audk/ArmPlatformPkg/ArmVExpressPkg/NorFlashDxe/NorFlashDxe.c

801 lines
24 KiB
C
Raw Normal View History

/** @file NorFlashDxe.c
Copyright (c) 2011, ARM Ltd. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Library/UefiLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/PcdLib.h>
#include "NorFlashDxe.h"
//
// Global variable declarations
//
#define NOR_FLASH_LAST_DEVICE 4
NOR_FLASH_DESCRIPTION mNorFlashDescription[NOR_FLASH_LAST_DEVICE] = {
{ // BootMon
ARM_VE_SMB_NOR0_BASE,
SIZE_256KB * 255,
SIZE_256KB,
{0xE7223039, 0x5836, 0x41E1, 0xB5, 0x42, 0xD7, 0xEC, 0x73, 0x6C, 0x5E, 0x59}
},
{ // BootMon non-volatile storage
ARM_VE_SMB_NOR0_BASE + SIZE_256KB * 255,
SIZE_64KB * 4,
SIZE_64KB,
{0x02118005, 0x9DA7, 0x443A, 0x92, 0xD5, 0x78, 0x1F, 0x02, 0x2A, 0xED, 0xBB}
},
{ // UEFI
ARM_VE_SMB_NOR1_BASE,
SIZE_256KB * 255,
SIZE_256KB,
{0x1F15DA3C, 0x37FF, 0x4070, 0xB4, 0x71, 0xBB, 0x4A, 0xF1, 0x2A, 0x72, 0x4A}
},
{ // UEFI Variable Services non-volatile storage
ARM_VE_SMB_NOR1_BASE + SIZE_256KB * 255,
SIZE_64KB * 3, //FIXME: Set 3 blocks because I did not succeed to copy 4 blocks into the ARM Versastile Express NOR Falsh in the last NOR Flash. It should be 4 blocks
SIZE_64KB,
{0xCC2CBF29, 0x1498, 0x4CDD, 0x81, 0x71, 0xF8, 0xB6, 0xB4, 0x1D, 0x09, 0x09}
}
};
NOR_FLASH_INSTANCE *mNorFlashInstances[ NOR_FLASH_LAST_DEVICE ];
NOR_FLASH_INSTANCE mNorFlashInstanceTemplate = {
NOR_FLASH_SIGNATURE, // Signature
NULL, // Handle ... NEED TO BE FILLED
FALSE, // Initialized
NULL, // Initialize
0, // BaseAddress ... NEED TO BE FILLED
0, // Size ... NEED TO BE FILLED
{
EFI_BLOCK_IO_PROTOCOL_REVISION2, // Revision
NULL, // Media ... NEED TO BE FILLED
NorFlashBlockIoReset, // Reset;
NorFlashBlockIoReadBlocks, // ReadBlocks
NorFlashBlockIoWriteBlocks, // WriteBlocks
NorFlashBlockIoFlushBlocks // FlushBlocks
}, // BlockIoProtocol
{
0, // MediaId ... NEED TO BE FILLED
FALSE, // RemovableMedia
TRUE, // MediaPresent
FALSE, // LogicalPartition
FALSE, // ReadOnly
FALSE, // WriteCaching;
0, // BlockSize ... NEED TO BE FILLED
4, // IoAlign
0, // LastBlock ... NEED TO BE FILLED
0, // LowestAlignedLba
1, // LogicalBlocksPerPhysicalBlock
}, //Media;
FALSE, // SupportFvb ... NEED TO BE FILLED
{
FvbGetAttributes, // GetAttributes
FvbSetAttributes, // SetAttributes
FvbGetPhysicalAddress, // GetPhysicalAddress
FvbGetBlockSize, // GetBlockSize
FvbRead, // Read
FvbWrite, // Write
FvbEraseBlocks, // EraseBlocks
NULL, //ParentHandle
}, // FvbProtoccol;
{
{
{
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP,
(UINT8)( sizeof(VENDOR_DEVICE_PATH) ),
(UINT8)((sizeof(VENDOR_DEVICE_PATH)) >> 8),
},
{ 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }, // GUID ... NEED TO BE FILLED
},
{
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
sizeof (EFI_DEVICE_PATH_PROTOCOL),
0
}
} // DevicePath
};
EFI_STATUS NorFlashCreateInstance(
IN UINTN NorFlashBase,
IN UINTN NorFlashSize,
IN UINT32 MediaId,
IN UINT32 BlockSize,
IN BOOLEAN SupportFvb,
IN CONST GUID *NorFlashGuid,
OUT NOR_FLASH_INSTANCE** NorFlashInstance
) {
EFI_STATUS Status;
NOR_FLASH_INSTANCE* Instance;
ASSERT(NorFlashInstance != NULL);
Instance = AllocateCopyPool (sizeof(NOR_FLASH_INSTANCE),&mNorFlashInstanceTemplate);
if (Instance == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Instance->BaseAddress = NorFlashBase;
Instance->Size = NorFlashSize;
Instance->BlockIoProtocol.Media = &Instance->Media;
Instance->Media.MediaId = MediaId;
Instance->Media.BlockSize = BlockSize;
Instance->Media.LastBlock = (NorFlashSize / BlockSize)-1;
CopyGuid (&Instance->DevicePath.Vendor.Guid,NorFlashGuid);
if (SupportFvb) {
Instance->SupportFvb = TRUE;
Instance->Initialize = NorFlashFvbInitialize;
Status = gBS->InstallMultipleProtocolInterfaces (
&Instance->Handle,
&gEfiDevicePathProtocolGuid, &Instance->DevicePath,
//&gEfiBlockIoProtocolGuid, &Instance->BlockIoProtocol,
&gEfiFirmwareVolumeBlockProtocolGuid, &Instance->FvbProtocol,
NULL
);
if (EFI_ERROR(Status)) {
FreePool(Instance);
return Status;
}
} else {
Instance->Initialize = NorFlashBlkIoInitialize;
Status = gBS->InstallMultipleProtocolInterfaces (
&Instance->Handle,
&gEfiDevicePathProtocolGuid, &Instance->DevicePath,
&gEfiBlockIoProtocolGuid, &Instance->BlockIoProtocol,
NULL
);
if (EFI_ERROR(Status)) {
FreePool(Instance);
return Status;
}
}
*NorFlashInstance = Instance;
return Status;
}
EFI_STATUS
NorFlashReadCfiData (
IN UINTN BaseAddress,
IN UINTN CFI_Offset,
IN UINT32 NumberOfBytes,
OUT UINT32 *Data
)
{
UINT32 CurrentByte;
volatile UINTN *ReadAddress;
UINT32 ReadData;
UINT32 Byte1;
UINT32 Byte2;
UINT32 CombinedData = 0;
EFI_STATUS Status = EFI_SUCCESS;
if( NumberOfBytes > 4 ) {
// Using 32 bit variable so can only read 4 bytes
return EFI_INVALID_PARAMETER;
}
// First combine the base address with the offset address
// to create an absolute read address.
// However, because we are in little endian, read from the last address down to the first
ReadAddress = CREATE_NOR_ADDRESS( BaseAddress, CFI_Offset ) + NumberOfBytes - 1;
// Although each read returns 32 bits, because of the NOR Flash structure,
// each 16 bits (16 MSB and 16 LSB) come from two different chips.
// When in CFI mode, each chip read returns valid data in only the 8 LSBits;
// the 8 MSBits are invalid and can be ignored.
// Therefore, each read address returns one byte from each chip.
//
// Also note: As we are in little endian notation and we are reading
// bytes from incremental addresses, we should assemble them in little endian order.
for( CurrentByte=0; CurrentByte<NumberOfBytes; CurrentByte++ ) {
// Read the bytes from the two chips
ReadData = *ReadAddress;
// Check the data validity:
// The 'Dual Data' function means that
// each chip should return identical data.
// If that is not the case then we have a problem.
Byte1 = GET_LOW_BYTE ( ReadData );
Byte2 = GET_HIGH_BYTE( ReadData );
if( Byte1 != Byte2 ) {
// The two bytes should have been identical
return EFI_DEVICE_ERROR;
} else {
// Each successive iteration of the 'for' loop reads a lower address.
// As we read lower addresses and as we use little endian,
// we read lower significance bytes. So combine them in the correct order.
CombinedData = (CombinedData << 8) | Byte1;
// Decrement down to the next address
ReadAddress--;
}
}
*Data = CombinedData;
return Status;
}
EFI_STATUS
NorFlashReadStatusRegister(
IN UINTN SR_Address
)
{
volatile UINT32 *pStatusRegister;
UINT32 StatusRegister;
UINT32 ErrorMask;
EFI_STATUS Status = EFI_SUCCESS;
// Prepare the read address
pStatusRegister = (UINT32 *) SR_Address;
do {
// Prepare to read the status register
SEND_NOR_COMMAND( SR_Address, 0, P30_CMD_READ_STATUS_REGISTER );
// Snapshot the status register
StatusRegister = *pStatusRegister;
}
// The chip is busy while the WRITE bit is not asserted
while ( (StatusRegister & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE );
// Perform a full status check:
// Mask the relevant bits of Status Register.
// Everything should be zero, if not, we have a problem
// Prepare the Error Mask by setting bits 5, 4, 3, 1
ErrorMask = P30_SR_BIT_ERASE | P30_SR_BIT_PROGRAM | P30_SR_BIT_VPP | P30_SR_BIT_BLOCK_LOCKED ;
if ( (StatusRegister & ErrorMask) != 0 ) {
if ( (StatusRegister & P30_SR_BIT_VPP) != 0 ) {
DEBUG((EFI_D_ERROR,"NorFlashReadStatusRegister: VPP Range Error\n"));
} else if ( (StatusRegister & (P30_SR_BIT_ERASE | P30_SR_BIT_PROGRAM) ) != 0 ) {
DEBUG((EFI_D_ERROR,"NorFlashReadStatusRegister: Command Sequence Error\n"));
} else if ( (StatusRegister & P30_SR_BIT_PROGRAM) != 0 ) {
DEBUG((EFI_D_ERROR,"NorFlashReadStatusRegister: Program Error\n"));
} else if ( (StatusRegister & P30_SR_BIT_BLOCK_LOCKED) != 0 ) {
DEBUG((EFI_D_ERROR,"NorFlashReadStatusRegister: Device Protect Error\n"));
} else {
DEBUG((EFI_D_ERROR,"NorFlashReadStatusRegister: Error (0x%X)\n",Status));
}
// If an error is detected we must clear the Status Register
SEND_NOR_COMMAND( SR_Address, 0, P30_CMD_CLEAR_STATUS_REGISTER );
Status = EFI_DEVICE_ERROR;
}
SEND_NOR_COMMAND( SR_Address, 0, P30_CMD_READ_ARRAY );
return Status;
}
BOOLEAN
NorFlashBlockIsLocked(
IN UINTN BlockAddress
)
{
volatile UINT32 *pReadData;
UINT32 LockStatus;
BOOLEAN BlockIsLocked = TRUE;
// Prepare the read address
pReadData = (UINT32 *) CREATE_NOR_ADDRESS( BlockAddress, 2 );
// Send command for reading device id
SEND_NOR_COMMAND( BlockAddress, 2, P30_CMD_READ_DEVICE_ID );
// Read block lock status
LockStatus = *pReadData;
// Decode block lock status
LockStatus = FOLD_32BIT_INTO_16BIT(LockStatus);
if( (LockStatus & 0x2) != 0 ) {
DEBUG((EFI_D_ERROR, "UnlockSingleBlock: WARNING: Block LOCKED DOWN\n"));
}
if( (LockStatus & 0x1) == 0 ) {
// This means the block is unlocked
DEBUG((DEBUG_BLKIO, "UnlockSingleBlock: Block 0x%08x unlocked\n", BlockAddress ));
BlockIsLocked = FALSE;
}
return BlockIsLocked;
}
EFI_STATUS
NorFlashUnlockSingleBlock(
IN UINTN BlockAddress
)
{
EFI_STATUS Status = EFI_SUCCESS;
// Raise the Task Priority Level to TPL_NOTIFY to serialise all its operations
// and to protect shared data structures.
//while( NorFlashBlockIsLocked( BlockAddress ) )
{
// Request a lock setup
SEND_NOR_COMMAND( BlockAddress, 0, P30_CMD_LOCK_BLOCK_SETUP );
// Request an unlock
SEND_NOR_COMMAND( BlockAddress, 0, P30_CMD_UNLOCK_BLOCK );
}
// Put device back into Read Array mode
SEND_NOR_COMMAND( BlockAddress, 0, P30_CMD_READ_ARRAY );
DEBUG((DEBUG_BLKIO, "UnlockSingleBlock: BlockAddress=0x%08x, Exit Status = \"%r\".\n", BlockAddress, Status));
return Status;
}
EFI_STATUS
NorFlashUnlockSingleBlockIfNecessary(
IN UINTN BlockAddress
)
{
EFI_STATUS Status = EFI_SUCCESS;
if ( NorFlashBlockIsLocked( BlockAddress ) == TRUE ) {
Status = NorFlashUnlockSingleBlock( BlockAddress );
}
return Status;
}
/**
* The following function presumes that the block has already been unlocked.
**/
EFI_STATUS
NorFlashEraseSingleBlock(
IN UINTN BlockAddress
)
{
EFI_STATUS Status = EFI_SUCCESS;
// Request a block erase and then confirm it
SEND_NOR_COMMAND( BlockAddress, 0, P30_CMD_BLOCK_ERASE_SETUP );
SEND_NOR_COMMAND( BlockAddress, 0, P30_CMD_BLOCK_ERASE_CONFIRM );
// Wait until the status register gives us the all clear
Status = NorFlashReadStatusRegister( BlockAddress );
if (EFI_ERROR(Status)) {
DEBUG((DEBUG_BLKIO, "EraseSingleBlock(BlockAddress=0x%08x) = '%r'\n", BlockAddress, Status));
}
return Status;
}
/**
* The following function presumes that the block has already been unlocked.
**/
EFI_STATUS
NorFlashUnlockAndEraseSingleBlock(
IN UINTN BlockAddress
)
{
EFI_STATUS Status;
// Unlock the block if we have to
Status = NorFlashUnlockSingleBlockIfNecessary( BlockAddress );
if (!EFI_ERROR(Status)) {
Status = NorFlashEraseSingleBlock( BlockAddress );
}
return Status;
}
EFI_STATUS
NorFlashWriteSingleWord (
IN UINTN WordAddress,
IN UINT32 WriteData
)
{
EFI_STATUS Status;
volatile UINT32 *Data;
// Prepare the read address
Data = (UINT32 *)WordAddress;
// Request a write single word command
SEND_NOR_COMMAND( WordAddress, 0, P30_CMD_WORD_PROGRAM_SETUP );
// Store the word into NOR Flash;
*Data = WriteData;
// Wait for the write to complete and then check for any errors; i.e. check the Status Register
Status = NorFlashReadStatusRegister( WordAddress );
return Status;
}
/*
* Writes data to the NOR Flash using the Buffered Programming method.
*
* The maximum size of the on-chip buffer is 32-words, because of hardware restrictions.
* Therefore this function will only handle buffers up to 32 words or 128 bytes.
* To deal with larger buffers, call this function again.
*
* This function presumes that both the TargetAddress and the TargetAddress+BufferSize
* exist entirely within the NOR Flash. Therefore these conditions will not be checked here.
*
* In buffered programming, if the target address not at the beginning of a 32-bit word boundary,
* then programming time is doubled and power consumption is increased.
* Therefore, it is a requirement to align buffer writes to 32-bit word boundaries.
* i.e. the last 4 bits of the target start address must be zero: 0x......00
*/
EFI_STATUS
NorFlashWriteBuffer (
IN UINTN TargetAddress,
IN UINTN BufferSizeInBytes,
IN UINT32 *Buffer
)
{
EFI_STATUS Status;
UINTN BufferSizeInWords;
UINTN Count;
volatile UINT32 *Data;
UINTN WaitForBuffer = MAX_BUFFERED_PROG_ITERATIONS;
BOOLEAN BufferAvailable = FALSE;
// Check that the target address does not cross a 32-word boundary.
if ( (TargetAddress & BOUNDARY_OF_32_WORDS) != 0 ) {
return EFI_INVALID_PARAMETER;
}
// Check there are some data to program
if ( BufferSizeInBytes == 0 ) {
return EFI_BUFFER_TOO_SMALL;
}
// Check that the buffer size does not exceed the maximum hardware buffer size on chip.
if ( BufferSizeInBytes > P30_MAX_BUFFER_SIZE_IN_BYTES ) {
return EFI_BAD_BUFFER_SIZE;
}
// Check that the buffer size is a multiple of 32-bit words
if ( (BufferSizeInBytes % 4) != 0 ) {
return EFI_BAD_BUFFER_SIZE;
}
// Pre-programming conditions checked, now start the algorithm.
// Prepare the data destination address
Data = (UINT32 *)TargetAddress;
// Check the availability of the buffer
do {
// Issue the Buffered Program Setup command
SEND_NOR_COMMAND( TargetAddress, 0, P30_CMD_BUFFERED_PROGRAM_SETUP );
// Read back the status register bit#7 from the same address
if ( ((*Data) & P30_SR_BIT_WRITE) == P30_SR_BIT_WRITE ) {
BufferAvailable = TRUE;
}
// Update the loop counter
WaitForBuffer--;
} while (( WaitForBuffer > 0 ) && ( BufferAvailable == FALSE ));
// The buffer was not available for writing
if ( WaitForBuffer == 0 ) {
return EFI_DEVICE_ERROR;
}
// From now on we work in 32-bit words
BufferSizeInWords = BufferSizeInBytes / (UINTN)4;
// Write the word count, which is (buffer_size_in_words - 1),
// because word count 0 means one word.
SEND_NOR_COMMAND( TargetAddress, 0, (BufferSizeInWords - 1) );
// Write the data to the NOR Flash, advancing each address by 4 bytes
for( Count=0; Count<BufferSizeInWords; Count++, Data++, Buffer++ ) {
*Data = *Buffer;
}
// Issue the Buffered Program Confirm command, to start the programming operation
SEND_NOR_COMMAND( TargetAddress, 0, P30_CMD_BUFFERED_PROGRAM_CONFIRM );
// Wait for the write to complete and then check for any errors; i.e. check the Status Register
Status = NorFlashReadStatusRegister( TargetAddress );
return Status;
}
EFI_STATUS
NorFlashWriteSingleBlock (
IN UINTN DeviceBaseAddress,
IN EFI_LBA Lba,
IN UINT32 *DataBuffer,
IN UINT32 BlockSizeInWords
)
{
EFI_STATUS Status = EFI_SUCCESS;
UINTN WordAddress;
UINT32 WordIndex;
UINTN BufferIndex;
UINTN BlockAddress;
UINTN BuffersInBlock;
UINTN RemainingWords;
// Get the physical address of the block
BlockAddress = GET_NOR_BLOCK_ADDRESS(DeviceBaseAddress, Lba, BlockSizeInWords * 4);
Status = NorFlashUnlockAndEraseSingleBlock( BlockAddress );
if (EFI_ERROR(Status)) {
DEBUG((EFI_D_ERROR, "WriteSingleBlock: ERROR - Failed to Unlock and Erase the single block at 0x%X\n", BlockAddress));
return Status;
}
// To speed up the programming operation, NOR Flash is programmed using the Buffered Programming method.
// Start writing from the first address at the start of the block
WordAddress = BlockAddress;
// Check that the address starts at a 32-word boundary, i.e. last 7 bits must be zero
if ( (WordAddress & BOUNDARY_OF_32_WORDS) == 0x00 ) {
// First, break the entire block into buffer-sized chunks.
BuffersInBlock = (UINTN)BlockSizeInWords / P30_MAX_BUFFER_SIZE_IN_BYTES;
// Then feed each buffer chunk to the NOR Flash
for( BufferIndex=0;
BufferIndex < BuffersInBlock;
BufferIndex++, WordAddress += P30_MAX_BUFFER_SIZE_IN_BYTES, DataBuffer += P30_MAX_BUFFER_SIZE_IN_WORDS
) {
Status = NorFlashWriteBuffer ( WordAddress, P30_MAX_BUFFER_SIZE_IN_BYTES, DataBuffer );
if (EFI_ERROR(Status)) {
goto EXIT;
}
}
// Finally, finish off any remaining words that are less than the maximum size of the buffer
RemainingWords = BlockSizeInWords % P30_MAX_BUFFER_SIZE_IN_WORDS;
if( RemainingWords != 0) {
Status = NorFlashWriteBuffer ( WordAddress, (RemainingWords * 4), DataBuffer );
if (EFI_ERROR(Status)) {
goto EXIT;
}
}
} else {
// For now, use the single word programming algorithm
// It is unlikely that the NOR Flash will exist in an address which falls within a 32 word boundary range,
// i.e. which ends in the range 0x......01 - 0x......7F.
for( WordIndex=0; WordIndex<BlockSizeInWords; WordIndex++, DataBuffer++, WordAddress = WordAddress + 4 ) {
Status = NorFlashWriteSingleWord( WordAddress, *DataBuffer );
if (EFI_ERROR(Status)) {
goto EXIT;
}
}
}
EXIT:
if (EFI_ERROR(Status)) {
DEBUG((EFI_D_ERROR, "NOR FLASH Programming [WriteSingleBlock] failed at address 0x%08x. Exit Status = \"%r\".\n", WordAddress, Status));
}
return Status;
}
EFI_STATUS
NorFlashWriteBlocks (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
IN VOID *Buffer
)
{
UINT32 *pWriteBuffer;
EFI_STATUS Status = EFI_SUCCESS;
EFI_LBA CurrentBlock;
UINT32 BlockSizeInWords;
UINT32 NumBlocks;
UINT32 BlockCount;
volatile UINT32 *VersatileExpress_SYS_FLASH;
// The buffer must be valid
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if( Instance->Media.ReadOnly == TRUE ) {
return EFI_WRITE_PROTECTED;
}
// We must have some bytes to read
DEBUG((DEBUG_BLKIO, "NorFlashWriteBlocks: BufferSizeInBytes=0x%x\n", BufferSizeInBytes));
if( BufferSizeInBytes == 0 ) {
return EFI_BAD_BUFFER_SIZE;
}
// The size of the buffer must be a multiple of the block size
DEBUG((DEBUG_BLKIO, "NorFlashWriteBlocks: BlockSize in bytes =0x%x\n", Instance->Media.BlockSize ));
if ((BufferSizeInBytes % Instance->Media.BlockSize) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// All blocks must be within the device
NumBlocks = ((UINT32)BufferSizeInBytes) / Instance->Media.BlockSize ;
DEBUG((DEBUG_BLKIO, "NorFlashWriteBlocks: NumBlocks=%d, LastBlock=%ld, Lba=%ld.\n", NumBlocks, Instance->Media.LastBlock, Lba));
if ( ( Lba + NumBlocks ) > ( Instance->Media.LastBlock + 1 ) ) {
DEBUG((EFI_D_ERROR, "NorFlashWriteBlocks: ERROR - Write will exceed last block.\n"));
return EFI_INVALID_PARAMETER;
}
// Everything seems ok so far, so now we need to disable the platform-specific
// flash write protection for Versatile Express
VersatileExpress_SYS_FLASH = (UINT32 *)VE_REGISTER_SYS_FLASH_ADDR;
if( (*VersatileExpress_SYS_FLASH & 0x1) == 0 ) {
// Writing to NOR FLASH is disabled, so enable it
*VersatileExpress_SYS_FLASH = 0x1;
DEBUG((DEBUG_BLKIO, "NorFlashWriteBlocks: informational - Had to enable HSYS_FLASH flag.\n" ));
}
BlockSizeInWords = Instance->Media.BlockSize / 4;
// Because the target *Buffer is a pointer to VOID, we must put all the data into a pointer
// to a proper data type, so use *ReadBuffer
pWriteBuffer = (UINT32 *)Buffer;
CurrentBlock = Lba;
for( BlockCount=0; BlockCount<NumBlocks; BlockCount++, CurrentBlock++, pWriteBuffer = pWriteBuffer + BlockSizeInWords ) {
DEBUG((DEBUG_BLKIO, "NorFlashWriteBlocks: Writing block #%d\n", (UINTN)CurrentBlock ));
Status = NorFlashWriteSingleBlock( Instance->BaseAddress, CurrentBlock, pWriteBuffer, BlockSizeInWords );
if (EFI_ERROR(Status)) {
break;
}
}
DEBUG((DEBUG_BLKIO, "NorFlashWriteBlocks: Exit Status = \"%r\".\n", Status));
return Status;
}
EFI_STATUS
NorFlashReadBlocks (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
OUT VOID *Buffer
)
{
UINT32 NumBlocks;
UINTN StartAddress;
// The buffer must be valid
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
// We must have some bytes to read
DEBUG((DEBUG_BLKIO, "NorFlashReadBlocks: BufferSize=0x%x bytes.\n", BufferSizeInBytes));
if( BufferSizeInBytes == 0 ) {
return EFI_BAD_BUFFER_SIZE;
}
// The size of the buffer must be a multiple of the block size
DEBUG((DEBUG_BLKIO, "NorFlashReadBlocks: BlockSize=0x%x bytes.\n", Instance->Media.BlockSize ));
if ((BufferSizeInBytes % Instance->Media.BlockSize) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// All blocks must be within the device
NumBlocks = ((UINT32)BufferSizeInBytes) / Instance->Media.BlockSize ;
DEBUG((DEBUG_BLKIO, "NorFlashReadBlocks: NumBlocks=%d, LastBlock=%ld, Lba=%ld\n", NumBlocks, Instance->Media.LastBlock, Lba));
if ( ( Lba + NumBlocks ) > (Instance->Media.LastBlock + 1) ) {
DEBUG((EFI_D_ERROR, "NorFlashReadBlocks: ERROR - Read will exceed last block\n"));
return EFI_INVALID_PARAMETER;
}
// Get the address to start reading from
StartAddress = GET_NOR_BLOCK_ADDRESS( Instance->BaseAddress,
Lba,
Instance->Media.BlockSize
);
// Put the device into Read Array mode
SEND_NOR_COMMAND( Instance->BaseAddress, 0, P30_CMD_READ_ARRAY );
// Readout the data
CopyMem(Buffer, (UINTN *)StartAddress, BufferSizeInBytes);
return EFI_SUCCESS;
}
EFI_STATUS
NorFlashReset (
IN NOR_FLASH_INSTANCE *Instance
)
{
DEBUG((DEBUG_BLKIO, "NorFlashReset(BaseAddress=0x%08x)\n", Instance->BaseAddress));
// As there is no specific RESET to perform, ensure that the devices is in the default Read Array mode
SEND_NOR_COMMAND( Instance->BaseAddress, 0, P30_CMD_READ_ARRAY );
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
NorFlashInitialise (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status = EFI_SUCCESS;
UINT32 Index;
UINTN NvStorageVariableBase = (UINTN) PcdGet32 (PcdFlashNvStorageVariableBase);
for (Index = 0; Index < NOR_FLASH_LAST_DEVICE; Index++) {
Status = NorFlashCreateInstance(
mNorFlashDescription[Index].BaseAddress,
mNorFlashDescription[Index].Size,
Index,
mNorFlashDescription[Index].BlockSize,
(mNorFlashDescription[Index].BaseAddress == NvStorageVariableBase),
&mNorFlashDescription[Index].Guid,
&mNorFlashInstances[Index]
);
if (EFI_ERROR(Status)) {
DEBUG((EFI_D_ERROR,"NorFlashInitialise: Fail to create instance for NorFlash[%d]\n",Index));
}
}
return Status;
}