
} while (Status == EFI_NOT_READY);
return Status;
}
/**
Implementation of SwitchBSP() service of MP Services Protocol.
This service switches the requested AP to be the BSP from that point onward.
This service may only be called from the current BSP.
@param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
@param ProcessorNumber The handle number of processor.
@param EnableOldBSP Whether to enable or disable the original BSP.
@retval EFI_SUCCESS BSP successfully switched.
@retval EFI_DEVICE_ERROR Caller processor is AP.
@retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist.
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
@retval EFI_NOT_READY Specified AP is busy.
**/
EFI_STATUS
EFIAPI
SwitchBSP (
IN EFI_MP_SERVICES_PROTOCOL *This,
IN UINTN ProcessorNumber,
IN BOOLEAN EnableOldBSP
)
{
EFI_STATUS Status;
CPU_DATA_BLOCK *CpuData;
UINTN CallerNumber;
UINTN BspNumber;
UINTN ApicBase;
UINT32 CurrentTimerValue;
UINT32 CurrentTimerRegister;
UINT32 CurrentTimerDivide;
UINT64 CurrentTscValue;
BOOLEAN OldInterruptState;
//
// Check whether caller processor is BSP
//
BspNumber = GetBspNumber ();
WhoAmI (This, &CallerNumber);
if (CallerNumber != BspNumber) {
return EFI_DEVICE_ERROR;
}
//
// Check whether processor with the handle specified by ProcessorNumber exists
//
if (ProcessorNumber >= mNumberOfProcessors) {
return EFI_NOT_FOUND;
}
//
// Check whether specified processor is BSP
//
if (ProcessorNumber == BspNumber) {
return EFI_INVALID_PARAMETER;
}
CpuData = &mMPSystemData.CpuData[ProcessorNumber];
//
// Check whether specified AP is disabled
//
if (CpuData->State == CpuStateDisabled) {
return EFI_INVALID_PARAMETER;
}
//
// Check whether specified AP is busy
//
if (CpuData->State != CpuStateIdle) {
return EFI_NOT_READY;
}
//
// Save and disable interrupt.
//
OldInterruptState = SaveAndDisableInterrupts ();
//
// Record the current local APIC timer setting of BSP
//
ApicBase = (UINTN)AsmMsrBitFieldRead64 (MSR_IA32_APIC_BASE, 12, 35) << 12;
CurrentTimerValue = MmioRead32 (ApicBase + APIC_REGISTER_TIMER_COUNT);
CurrentTimerRegister = MmioRead32 (ApicBase + APIC_REGISTER_LVT_TIMER);
CurrentTimerDivide = MmioRead32 (ApicBase + APIC_REGISTER_TIMER_DIVIDE);
//
// Set mask bit (BIT 16) of LVT Timer Register to disable its interrupt
//
MmioBitFieldWrite32 (ApicBase + APIC_REGISTER_LVT_TIMER, 16, 16, 1);
//
// Record the current TSC value
//
CurrentTscValue = AsmReadTsc ();
Status = mFrameworkMpService->SwitchBSP (
mFrameworkMpService,
ProcessorNumber,
EnableOldBSP
);
ASSERT_EFI_ERROR (Status);
//
// Restore TSC value
//
AsmWriteMsr64 (MSR_IA32_TIME_STAMP_COUNTER, CurrentTscValue);
//
// Restore local APIC timer setting to new BSP
//
MmioWrite32 (ApicBase + APIC_REGISTER_TIMER_DIVIDE, CurrentTimerDivide);
MmioWrite32 (ApicBase + APIC_REGISTER_TIMER_INIT_COUNT, CurrentTimerValue);
MmioWrite32 (ApicBase + APIC_REGISTER_LVT_TIMER, CurrentTimerRegister);
//
// Restore interrupt state.
//
SetInterruptState (OldInterruptState);
ChangeCpuState (BspNumber, EnableOldBSP);
return EFI_SUCCESS;
}
/**
Implementation of EnableDisableAP() service of MP Services Protocol.
This service lets the caller enable or disable an AP.
This service may only be called from the BSP.
@param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
@param ProcessorNumber The handle number of processor.
@param EnableAP Indicates whether the newstate of the AP is enabled or disabled.
@param HealthFlag Indicates new health state of the AP..
@retval EFI_SUCCESS AP successfully enabled or disabled.
@retval EFI_DEVICE_ERROR Caller processor is AP.
@retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist.
@retval EFI_INVALID_PARAMETERS ProcessorNumber specifies the BSP.
**/
EFI_STATUS
EFIAPI
EnableDisableAP (
IN EFI_MP_SERVICES_PROTOCOL *This,
IN UINTN ProcessorNumber,
IN BOOLEAN EnableAP,
IN UINT32 *HealthFlag OPTIONAL
)
{
EFI_STATUS Status;
UINTN CallerNumber;
EFI_MP_HEALTH HealthState;
EFI_MP_HEALTH *HealthStatePointer;
UINTN BspNumber;
//
// Check whether caller processor is BSP
//
BspNumber = GetBspNumber ();
WhoAmI (This, &CallerNumber);
if (CallerNumber != BspNumber) {
return EFI_DEVICE_ERROR;
}
//
// Check whether processor with the handle specified by ProcessorNumber exists
//
if (ProcessorNumber >= mNumberOfProcessors) {
return EFI_NOT_FOUND;
}
//
// Check whether specified processor is BSP
//
if (ProcessorNumber == BspNumber) {
return EFI_INVALID_PARAMETER;
}
if (HealthFlag == NULL) {
HealthStatePointer = NULL;
} else {
if ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) == 0) {
HealthState.Flags.Uint32 = 1;
} else {
HealthState.Flags.Uint32 = 0;
}
HealthState.TestStatus = 0;
HealthStatePointer = &HealthState;
}
Status = mFrameworkMpService->EnableDisableAP (
mFrameworkMpService,
ProcessorNumber,
EnableAP,
HealthStatePointer
);
ASSERT_EFI_ERROR (Status);
ChangeCpuState (ProcessorNumber, EnableAP);
return EFI_SUCCESS;
}
/**
Implementation of WhoAmI() service of MP Services Protocol.
This service lets the caller processor get its handle number.
This service may be called from the BSP and APs.
@param This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
@param ProcessorNumber Pointer to the handle number of AP.
@retval EFI_SUCCESS Processor number successfully returned.
@retval EFI_INVALID_PARAMETER ProcessorNumber is NULL
**/
EFI_STATUS
EFIAPI
WhoAmI (
IN EFI_MP_SERVICES_PROTOCOL *This,
OUT UINTN *ProcessorNumber
)
{
EFI_STATUS Status;
if (ProcessorNumber == NULL) {
return EFI_INVALID_PARAMETER;
}
Status = mFrameworkMpService->WhoAmI (
mFrameworkMpService,
ProcessorNumber
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}
/**
Checks APs' status periodically.
This function is triggerred by timer perodically to check the
state of APs for StartupAllAPs() and StartupThisAP() executed
in non-blocking mode.
@param Event Event triggered.
@param Context Parameter passed with the event.
**/
VOID
EFIAPI
CheckAPsStatus (
IN EFI_EVENT Event,
IN VOID *Context
)
{
UINTN ProcessorNumber;
CPU_DATA_BLOCK *CpuData;
EFI_STATUS Status;
//
// If CheckAPsStatus() is stopped, then return immediately.
//
if (mStopCheckAPsStatus) {
return;
}
//
// First, check whether pending StartupAllAPs() exists.
//
if (mMPSystemData.WaitEvent != NULL) {
Status = CheckAllAPs ();
//
// If all APs finish for StartupAllAPs(), signal the WaitEvent for it..
//
if (Status != EFI_NOT_READY) {
Status = gBS->SignalEvent (mMPSystemData.WaitEvent);
mMPSystemData.WaitEvent = NULL;
}
}
//
// Second, check whether pending StartupThisAPs() callings exist.
//
for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
CpuData = &mMPSystemData.CpuData[ProcessorNumber];
if (CpuData->WaitEvent == NULL) {
continue;
}
Status = CheckThisAP (ProcessorNumber);
if (Status != EFI_NOT_READY) {
gBS->SignalEvent (CpuData->WaitEvent);
CpuData->WaitEvent = NULL;
}
}
return ;
}
/**
Checks status of all APs.
This function checks whether all APs have finished task assigned by StartupAllAPs(),
and whether timeout expires.
@retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
@retval EFI_TIMEOUT The timeout expires.
@retval EFI_NOT_READY APs have not finished task and timeout has not expired.
**/
EFI_STATUS
CheckAllAPs (
VOID
)
{
UINTN ProcessorNumber;
UINTN NextProcessorNumber;
UINTN ListIndex;
EFI_STATUS Status;
CPU_STATE CpuState;
CPU_DATA_BLOCK *CpuData;
NextProcessorNumber = 0;
//
// Go through all APs that are responsible for the StartupAllAPs().
//
for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
if (!mMPSystemData.CpuList[ProcessorNumber]) {
continue;
}
CpuData = &mMPSystemData.CpuData[ProcessorNumber];
//
// Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.
// Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
// value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.
//
AcquireSpinLock (&CpuData->CpuDataLock);
CpuState = CpuData->State;
ReleaseSpinLock (&CpuData->CpuDataLock);
if (CpuState == CpuStateFinished) {
mMPSystemData.FinishCount++;
mMPSystemData.CpuList[ProcessorNumber] = FALSE;
AcquireSpinLock (&CpuData->CpuDataLock);
CpuData->State = CpuStateIdle;
ReleaseSpinLock (&CpuData->CpuDataLock);
//
// If in Single Thread mode, then search for the next waiting AP for execution.
//
if (mMPSystemData.SingleThread) {
Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
if (!EFI_ERROR (Status)) {
WakeUpAp (
NextProcessorNumber,
mMPSystemData.Procedure,
mMPSystemData.ProcArguments
);
}
}
}
}
//
// If all APs finish, return EFI_SUCCESS.
//
if (mMPSystemData.FinishCount == mMPSystemData.StartCount) {
return EFI_SUCCESS;
}
//
// If timeout expires, report timeout.
//
if (CheckTimeout (&mMPSystemData.CurrentTime, &mMPSystemData.TotalTime, mMPSystemData.ExpectedTime)) {
//
// If FailedCpuList is not NULL, record all failed APs in it.
//
if (mMPSystemData.FailedCpuList != NULL) {
*mMPSystemData.FailedCpuList = AllocatePool ((mMPSystemData.StartCount - mMPSystemData.FinishCount + 1) * sizeof(UINTN));
ASSERT (*mMPSystemData.FailedCpuList != NULL);
}
ListIndex = 0;
for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
//
// Check whether this processor is responsible for StartupAllAPs().
//
if (mMPSystemData.CpuList[ProcessorNumber]) {
//
// Reset failed APs to idle state
//
ResetProcessorToIdleState (ProcessorNumber);
mMPSystemData.CpuList[ProcessorNumber] = FALSE;
if (mMPSystemData.FailedCpuList != NULL) {
(*mMPSystemData.FailedCpuList)[ListIndex++] = ProcessorNumber;
}
}
}
if (mMPSystemData.FailedCpuList != NULL) {
(*mMPSystemData.FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
}
return EFI_TIMEOUT;
}
return EFI_NOT_READY;
}
/**
Checks status of specified AP.
This function checks whether specified AP has finished task assigned by StartupThisAP(),
and whether timeout expires.
@param ProcessorNumber The handle number of processor.
@retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
@retval EFI_TIMEOUT The timeout expires.
@retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
**/
EFI_STATUS
CheckThisAP (
UINTN ProcessorNumber
)
{
CPU_DATA_BLOCK *CpuData;
CPU_STATE CpuState;
ASSERT (ProcessorNumber < mNumberOfProcessors);
ASSERT (ProcessorNumber < MAX_CPU_NUMBER);
CpuData = &mMPSystemData.CpuData[ProcessorNumber];
//
// Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.
// Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
// value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.
//
AcquireSpinLock (&CpuData->CpuDataLock);
CpuState = CpuData->State;
ReleaseSpinLock (&CpuData->CpuDataLock);
//
// If the APs finishes for StartupThisAP(), return EFI_SUCCESS.
//
if (CpuState == CpuStateFinished) {
AcquireSpinLock (&CpuData->CpuDataLock);
CpuData->State = CpuStateIdle;
ReleaseSpinLock (&CpuData->CpuDataLock);
if (CpuData->Finished != NULL) {
*(CpuData->Finished) = TRUE;
}
return EFI_SUCCESS;
} else {
//
// If timeout expires for StartupThisAP(), report timeout.
//
if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
if (CpuData->Finished != NULL) {
*(CpuData->Finished) = FALSE;
}
//
// Reset failed AP to idle state
//
ResetProcessorToIdleState (ProcessorNumber);
return EFI_TIMEOUT;
}
}
return EFI_NOT_READY;
}
/**
Calculate timeout value and return the current performance counter value.
Calculate the number of performance counter ticks required for a timeout.
If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
as infinity.
@param TimeoutInMicroseconds Timeout value in microseconds.
@param CurrentTime Returns the current value of the performance counter.
@return Expected timestamp counter for timeout.
If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
as infinity.
**/
UINT64
CalculateTimeout (
IN UINTN TimeoutInMicroseconds,
OUT UINT64 *CurrentTime
)
{
//
// Read the current value of the performance counter
//
*CurrentTime = GetPerformanceCounter ();
//
// If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
// as infinity.
//
if (TimeoutInMicroseconds == 0) {
return 0;
}
//
// GetPerformanceCounterProperties () returns the timestamp counter's frequency
// in Hz. So multiply the return value with TimeoutInMicroseconds and then divide
// it by 1,000,000, to get the number of ticks for the timeout value.
//
return DivU64x32 (
MultU64x64 (
GetPerformanceCounterProperties (NULL, NULL),
TimeoutInMicroseconds
),
1000000
);
}
/**
Checks whether timeout expires.
Check whether the number of ellapsed performance counter ticks required for a timeout condition
has been reached. If Timeout is zero, which means infinity, return value is always FALSE.
@param PreviousTime On input, the value of the performance counter when it was last read.
On output, the current value of the performance counter
@param TotalTime The total amount of ellapsed time in performance counter ticks.
@param Timeout The number of performance counter ticks required to reach a timeout condition.
@retval TRUE A timeout condition has been reached.
@retval FALSE A timeout condition has not been reached.
**/
BOOLEAN
CheckTimeout (
IN OUT UINT64 *PreviousTime,
IN UINT64 *TotalTime,
IN UINT64 Timeout
)
{
UINT64 Start;
UINT64 End;
UINT64 CurrentTime;
INT64 Delta;
INT64 Cycle;
if (Timeout == 0) {
return FALSE;
}
GetPerformanceCounterProperties (&Start, &End);
Cycle = End - Start;
if (Cycle < 0) {
Cycle = -Cycle;
}
Cycle++;
CurrentTime = GetPerformanceCounter();
Delta = (INT64) (CurrentTime - *PreviousTime);
if (Start > End) {
Delta = -Delta;
}
if (Delta < 0) {
Delta += Cycle;
}
*TotalTime += Delta;
*PreviousTime = CurrentTime;
if (*TotalTime > Timeout) {
return TRUE;
}
return FALSE;
}
/**
Searches for the next waiting AP.
Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
@param NextProcessorNumber Pointer to the processor number of the next waiting AP.
@retval EFI_SUCCESS The next waiting AP has been found.
@retval EFI_NOT_FOUND No waiting AP exists.
**/
EFI_STATUS
GetNextWaitingProcessorNumber (
OUT UINTN *NextProcessorNumber
)
{
UINTN ProcessorNumber;
for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
if (mMPSystemData.CpuList[ProcessorNumber]) {
*NextProcessorNumber = ProcessorNumber;
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
/**
Programs Local APIC registers for virtual wire mode.
This function programs Local APIC registers for virtual wire mode.
@param Bsp Indicates whether the programmed processor is going to be BSP
**/
VOID
ProgramVirtualWireMode (
BOOLEAN Bsp
)
{
UINTN ApicBase;
UINT32 Value;
ApicBase = (UINTN)AsmMsrBitFieldRead64 (MSR_IA32_APIC_BASE, 12, 35) << 12;
//
// Program the Spurious Vector entry
// Set bit 8 (APIC Software Enable/Disable) to enable local APIC,
// and set Spurious Vector as 0x0F.
//
MmioBitFieldWrite32 (ApicBase + APIC_REGISTER_SPURIOUS_VECTOR_OFFSET, 0, 9, 0x10F);
//
// Program the LINT0 vector entry as ExtInt
// Set bits 8..10 to 7 as ExtInt Delivery Mode,
// and clear bits for Delivery Status, Interrupt Input Pin Polarity, Remote IRR,
// Trigger Mode, and Mask
//
if (!Bsp) {
DisableInterrupts ();
}
Value = MmioRead32 (ApicBase + APIC_REGISTER_LINT0_VECTOR_OFFSET);
Value = BitFieldWrite32 (Value, 8, 10, 7);
Value = BitFieldWrite32 (Value, 12, 16, 0);
if (!Bsp) {
//
// For APs, LINT0 is masked
//
Value = BitFieldWrite32 (Value, 16, 16, 1);
}
MmioWrite32 (ApicBase + APIC_REGISTER_LINT0_VECTOR_OFFSET, Value);
//
// Program the LINT1 vector entry as NMI
// Set bits 8..10 to 4 as NMI Delivery Mode,
// and clear bits for Delivery Status, Interrupt Input Pin Polarity, Remote IRR,
// Trigger Mode.
// For BSP clear Mask bit, and for AP set mask bit.
//
Value = MmioRead32 (ApicBase + APIC_REGISTER_LINT1_VECTOR_OFFSET);
Value = BitFieldWrite32 (Value, 8, 10, 4);
Value = BitFieldWrite32 (Value, 12, 16, 0);
if (!Bsp) {
//
// For APs, LINT1 is masked
//
Value = BitFieldWrite32 (Value, 16, 16, 1);
}
MmioWrite32 (ApicBase + APIC_REGISTER_LINT1_VECTOR_OFFSET, Value);
}
/**
Wrapper function for all procedures assigned to AP.
Wrapper function for all procedures assigned to AP via MP service protocol.
It controls states of AP and invokes assigned precedure.
**/
VOID
ApProcWrapper (
VOID
)
{
EFI_AP_PROCEDURE Procedure;
VOID *Parameter;
UINTN ProcessorNumber;
CPU_DATA_BLOCK *CpuData;
//
// Program virtual wire mode for AP, since it will be lost after AP wake up
//
ProgramVirtualWireMode (FALSE);
//
// Initialize Debug Agent to support source level debug on AP code.
//
InitializeDebugAgent (DEBUG_AGENT_INIT_DXE_AP, NULL, NULL);
WhoAmI (&mMpService, &ProcessorNumber);
CpuData = &mMPSystemData.CpuData[ProcessorNumber];
AcquireSpinLock (&CpuData->CpuDataLock);
CpuData->State = CpuStateBusy;
ReleaseSpinLock (&CpuData->CpuDataLock);
//
// Now let us check it out.
//
AcquireSpinLock (&CpuData->CpuDataLock);
Procedure = CpuData->Procedure;
Parameter = CpuData->Parameter;
ReleaseSpinLock (&CpuData->CpuDataLock);
if (Procedure != NULL) {
Procedure (Parameter);
//
// if BSP is switched to AP, it continue execute from here, but it carries register state
// of the old AP, so need to reload CpuData (might be stored in a register after compiler
// optimization) to make sure it points to the right data
//
WhoAmI (&mMpService, &ProcessorNumber);
CpuData = &mMPSystemData.CpuData[ProcessorNumber];
AcquireSpinLock (&CpuData->CpuDataLock);
CpuData->Procedure = NULL;
ReleaseSpinLock (&CpuData->CpuDataLock);
}
AcquireSpinLock (&CpuData->CpuDataLock);
CpuData->State = CpuStateFinished;
ReleaseSpinLock (&CpuData->CpuDataLock);
}
/**
Sends INIT-SIPI-SIPI to AP.
This function sends INIT-SIPI-SIPI to AP, and assign procedure specified by ApFunction.
@param ProcessorNumber The processor number of the specified AP.
@param ApicID The Local APIC ID of the specified AP.
@param ApFunction The procedure for AP to work on.
**/
VOID
SendInitSipiSipi (
IN UINTN ProcessorNumber,
IN UINT32 ApicID,
IN VOID *ApFunction
)
{
UINTN ApicBase;
UINT32 ICRLow;
UINT32 ICRHigh;
UINT32 VectorNumber;
UINT32 DeliveryMode;
ASSERT (ApicID < MAX_CPU_NUMBER);
mExchangeInfo->ApFunction = ApFunction;
mExchangeInfo->ProcessorNumber[ApicID] = (UINT32) ProcessorNumber;
ICRHigh = ApicID << 24;
ICRLow = SPECIFY_CPU_MODE_BIT | TRIGGER_MODE_LEVEL_BIT | ASSERT_BIT;
VectorNumber = 0;
DeliveryMode = DELIVERY_MODE_INIT;
ICRLow |= VectorNumber | (DeliveryMode << 8);
ApicBase = (UINTN)AsmMsrBitFieldRead64 (MSR_IA32_APIC_BASE, 12, 35) << 12;;
//
// Write Interrupt Command Registers to send INIT IPI.
//
MmioWrite32 (ApicBase + APIC_REGISTER_ICR_HIGH_OFFSET, ICRHigh);
MmioWrite32 (ApicBase + APIC_REGISTER_ICR_LOW_OFFSET, ICRLow);
MicroSecondDelay (10);
VectorNumber = (UINT32) RShiftU64 (mStartupVector, 12);
DeliveryMode = DELIVERY_MODE_SIPI;
ICRLow = SPECIFY_CPU_MODE_BIT | TRIGGER_MODE_LEVEL_BIT | ASSERT_BIT;
ICRLow |= VectorNumber | (DeliveryMode << 8);
//
// Write Interrupt Command Register to send first SIPI IPI.
//
MmioWrite32 (ApicBase + APIC_REGISTER_ICR_LOW_OFFSET, ICRLow);
MicroSecondDelay (200);
//
// Write Interrupt Command Register to send second SIPI IPI.
//
MmioWrite32 (ApicBase + APIC_REGISTER_ICR_LOW_OFFSET, ICRLow);
}
/**
Function to wake up a specified AP and assign procedure to it.
@param ProcessorNumber Handle number of the specified processor.
@param Procedure Procedure to assign.
@param ProcArguments Argument for Procedure.
**/
VOID
WakeUpAp (
IN UINTN ProcessorNumber,
IN EFI_AP_PROCEDURE Procedure,
IN VOID *ProcArguments
)
{
EFI_STATUS Status;
CPU_DATA_BLOCK *CpuData;
EFI_PROCESSOR_INFORMATION ProcessorInfoBuffer;
ASSERT (ProcessorNumber < mNumberOfProcessors);
ASSERT (ProcessorNumber < MAX_CPU_NUMBER);
CpuData = &mMPSystemData.CpuData[ProcessorNumber];
AcquireSpinLock (&CpuData->CpuDataLock);
CpuData->Parameter = ProcArguments;
CpuData->Procedure = Procedure;
ReleaseSpinLock (&CpuData->CpuDataLock);
Status = GetProcessorInfo (
&mMpService,
ProcessorNumber,
&ProcessorInfoBuffer
);
ASSERT_EFI_ERROR (Status);
SendInitSipiSipi (
ProcessorNumber,
(UINT32) ProcessorInfoBuffer.ProcessorId,
(VOID *) (UINTN) ApProcWrapper
);
}
/**
Terminate AP's task and set it to idle state.
This function terminates AP's task due to timeout by sending INIT-SIPI,
and sends it to idle state.
@param ProcessorNumber Handle number of the specified processor.
**/
VOID
ResetProcessorToIdleState (
UINTN ProcessorNumber
)
{
EFI_STATUS Status;
CPU_DATA_BLOCK *CpuData;
EFI_PROCESSOR_INFORMATION ProcessorInfoBuffer;
Status = GetProcessorInfo (
&mMpService,
ProcessorNumber,
&ProcessorInfoBuffer
);
ASSERT_EFI_ERROR (Status);
SendInitSipiSipi (
ProcessorNumber,
(UINT32) ProcessorInfoBuffer.ProcessorId,
NULL
);
CpuData = &mMPSystemData.CpuData[ProcessorNumber];
AcquireSpinLock (&CpuData->CpuDataLock);
CpuData->State = CpuStateIdle;
ReleaseSpinLock (&CpuData->CpuDataLock);
}
/**
Worker function of EnableDisableAP ()
Worker function of EnableDisableAP (). Changes state of specified processor.
@param ProcessorNumber Processor number of specified AP.
@param NewState Desired state of the specified AP.
@retval EFI_SUCCESS AP's state successfully changed.
**/
EFI_STATUS
ChangeCpuState (
IN UINTN ProcessorNumber,
IN BOOLEAN NewState
)
{
CPU_DATA_BLOCK *CpuData;
ASSERT (ProcessorNumber < mNumberOfProcessors);
ASSERT (ProcessorNumber < MAX_CPU_NUMBER);
CpuData = &mMPSystemData.CpuData[ProcessorNumber];
if (!NewState) {
AcquireSpinLock (&CpuData->CpuDataLock);
CpuData->State = CpuStateDisabled;
ReleaseSpinLock (&CpuData->CpuDataLock);
} else {
AcquireSpinLock (&CpuData->CpuDataLock);
CpuData->State = CpuStateIdle;
ReleaseSpinLock (&CpuData->CpuDataLock);
}
return EFI_SUCCESS;
}
/**
Test memory region of EfiGcdMemoryTypeReserved.
@param Length The length of memory region to test.
@retval EFI_SUCCESS The memory region passes test.
@retval EFI_NOT_FOUND The memory region is not reserved memory.
@retval EFI_DEVICE_ERROR The memory fails on test.
**/
EFI_STATUS
TestReservedMemory (
UINTN Length
)
{
EFI_STATUS Status;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR Descriptor;
EFI_PHYSICAL_ADDRESS Address;
UINTN LengthCovered;
UINTN RemainingLength;
//
// Walk through the memory descriptors covering the memory range.
//
Address = mStartupVector;
RemainingLength = Length;
while (Address < mStartupVector + Length) {
Status = gDS->GetMemorySpaceDescriptor(
Address,
&Descriptor
);
if (EFI_ERROR (Status)) {
return EFI_NOT_FOUND;
}
if (Descriptor.GcdMemoryType != EfiGcdMemoryTypeReserved) {
return EFI_NOT_FOUND;
}
//
// Calculated the length of the intersected range.
//
LengthCovered = (UINTN) (Descriptor.BaseAddress + Descriptor.Length - Address);
if (LengthCovered > RemainingLength) {
LengthCovered = RemainingLength;
}
Status = mGenMemoryTest->CompatibleRangeTest (
mGenMemoryTest,
Address,
LengthCovered
);
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
Address += LengthCovered;
RemainingLength -= LengthCovered;
}
return EFI_SUCCESS;
}
/**
Allocates startup vector for APs.
This function allocates Startup vector for APs.
@param Size The size of startup vector.
**/
VOID
AllocateStartupVector (
UINTN Size
)
{
EFI_STATUS Status;
Status = gBS->LocateProtocol (
&gEfiGenericMemTestProtocolGuid,
NULL,
(VOID **) &mGenMemoryTest
);
if (EFI_ERROR (Status)) {
mGenMemoryTest = NULL;
}
for (mStartupVector = 0x7F000; mStartupVector >= 0x2000; mStartupVector -= EFI_PAGE_SIZE) {
if (mGenMemoryTest != NULL) {
//
// Test memory if it is EfiGcdMemoryTypeReserved.
//
Status = TestReservedMemory (EFI_SIZE_TO_PAGES (Size) * EFI_PAGE_SIZE);
if (Status == EFI_DEVICE_ERROR) {
continue;
}
}
Status = gBS->AllocatePages (
AllocateAddress,
EfiBootServicesCode,
EFI_SIZE_TO_PAGES (Size),
&mStartupVector
);
if (!EFI_ERROR (Status)) {
break;
}
}
ASSERT_EFI_ERROR (Status);
}
/**
Prepares Startup Vector for APs.
This function prepares Startup Vector for APs.
**/
VOID
PrepareAPStartupVector (
VOID
)
{
MP_ASSEMBLY_ADDRESS_MAP AddressMap;
IA32_DESCRIPTOR GdtrForBSP;
IA32_DESCRIPTOR IdtrForBSP;
EFI_PHYSICAL_ADDRESS GdtForAP;
EFI_PHYSICAL_ADDRESS IdtForAP;
EFI_STATUS Status;
//
// Get the address map of startup code for AP,
// including code size, and offset of long jump instructions to redirect.
//
AsmGetAddressMap (&AddressMap);
//
// Allocate a 4K-aligned region under 1M for startup vector for AP.
// The region contains AP startup code and exchange data between BSP and AP.
//
AllocateStartupVector (AddressMap.Size + sizeof (MP_CPU_EXCHANGE_INFO));
//
// Copy AP startup code to startup vector, and then redirect the long jump
// instructions for mode switching.
//
CopyMem ((VOID *) (UINTN) mStartupVector, AddressMap.RendezvousFunnelAddress, AddressMap.Size);
*(UINT32 *) (UINTN) (mStartupVector + AddressMap.FlatJumpOffset + 3) = (UINT32) (mStartupVector + AddressMap.PModeEntryOffset);
//
// For IA32 mode, LongJumpOffset is filled with zero. If non-zero, then we are in X64 mode, so further redirect for long mode switch.
//
if (AddressMap.LongJumpOffset != 0) {
*(UINT32 *) (UINTN) (mStartupVector + AddressMap.LongJumpOffset + 2) = (UINT32) (mStartupVector + AddressMap.LModeEntryOffset);
}
//
// Get the start address of exchange data between BSP and AP.
//
mExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN) (mStartupVector + AddressMap.Size);
ZeroMem ((VOID *) mExchangeInfo, sizeof (MP_CPU_EXCHANGE_INFO));
mExchangeInfo->StackStart = AllocatePages (EFI_SIZE_TO_PAGES (mNumberOfProcessors * AP_STACK_SIZE));
mExchangeInfo->StackSize = AP_STACK_SIZE;
AsmReadGdtr (&GdtrForBSP);
AsmReadIdtr (&IdtrForBSP);
//
// Allocate memory under 4G to hold GDT for APs
//
GdtForAP = 0xffffffff;
Status = gBS->AllocatePages (
AllocateMaxAddress,
EfiBootServicesData,
EFI_SIZE_TO_PAGES ((GdtrForBSP.Limit + 1) + (IdtrForBSP.Limit + 1)),
&GdtForAP
);
ASSERT_EFI_ERROR (Status);
IdtForAP = (UINTN) GdtForAP + GdtrForBSP.Limit + 1;
CopyMem ((VOID *) (UINTN) GdtForAP, (VOID *) GdtrForBSP.Base, GdtrForBSP.Limit + 1);
CopyMem ((VOID *) (UINTN) IdtForAP, (VOID *) IdtrForBSP.Base, IdtrForBSP.Limit + 1);
mExchangeInfo->GdtrProfile.Base = (UINTN) GdtForAP;
mExchangeInfo->GdtrProfile.Limit = GdtrForBSP.Limit;
mExchangeInfo->IdtrProfile.Base = (UINTN) IdtForAP;
mExchangeInfo->IdtrProfile.Limit = IdtrForBSP.Limit;
mExchangeInfo->BufferStart = (UINT32) mStartupVector;
mExchangeInfo->Cr3 = (UINT32) (AsmReadCr3 ());
}
/**
Prepares memory region for processor configuration.
This function prepares memory region for processor configuration.
**/
VOID
PrepareMemoryForConfiguration (
VOID
)
{
UINTN Index;
//
// Initialize Spin Locks for system
//
InitializeSpinLock (&mMPSystemData.APSerializeLock);
for (Index = 0; Index < MAX_CPU_NUMBER; Index++) {
InitializeSpinLock (&mMPSystemData.CpuData[Index].CpuDataLock);
}
PrepareAPStartupVector ();
}
/**
Gets the processor number of BSP.
@return The processor number of BSP.
**/
UINTN
GetBspNumber (
VOID
)
{
UINTN ProcessorNumber;
EFI_MP_PROC_CONTEXT ProcessorContextBuffer;
EFI_STATUS Status;
UINTN BufferSize;
BufferSize = sizeof (EFI_MP_PROC_CONTEXT);
for (ProcessorNumber = 0; ProcessorNumber < mNumberOfProcessors; ProcessorNumber++) {
Status = mFrameworkMpService->GetProcessorContext (
mFrameworkMpService,
ProcessorNumber,
&BufferSize,
&ProcessorContextBuffer
);
ASSERT_EFI_ERROR (Status);
if (ProcessorContextBuffer.Designation == EfiCpuBSP) {
break;
}
}
ASSERT (ProcessorNumber < mNumberOfProcessors);
return ProcessorNumber;
}
/**
Entrypoint of MP Services Protocol thunk driver.
@param[in] ImageHandle The firmware allocated handle for the EFI image.
@param[in] SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
**/
EFI_STATUS
EFIAPI
InitializeMpServicesProtocol (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
//
// Locates Framework version MP Services Protocol
//
Status = gBS->LocateProtocol (
&gFrameworkEfiMpServiceProtocolGuid,
NULL,
(VOID **) &mFrameworkMpService
);
ASSERT_EFI_ERROR (Status);
Status = mFrameworkMpService->GetGeneralMPInfo (
mFrameworkMpService,
&mNumberOfProcessors,
NULL,
NULL,
NULL,
NULL
);
ASSERT_EFI_ERROR (Status);
ASSERT (mNumberOfProcessors < MAX_CPU_NUMBER);
PrepareMemoryForConfiguration ();
//
// Create timer event to check AP state for non-blocking execution.
//
Status = gBS->CreateEvent (
EVT_TIMER | EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
CheckAPsStatus,
NULL,
&mMPSystemData.CheckAPsEvent
);
ASSERT_EFI_ERROR (Status);
//
// Now install the MP services protocol.
//
Status = gBS->InstallProtocolInterface (
&mHandle,
&gEfiMpServiceProtocolGuid,
EFI_NATIVE_INTERFACE,
&mMpService
);
ASSERT_EFI_ERROR (Status);
//
// Launch the timer event to check AP state.
//
Status = gBS->SetTimer (
mMPSystemData.CheckAPsEvent,
TimerPeriodic,
100000
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}