audk/OvmfPkg/VirtNorFlashDxe/VirtNorFlash.c

992 lines
32 KiB
C
Raw Normal View History

/** @file NorFlash.c
Copyright (c) 2011 - 2020, Arm Limited. All rights reserved.<BR>
Copyright (c) 2020, Linaro, Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/BaseMemoryLib.h>
#include "VirtNorFlash.h"
//
// Global variable declarations
//
extern NOR_FLASH_INSTANCE **mNorFlashInstances;
extern UINT32 mNorFlashDeviceCount;
UINT32
NorFlashReadStatusRegister (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN SR_Address
)
{
// Prepare to read the status register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_STATUS_REGISTER);
return MmioRead32 (Instance->DeviceBaseAddress);
}
STATIC
BOOLEAN
NorFlashBlockIsLocked (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
UINT32 LockStatus;
// Send command for reading device id
SEND_NOR_COMMAND (BlockAddress, 2, P30_CMD_READ_DEVICE_ID);
// Read block lock status
LockStatus = MmioRead32 (CREATE_NOR_ADDRESS (BlockAddress, 2));
// Decode block lock status
LockStatus = FOLD_32BIT_INTO_16BIT (LockStatus);
if ((LockStatus & 0x2) != 0) {
DEBUG ((DEBUG_ERROR, "NorFlashBlockIsLocked: WARNING: Block LOCKED DOWN\n"));
}
return ((LockStatus & 0x1) != 0);
}
STATIC
EFI_STATUS
NorFlashUnlockSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
UINT32 LockStatus;
// Raise the Task Priority Level to TPL_NOTIFY to serialise all its operations
// and to protect shared data structures.
if (FeaturePcdGet (PcdNorFlashCheckBlockLocked) == TRUE) {
do {
// Request a lock setup
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_LOCK_BLOCK_SETUP);
// Request an unlock
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_UNLOCK_BLOCK);
// Send command for reading device id
SEND_NOR_COMMAND (BlockAddress, 2, P30_CMD_READ_DEVICE_ID);
// Read block lock status
LockStatus = MmioRead32 (CREATE_NOR_ADDRESS (BlockAddress, 2));
// Decode block lock status
LockStatus = FOLD_32BIT_INTO_16BIT (LockStatus);
} while ((LockStatus & 0x1) == 1);
} else {
// Request a lock setup
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_LOCK_BLOCK_SETUP);
// Request an unlock
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_UNLOCK_BLOCK);
// Wait until the status register gives us the all clear
do {
LockStatus = NorFlashReadStatusRegister (Instance, BlockAddress);
} while ((LockStatus & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
}
// Put device back into Read Array mode
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_READ_ARRAY);
DEBUG ((DEBUG_BLKIO, "UnlockSingleBlock: BlockAddress=0x%08x\n", BlockAddress));
return EFI_SUCCESS;
}
EFI_STATUS
NorFlashUnlockSingleBlockIfNecessary (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
EFI_STATUS Status;
Status = EFI_SUCCESS;
if (NorFlashBlockIsLocked (Instance, BlockAddress)) {
Status = NorFlashUnlockSingleBlock (Instance, BlockAddress);
}
return Status;
}
/**
* The following function presumes that the block has already been unlocked.
**/
EFI_STATUS
NorFlashEraseSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
EFI_STATUS Status;
UINT32 StatusRegister;
Status = EFI_SUCCESS;
// Request a block erase and then confirm it
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_BLOCK_ERASE_SETUP);
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_BLOCK_ERASE_CONFIRM);
// Wait until the status register gives us the all clear
do {
StatusRegister = NorFlashReadStatusRegister (Instance, BlockAddress);
} while ((StatusRegister & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
if (StatusRegister & P30_SR_BIT_VPP) {
DEBUG ((DEBUG_ERROR, "EraseSingleBlock(BlockAddress=0x%08x: VPP Range Error\n", BlockAddress));
Status = EFI_DEVICE_ERROR;
}
if ((StatusRegister & (P30_SR_BIT_ERASE | P30_SR_BIT_PROGRAM)) == (P30_SR_BIT_ERASE | P30_SR_BIT_PROGRAM)) {
DEBUG ((DEBUG_ERROR, "EraseSingleBlock(BlockAddress=0x%08x: Command Sequence Error\n", BlockAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_ERASE) {
DEBUG ((DEBUG_ERROR, "EraseSingleBlock(BlockAddress=0x%08x: Block Erase Error StatusRegister:0x%X\n", BlockAddress, StatusRegister));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_BLOCK_LOCKED) {
// The debug level message has been reduced because a device lock might happen. In this case we just retry it ...
DEBUG ((DEBUG_INFO, "EraseSingleBlock(BlockAddress=0x%08x: Block Locked Error\n", BlockAddress));
Status = EFI_WRITE_PROTECTED;
}
if (EFI_ERROR (Status)) {
// Clear the Status Register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_CLEAR_STATUS_REGISTER);
}
// Put device back into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return Status;
}
EFI_STATUS
NorFlashWriteSingleWord (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN WordAddress,
IN UINT32 WriteData
)
{
EFI_STATUS Status;
UINT32 StatusRegister;
Status = EFI_SUCCESS;
// Request a write single word command
SEND_NOR_COMMAND (WordAddress, 0, P30_CMD_WORD_PROGRAM_SETUP);
// Store the word into NOR Flash;
MmioWrite32 (WordAddress, WriteData);
// Wait for the write to complete and then check for any errors; i.e. check the Status Register
do {
// Prepare to read the status register
StatusRegister = NorFlashReadStatusRegister (Instance, WordAddress);
// The chip is busy while the WRITE bit is not asserted
} while ((StatusRegister & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
// Perform a full status check:
// Mask the relevant bits of Status Register.
// Everything should be zero, if not, we have a problem
if (StatusRegister & P30_SR_BIT_VPP) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleWord(WordAddress:0x%X): VPP Range Error\n", WordAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_PROGRAM) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleWord(WordAddress:0x%X): Program Error\n", WordAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_BLOCK_LOCKED) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleWord(WordAddress:0x%X): Device Protect Error\n", WordAddress));
Status = EFI_DEVICE_ERROR;
}
if (!EFI_ERROR (Status)) {
// Clear the Status Register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_CLEAR_STATUS_REGISTER);
}
// Put device back into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return Status;
}
/*
* Writes data to the NOR Flash using the Buffered Programming method.
*
* The maximum size of the on-chip buffer is 32-words, because of hardware restrictions.
* Therefore this function will only handle buffers up to 32 words or 128 bytes.
* To deal with larger buffers, call this function again.
*
* This function presumes that both the TargetAddress and the TargetAddress+BufferSize
* exist entirely within the NOR Flash. Therefore these conditions will not be checked here.
*
* In buffered programming, if the target address not at the beginning of a 32-bit word boundary,
* then programming time is doubled and power consumption is increased.
* Therefore, it is a requirement to align buffer writes to 32-bit word boundaries.
* i.e. the last 4 bits of the target start address must be zero: 0x......00
*/
EFI_STATUS
NorFlashWriteBuffer (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN TargetAddress,
IN UINTN BufferSizeInBytes,
IN UINT32 *Buffer
)
{
EFI_STATUS Status;
UINTN BufferSizeInWords;
UINTN Count;
volatile UINT32 *Data;
UINTN WaitForBuffer;
BOOLEAN BufferAvailable;
UINT32 StatusRegister;
WaitForBuffer = MAX_BUFFERED_PROG_ITERATIONS;
BufferAvailable = FALSE;
// Check that the target address does not cross a 32-word boundary.
if ((TargetAddress & BOUNDARY_OF_32_WORDS) != 0) {
return EFI_INVALID_PARAMETER;
}
// Check there are some data to program
if (BufferSizeInBytes == 0) {
return EFI_BUFFER_TOO_SMALL;
}
// Check that the buffer size does not exceed the maximum hardware buffer size on chip.
if (BufferSizeInBytes > P30_MAX_BUFFER_SIZE_IN_BYTES) {
return EFI_BAD_BUFFER_SIZE;
}
// Check that the buffer size is a multiple of 32-bit words
if ((BufferSizeInBytes % 4) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// Pre-programming conditions checked, now start the algorithm.
// Prepare the data destination address
Data = (UINT32 *)TargetAddress;
// Check the availability of the buffer
do {
// Issue the Buffered Program Setup command
SEND_NOR_COMMAND (TargetAddress, 0, P30_CMD_BUFFERED_PROGRAM_SETUP);
// Read back the status register bit#7 from the same address
if (((*Data) & P30_SR_BIT_WRITE) == P30_SR_BIT_WRITE) {
BufferAvailable = TRUE;
}
// Update the loop counter
WaitForBuffer--;
} while ((WaitForBuffer > 0) && (BufferAvailable == FALSE));
// The buffer was not available for writing
if (WaitForBuffer == 0) {
Status = EFI_DEVICE_ERROR;
goto EXIT;
}
// From now on we work in 32-bit words
BufferSizeInWords = BufferSizeInBytes / (UINTN)4;
// Write the word count, which is (buffer_size_in_words - 1),
// because word count 0 means one word.
SEND_NOR_COMMAND (TargetAddress, 0, (BufferSizeInWords - 1));
// Write the data to the NOR Flash, advancing each address by 4 bytes
for (Count = 0; Count < BufferSizeInWords; Count++, Data++, Buffer++) {
MmioWrite32 ((UINTN)Data, *Buffer);
}
// Issue the Buffered Program Confirm command, to start the programming operation
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_BUFFERED_PROGRAM_CONFIRM);
// Wait for the write to complete and then check for any errors; i.e. check the Status Register
do {
StatusRegister = NorFlashReadStatusRegister (Instance, TargetAddress);
// The chip is busy while the WRITE bit is not asserted
} while ((StatusRegister & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
// Perform a full status check:
// Mask the relevant bits of Status Register.
// Everything should be zero, if not, we have a problem
Status = EFI_SUCCESS;
if (StatusRegister & P30_SR_BIT_VPP) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteBuffer(TargetAddress:0x%X): VPP Range Error\n", TargetAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_PROGRAM) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteBuffer(TargetAddress:0x%X): Program Error\n", TargetAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_BLOCK_LOCKED) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteBuffer(TargetAddress:0x%X): Device Protect Error\n", TargetAddress));
Status = EFI_DEVICE_ERROR;
}
if (!EFI_ERROR (Status)) {
// Clear the Status Register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_CLEAR_STATUS_REGISTER);
}
EXIT:
// Put device back into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return Status;
}
EFI_STATUS
NorFlashWriteBlocks (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
IN VOID *Buffer
)
{
UINT32 *pWriteBuffer;
EFI_STATUS Status;
EFI_LBA CurrentBlock;
UINT32 BlockSizeInWords;
UINT32 NumBlocks;
UINT32 BlockCount;
Status = EFI_SUCCESS;
// The buffer must be valid
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (Instance->Media.ReadOnly == TRUE) {
return EFI_WRITE_PROTECTED;
}
// We must have some bytes to read
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: BufferSizeInBytes=0x%x\n", BufferSizeInBytes));
if (BufferSizeInBytes == 0) {
return EFI_BAD_BUFFER_SIZE;
}
// The size of the buffer must be a multiple of the block size
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: BlockSize in bytes =0x%x\n", Instance->Media.BlockSize));
if ((BufferSizeInBytes % Instance->Media.BlockSize) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// All blocks must be within the device
NumBlocks = ((UINT32)BufferSizeInBytes) / Instance->Media.BlockSize;
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: NumBlocks=%d, LastBlock=%ld, Lba=%ld.\n", NumBlocks, Instance->Media.LastBlock, Lba));
if ((Lba + NumBlocks) > (Instance->Media.LastBlock + 1)) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteBlocks: ERROR - Write will exceed last block.\n"));
return EFI_INVALID_PARAMETER;
}
BlockSizeInWords = Instance->Media.BlockSize / 4;
// Because the target *Buffer is a pointer to VOID, we must put all the data into a pointer
// to a proper data type, so use *ReadBuffer
pWriteBuffer = (UINT32 *)Buffer;
CurrentBlock = Lba;
for (BlockCount = 0; BlockCount < NumBlocks; BlockCount++, CurrentBlock++, pWriteBuffer = pWriteBuffer + BlockSizeInWords) {
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: Writing block #%d\n", (UINTN)CurrentBlock));
Status = NorFlashWriteFullBlock (Instance, CurrentBlock, pWriteBuffer, BlockSizeInWords);
if (EFI_ERROR (Status)) {
break;
}
}
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: Exit Status = \"%r\".\n", Status));
return Status;
}
#define BOTH_ALIGNED(a, b, align) ((((UINTN)(a) | (UINTN)(b)) & ((align) - 1)) == 0)
/**
Copy Length bytes from Source to Destination, using aligned accesses only.
Note that this implementation uses memcpy() semantics rather then memmove()
semantics, i.e., SourceBuffer and DestinationBuffer should not overlap.
@param DestinationBuffer The target of the copy request.
@param SourceBuffer The place to copy from.
@param Length The number of bytes to copy.
@return Destination
**/
STATIC
VOID *
AlignedCopyMem (
OUT VOID *DestinationBuffer,
IN CONST VOID *SourceBuffer,
IN UINTN Length
)
{
UINT8 *Destination8;
CONST UINT8 *Source8;
UINT32 *Destination32;
CONST UINT32 *Source32;
UINT64 *Destination64;
CONST UINT64 *Source64;
if (BOTH_ALIGNED (DestinationBuffer, SourceBuffer, 8) && (Length >= 8)) {
Destination64 = DestinationBuffer;
Source64 = SourceBuffer;
while (Length >= 8) {
*Destination64++ = *Source64++;
Length -= 8;
}
Destination8 = (UINT8 *)Destination64;
Source8 = (CONST UINT8 *)Source64;
} else if (BOTH_ALIGNED (DestinationBuffer, SourceBuffer, 4) && (Length >= 4)) {
Destination32 = DestinationBuffer;
Source32 = SourceBuffer;
while (Length >= 4) {
*Destination32++ = *Source32++;
Length -= 4;
}
Destination8 = (UINT8 *)Destination32;
Source8 = (CONST UINT8 *)Source32;
} else {
Destination8 = DestinationBuffer;
Source8 = SourceBuffer;
}
while (Length-- != 0) {
*Destination8++ = *Source8++;
}
return DestinationBuffer;
}
EFI_STATUS
NorFlashReadBlocks (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
OUT VOID *Buffer
)
{
UINT32 NumBlocks;
UINTN StartAddress;
DEBUG ((
DEBUG_BLKIO,
"NorFlashReadBlocks: BufferSize=0x%xB BlockSize=0x%xB LastBlock=%ld, Lba=%ld.\n",
BufferSizeInBytes,
Instance->Media.BlockSize,
Instance->Media.LastBlock,
Lba
));
// The buffer must be valid
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
// Return if we have not any byte to read
if (BufferSizeInBytes == 0) {
return EFI_SUCCESS;
}
// The size of the buffer must be a multiple of the block size
if ((BufferSizeInBytes % Instance->Media.BlockSize) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// All blocks must be within the device
NumBlocks = ((UINT32)BufferSizeInBytes) / Instance->Media.BlockSize;
if ((Lba + NumBlocks) > (Instance->Media.LastBlock + 1)) {
DEBUG ((DEBUG_ERROR, "NorFlashReadBlocks: ERROR - Read will exceed last block\n"));
return EFI_INVALID_PARAMETER;
}
// Get the address to start reading from
StartAddress = GET_NOR_BLOCK_ADDRESS (
Instance->RegionBaseAddress,
Lba,
Instance->Media.BlockSize
);
// Put the device into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
// Readout the data
AlignedCopyMem (Buffer, (VOID *)StartAddress, BufferSizeInBytes);
return EFI_SUCCESS;
}
EFI_STATUS
NorFlashRead (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN Offset,
IN UINTN BufferSizeInBytes,
OUT VOID *Buffer
)
{
UINTN StartAddress;
// The buffer must be valid
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
// Return if we have not any byte to read
if (BufferSizeInBytes == 0) {
return EFI_SUCCESS;
}
if (((Lba * Instance->Media.BlockSize) + Offset + BufferSizeInBytes) > Instance->Size) {
DEBUG ((DEBUG_ERROR, "NorFlashRead: ERROR - Read will exceed device size.\n"));
return EFI_INVALID_PARAMETER;
}
// Get the address to start reading from
StartAddress = GET_NOR_BLOCK_ADDRESS (
Instance->RegionBaseAddress,
Lba,
Instance->Media.BlockSize
);
// Put the device into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
// Readout the data
AlignedCopyMem (Buffer, (VOID *)(StartAddress + Offset), BufferSizeInBytes);
return EFI_SUCCESS;
}
/*
Write a full or portion of a block. It must not span block boundaries; that is,
Offset + *NumBytes <= Instance->Media.BlockSize.
*/
EFI_STATUS
NorFlashWriteSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
)
{
EFI_STATUS TempStatus;
UINT32 Tmp;
UINT32 TmpBuf;
UINT32 WordToWrite;
UINT32 Mask;
BOOLEAN DoErase;
UINTN BytesToWrite;
UINTN CurOffset;
UINTN WordAddr;
UINTN BlockSize;
UINTN BlockAddress;
UINTN PrevBlockAddress;
PrevBlockAddress = 0;
DEBUG ((DEBUG_BLKIO, "NorFlashWriteSingleBlock(Parameters: Lba=%ld, Offset=0x%x, *NumBytes=0x%x, Buffer @ 0x%08x)\n", Lba, Offset, *NumBytes, Buffer));
// Detect WriteDisabled state
if (Instance->Media.ReadOnly == TRUE) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleBlock: ERROR - Can not write: Device is in WriteDisabled state.\n"));
// It is in WriteDisabled state, return an error right away
return EFI_ACCESS_DENIED;
}
// Cache the block size to avoid de-referencing pointers all the time
BlockSize = Instance->Media.BlockSize;
// The write must not span block boundaries.
// We need to check each variable individually because adding two large values together overflows.
if ((Offset >= BlockSize) ||
(*NumBytes > BlockSize) ||
((Offset + *NumBytes) > BlockSize))
{
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleBlock: ERROR - EFI_BAD_BUFFER_SIZE: (Offset=0x%x + NumBytes=0x%x) > BlockSize=0x%x\n", Offset, *NumBytes, BlockSize));
return EFI_BAD_BUFFER_SIZE;
}
// We must have some bytes to write
if (*NumBytes == 0) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleBlock: ERROR - EFI_BAD_BUFFER_SIZE: (Offset=0x%x + NumBytes=0x%x) > BlockSize=0x%x\n", Offset, *NumBytes, BlockSize));
return EFI_BAD_BUFFER_SIZE;
}
// Pick 128bytes as a good start for word operations as opposed to erasing the
// block and writing the data regardless if an erase is really needed.
// It looks like most individual NV variable writes are smaller than 128bytes.
if (*NumBytes <= 128) {
// Check to see if we need to erase before programming the data into NOR.
// If the destination bits are only changing from 1s to 0s we can just write.
// After a block is erased all bits in the block is set to 1.
// If any byte requires us to erase we just give up and rewrite all of it.
DoErase = FALSE;
BytesToWrite = *NumBytes;
CurOffset = Offset;
while (BytesToWrite > 0) {
// Read full word from NOR, splice as required. A word is the smallest
// unit we can write.
TempStatus = NorFlashRead (Instance, Lba, CurOffset & ~(0x3), sizeof (Tmp), &Tmp);
if (EFI_ERROR (TempStatus)) {
return EFI_DEVICE_ERROR;
}
// Physical address of word in NOR to write.
WordAddr = (CurOffset & ~(0x3)) + GET_NOR_BLOCK_ADDRESS (
Instance->RegionBaseAddress,
Lba,
BlockSize
);
// The word of data that is to be written.
TmpBuf = *((UINT32 *)(Buffer + (*NumBytes - BytesToWrite)));
// First do word aligned chunks.
if ((CurOffset & 0x3) == 0) {
if (BytesToWrite >= 4) {
// Is the destination still in 'erased' state?
if (~Tmp != 0) {
// Check to see if we are only changing bits to zero.
if ((Tmp ^ TmpBuf) & TmpBuf) {
DoErase = TRUE;
break;
}
}
// Write this word to NOR
WordToWrite = TmpBuf;
CurOffset += sizeof (TmpBuf);
BytesToWrite -= sizeof (TmpBuf);
} else {
// BytesToWrite < 4. Do small writes and left-overs
Mask = ~((~0) << (BytesToWrite * 8));
// Mask out the bytes we want.
TmpBuf &= Mask;
// Is the destination still in 'erased' state?
if ((Tmp & Mask) != Mask) {
// Check to see if we are only changing bits to zero.
if ((Tmp ^ TmpBuf) & TmpBuf) {
DoErase = TRUE;
break;
}
}
// Merge old and new data. Write merged word to NOR
WordToWrite = (Tmp & ~Mask) | TmpBuf;
CurOffset += BytesToWrite;
BytesToWrite = 0;
}
} else {
// Do multiple words, but starting unaligned.
if (BytesToWrite > (4 - (CurOffset & 0x3))) {
Mask = ((~0) << ((CurOffset & 0x3) * 8));
// Mask out the bytes we want.
TmpBuf &= Mask;
// Is the destination still in 'erased' state?
if ((Tmp & Mask) != Mask) {
// Check to see if we are only changing bits to zero.
if ((Tmp ^ TmpBuf) & TmpBuf) {
DoErase = TRUE;
break;
}
}
// Merge old and new data. Write merged word to NOR
WordToWrite = (Tmp & ~Mask) | TmpBuf;
BytesToWrite -= (4 - (CurOffset & 0x3));
CurOffset += (4 - (CurOffset & 0x3));
} else {
// Unaligned and fits in one word.
Mask = (~((~0) << (BytesToWrite * 8))) << ((CurOffset & 0x3) * 8);
// Mask out the bytes we want.
TmpBuf = (TmpBuf << ((CurOffset & 0x3) * 8)) & Mask;
// Is the destination still in 'erased' state?
if ((Tmp & Mask) != Mask) {
// Check to see if we are only changing bits to zero.
if ((Tmp ^ TmpBuf) & TmpBuf) {
DoErase = TRUE;
break;
}
}
// Merge old and new data. Write merged word to NOR
WordToWrite = (Tmp & ~Mask) | TmpBuf;
CurOffset += BytesToWrite;
BytesToWrite = 0;
}
}
//
// Write the word to NOR.
//
BlockAddress = GET_NOR_BLOCK_ADDRESS (Instance->RegionBaseAddress, Lba, BlockSize);
if (BlockAddress != PrevBlockAddress) {
TempStatus = NorFlashUnlockSingleBlockIfNecessary (Instance, BlockAddress);
if (EFI_ERROR (TempStatus)) {
return EFI_DEVICE_ERROR;
}
PrevBlockAddress = BlockAddress;
}
TempStatus = NorFlashWriteSingleWord (Instance, WordAddr, WordToWrite);
if (EFI_ERROR (TempStatus)) {
return EFI_DEVICE_ERROR;
}
}
// Exit if we got here and could write all the data. Otherwise do the
// Erase-Write cycle.
if (!DoErase) {
return EFI_SUCCESS;
}
}
// Check we did get some memory. Buffer is BlockSize.
if (Instance->ShadowBuffer == NULL) {
DEBUG ((DEBUG_ERROR, "FvbWrite: ERROR - Buffer not ready\n"));
return EFI_DEVICE_ERROR;
}
// Read NOR Flash data into shadow buffer
TempStatus = NorFlashReadBlocks (Instance, Lba, BlockSize, Instance->ShadowBuffer);
if (EFI_ERROR (TempStatus)) {
// Return one of the pre-approved error statuses
return EFI_DEVICE_ERROR;
}
// Put the data at the appropriate location inside the buffer area
CopyMem ((VOID *)((UINTN)Instance->ShadowBuffer + Offset), Buffer, *NumBytes);
// Write the modified buffer back to the NorFlash
TempStatus = NorFlashWriteBlocks (Instance, Lba, BlockSize, Instance->ShadowBuffer);
if (EFI_ERROR (TempStatus)) {
// Return one of the pre-approved error statuses
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
/*
Although DiskIoDxe will automatically install the DiskIO protocol whenever
we install the BlockIO protocol, its implementation is sub-optimal as it reads
and writes entire blocks using the BlockIO protocol. In fact we can access
NOR flash with a finer granularity than that, so we can improve performance
by directly producing the DiskIO protocol.
*/
/**
Read BufferSize bytes from Offset into Buffer.
@param This Protocol instance pointer.
@param MediaId Id of the media, changes every time the media is replaced.
@param Offset The starting byte offset to read from
@param BufferSize Size of Buffer
@param Buffer Buffer containing read data
@retval EFI_SUCCESS The data was read correctly from the device.
@retval EFI_DEVICE_ERROR The device reported an error while performing the read.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHANGED The MediaId does not match the current device.
@retval EFI_INVALID_PARAMETER The read request contains device addresses that are not
valid for the device.
**/
EFI_STATUS
EFIAPI
NorFlashDiskIoReadDisk (
IN EFI_DISK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN UINT64 DiskOffset,
IN UINTN BufferSize,
OUT VOID *Buffer
)
{
NOR_FLASH_INSTANCE *Instance;
UINT32 BlockSize;
UINT32 BlockOffset;
EFI_LBA Lba;
Instance = INSTANCE_FROM_DISKIO_THIS (This);
if (MediaId != Instance->Media.MediaId) {
return EFI_MEDIA_CHANGED;
}
BlockSize = Instance->Media.BlockSize;
Lba = (EFI_LBA)DivU64x32Remainder (DiskOffset, BlockSize, &BlockOffset);
return NorFlashRead (Instance, Lba, BlockOffset, BufferSize, Buffer);
}
/**
Writes a specified number of bytes to a device.
@param This Indicates a pointer to the calling context.
@param MediaId ID of the medium to be written.
@param Offset The starting byte offset on the logical block I/O device to write.
@param BufferSize The size in bytes of Buffer. The number of bytes to write to the device.
@param Buffer A pointer to the buffer containing the data to be written.
@retval EFI_SUCCESS The data was written correctly to the device.
@retval EFI_WRITE_PROTECTED The device can not be written to.
@retval EFI_DEVICE_ERROR The device reported an error while performing the write.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHANGED The MediaId does not match the current device.
@retval EFI_INVALID_PARAMETER The write request contains device addresses that are not
valid for the device.
**/
EFI_STATUS
EFIAPI
NorFlashDiskIoWriteDisk (
IN EFI_DISK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN UINT64 DiskOffset,
IN UINTN BufferSize,
IN VOID *Buffer
)
{
NOR_FLASH_INSTANCE *Instance;
UINT32 BlockSize;
UINT32 BlockOffset;
EFI_LBA Lba;
UINTN RemainingBytes;
UINTN WriteSize;
EFI_STATUS Status;
Instance = INSTANCE_FROM_DISKIO_THIS (This);
if (MediaId != Instance->Media.MediaId) {
return EFI_MEDIA_CHANGED;
}
BlockSize = Instance->Media.BlockSize;
Lba = (EFI_LBA)DivU64x32Remainder (DiskOffset, BlockSize, &BlockOffset);
RemainingBytes = BufferSize;
// Write either all the remaining bytes, or the number of bytes that bring
// us up to a block boundary, whichever is less.
// (DiskOffset | (BlockSize - 1)) + 1) rounds DiskOffset up to the next
// block boundary (even if it is already on one).
WriteSize = MIN (RemainingBytes, ((DiskOffset | (BlockSize - 1)) + 1) - DiskOffset);
do {
if (WriteSize == BlockSize) {
// Write a full block
Status = NorFlashWriteFullBlock (Instance, Lba, Buffer, BlockSize / sizeof (UINT32));
} else {
// Write a partial block
Status = NorFlashWriteSingleBlock (Instance, Lba, BlockOffset, &WriteSize, Buffer);
}
if (EFI_ERROR (Status)) {
return Status;
}
// Now continue writing either all the remaining bytes or single blocks.
RemainingBytes -= WriteSize;
Buffer = (UINT8 *)Buffer + WriteSize;
Lba++;
BlockOffset = 0;
WriteSize = MIN (RemainingBytes, BlockSize);
} while (RemainingBytes);
return Status;
}
EFI_STATUS
NorFlashReset (
IN NOR_FLASH_INSTANCE *Instance
)
{
// As there is no specific RESET to perform, ensure that the devices is in the default Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return EFI_SUCCESS;
}
/**
Fixup internal data so that EFI can be call in virtual mode.
Call the passed in Child Notify event and convert any pointers in
lib to virtual mode.
@param[in] Event The Event that is being processed
@param[in] Context Event Context
**/
VOID
EFIAPI
NorFlashVirtualNotifyEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
{
UINTN Index;
for (Index = 0; Index < mNorFlashDeviceCount; Index++) {
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->DeviceBaseAddress);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->RegionBaseAddress);
// Convert BlockIo protocol
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->BlockIoProtocol.FlushBlocks);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->BlockIoProtocol.ReadBlocks);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->BlockIoProtocol.Reset);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->BlockIoProtocol.WriteBlocks);
// Convert Fvb
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.EraseBlocks);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.GetAttributes);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.GetBlockSize);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.GetPhysicalAddress);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.Read);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.SetAttributes);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.Write);
if (mNorFlashInstances[Index]->ShadowBuffer != NULL) {
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->ShadowBuffer);
}
}
return;
}