audk/MdePkg/Include/Protocol/FirmwareVolumeBlock.h

394 lines
15 KiB
C
Raw Normal View History

/** @file
This file provides control over block-oriented firmware devices.
Copyright (c) 2006 - 2008, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
@par Revision Reference: PI
Version 1.00.
**/
#ifndef __FIRMWARE_VOLUME_BLOCK_H__
#define __FIRMWARE_VOLUME_BLOCK_H__
#define EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL_GUID \
{ 0xDE28BC59, 0x6228, 0x41BD, {0xBD, 0xF6, 0xA3, 0xB9, 0xAD,0xB5, 0x8D, 0xA1 } }
typedef struct _EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL;
/**
The GetAttributes() function retrieves the attributes and
current settings of the block. Status Codes Returned
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL instance.
@param Attributes Pointer to EFI_FVB_ATTRIBUTES in which the
attributes and current settings are
returned. Type EFI_FVB_ATTRIBUTES is defined
in EFI_FIRMWARE_VOLUME_HEADER.
@retval EFI_SUCCESS The firmware volume attributes were
returned.
**/
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_ATTRIBUTES)(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
OUT EFI_FVB_ATTRIBUTES *Attributes
);
/**
The SetAttributes() function sets configurable firmware volume
attributes and returns the new settings of the firmware volume.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL instance.
@param Attributes On input, Attributes is a pointer to
EFI_FVB_ATTRIBUTES that contains the
desired firmware volume settings. On
successful return, it contains the new
settings of the firmware volume. Type
EFI_FVB_ATTRIBUTES is defined in
EFI_FIRMWARE_VOLUME_HEADER.
@retval EFI_SUCCESS The firmware volume attributes were returned.
@retval EFI_INVALID_PARAMETER The attributes requested are in
conflict with the capabilities
as declared in the firmware
volume header.
**/
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_SET_ATTRIBUTES)(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
IN OUT EFI_FVB_ATTRIBUTES *Attributes
);
/**
The GetPhysicalAddress() function retrieves the base address of
a memory-mapped firmware volume. This function should be called
only for memory-mapped firmware volumes.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL instance.
@param Address Pointer to a caller-allocated
EFI_PHYSICAL_ADDRESS that, on successful
return from GetPhysicalAddress(), contains the
base address of the firmware volume.
@retval EFI_SUCCESS The firmware volume base address is returned.
@retval EFI_NOT_SUPPORTED The firmware volume is not memory mapped.
**/
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_PHYSICAL_ADDRESS)(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
OUT EFI_PHYSICAL_ADDRESS *Address
);
/**
The GetBlockSize() function retrieves the size of the requested
block. It also returns the number of additional blocks with
the identical size. The GetBlockSize() function is used to
retrieve the block map (see EFI_FIRMWARE_VOLUME_HEADER).
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL instance.
@param Lba Indicates the block for which to return the size.
@param BlockSize Pointer to a caller-allocated UINTN in which
the size of the block is returned.
@param NumberOfBlocks Pointer to a caller-allocated UINTN in
which the number of consecutive blocks,
starting with Lba, is returned. All
blocks in this range have a size of
BlockSize.
@retval EFI_SUCCESS The firmware volume base address is returned.
@retval EFI_INVALID_PARAMETER The requested LBA is out of range.
**/
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_BLOCK_SIZE)(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
IN EFI_LBA Lba,
OUT UINTN *BlockSize,
OUT UINTN *NumberOfBlocks
);
/**
The Read() function reads the requested number of bytes from the
requested block and stores them in the provided buffer.
Implementations should be mindful that the firmware volume
might be in the ReadDisabled state. If it is in this state,
the Read() function must return the status code
EFI_ACCESS_DENIED without modifying the contents of the
buffer. The Read() function must also prevent spanning block
boundaries. If a read is requested that would span a block
boundary, the read must read up to the boundary but not
beyond. The output parameter NumBytes must be set to correctly
indicate the number of bytes actually read. The caller must be
aware that a read may be partially completed.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL instance.
@param Lba The starting logical block index
from which to read.
@param Offset Offset into the block at which to begin reading.
@param NumBytes Pointer to a UINTN. At entry, *NumBytes
contains the total size of the buffer. At
exit, *NumBytes contains the total number of
bytes read.
@param Buffer Pointer to a caller-allocated buffer that will
be used to hold the data that is read.
@retval EFI_SUCCESS The firmware volume was read successfully
and contents are in Buffer.
@retval EFI_BAD_BUFFER_SIZE Read attempted across an LBA
boundary. On output, NumBytes
contains the total number of bytes
returned in Buffer.
@retval EFI_ACCESS_DENIED The firmware volume is in the
ReadDisabled state.
@retval EFI_DEVICE_ERROR The block device is not
functioning correctly and could
not be read.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_READ)(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN OUT UINT8 *Buffer
);
/**
The Write() function writes the specified number of bytes from
the provided buffer to the specified block and offset. If the
firmware volume is sticky write, the caller must ensure that
all the bits of the specified range to write are in the
EFI_FVB_ERASE_POLARITY state before calling the Write()
function, or else the result will be unpredictable. This
unpredictability arises because, for a sticky-write firmware
volume, a write may negate a bit in the EFI_FVB_ERASE_POLARITY
state but it cannot flip it back again. In general, before
calling the Write() function, the caller should call the
EraseBlocks() function first to erase the specified block to
write. A block erase cycle will transition bits from the
(NOT)EFI_FVB_ERASE_POLARITY state back to the
EFI_FVB_ERASE_POLARITY state. Implementations should be
mindful that the firmware volume might be in the WriteDisabled
state. If it is in this state, the Write() function must
return the status code EFI_ACCESS_DENIED without modifying the
contents of the firmware volume. The Write() function must
also prevent spanning block boundaries. If a write is
requested that spans a block boundary, the write must store up
to the boundary but not beyond. The output parameter NumBytes
must be set to correctly indicate the number of bytes actually
written. The caller must be aware that a write may be
partially completed. All writes, partial or otherwise, must be
fully flushed to the hardware before the Write() service
returns.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL instance.
@param Lba The starting logical block index to write to.
@param Offset Offset into the block at which to begin writing.
@param NumBytes Pointer to a UINTN. At entry, *NumBytes
contains the total size of the buffer. At
exit, *NumBytes contains the total number of
bytes actually written.
@param Buffer Pointer to a caller-allocated buffer that
contains the source for the write.
@retval EFI_SUCCESS The firmware volume was written successfully.
@retval EFI_BAD_BUFFER_SIZE The write was attempted across an
LBA boundary. On output, NumBytes
contains the total number of bytes
actually written.
@retval EFI_ACCESS_DENIED The firmware volume is in the
WriteDisabled state.
@retval EFI_DEVICE_ERROR The block device is malfunctioning
and could not be written.
**/
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_WRITE)(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
);
//
// EFI_LBA_LIST_TERMINATOR
//
#define EFI_LBA_LIST_TERMINATOR 0xFFFFFFFFFFFFFFFFULL
/**
The EraseBlocks() function erases one or more blocks as denoted
by the variable argument list. The entire parameter list of
blocks must be verified before erasing any blocks. If a block is
requested that does not exist within the associated firmware
volume (it has a larger index than the last block of the
firmware volume), the EraseBlocks() function must return the
status code EFI_INVALID_PARAMETER without modifying the contents
of the firmware volume. Implementations should be mindful that
the firmware volume might be in the WriteDisabled state. If it
is in this state, the EraseBlocks() function must return the
status code EFI_ACCESS_DENIED without modifying the contents of
the firmware volume. All calls to EraseBlocks() must be fully
flushed to the hardware before the EraseBlocks() service
returns.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL
instance.
@param ... The variable argument list is a list of tuples.
Each tuple describes a range of LBAs to erase
and consists of the following:
- An EFI_LBA that indicates the starting LBA
- A UINTN that indicates the number of blocks to
erase
The list is terminated with an
EFI_LBA_LIST_TERMINATOR. For example, the
following indicates that two ranges of blocks
(5-7 and 10-11) are to be erased: EraseBlocks
(This, 5, 3, 10, 2, EFI_LBA_LIST_TERMINATOR);
@retval EFI_SUCCESS The erase request was successfully
completed.
@retval EFI_ACCESS_DENIED The firmware volume is in the
WriteDisabled state.
@retval EFI_DEVICE_ERROR The block device is not functioning
correctly and could not be written.
The firmware device may have been
partially erased.
@retval EFI_INVALID_PARAMETER One or more of the LBAs listed
in the variable argument list do
not exist in the firmware volume.
**/
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_ERASE_BLOCKS)(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This,
...
);
/**
@par Protocol Description:
The Firmware Volume Block Protocol is the low-level interface
to a firmware volume. File-level access to a firmware volume
should not be done using the Firmware Volume Block Protocol.
Normal access to a firmware volume must use the Firmware
Volume Protocol. Typically, only the file system driver that
produces the Firmware Volume Protocol will bind to the
Firmware Volume Block Protocol. The Firmware Volume Block
Protocol provides the following:
- Byte-level read/write functionality.
- Block-level erase functionality.
- It further exposes device-hardening features, such as may be
equired to protect the firmware from unwanted overwriting
and/or erasure.
- It is useful to layer a file system driver on top of the
Firmware Volume Block Protocol.
This file system driver produces the Firmware Volume Protocol,
which provides file-level access to a firmware volume. The
Firmware Volume Protocol abstracts the file system that is
used to format the firmware volume and the hardware
device-hardening features that may be present.
@param GetPhysicalAddress Retrieves the memory-mapped
address of the firmware volume.
@param GetBlockSize Retrieves the size for a specific block.
Also returns the number of consecutive
similarly sized blocks.
@param Read Reads n bytes into a buffer from the firmware
volume hardware.
@param Write Writes n bytes from a buffer into the firmware
volume hardware.
@param EraseBlocks Erases specified block(s) and sets all
values as indicated by the
EFI_FVB_ERASE_POLARITY bit. See the
EraseBlocks() function description. Type
EFI_FVB_ERASE_POLARITY is defined in
EFI_FIRMWARE_VOLUME_HEADER. ParentHandle
Handle of the parent firmware volume.
@param GetAttributes Retrieves the current volume attributes.
@param SetAttributes Sets the current volume attributes.
**/
struct _EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL {
EFI_FVB_GET_ATTRIBUTES GetAttributes;
EFI_FVB_SET_ATTRIBUTES SetAttributes;
EFI_FVB_GET_PHYSICAL_ADDRESS GetPhysicalAddress;
EFI_FVB_GET_BLOCK_SIZE GetBlockSize;
EFI_FVB_READ Read;
EFI_FVB_WRITE Write;
EFI_FVB_ERASE_BLOCKS EraseBlocks;
EFI_HANDLE ParentHandle;
};
extern EFI_GUID gEfiFirmwareVolumeBlockProtocolGuid;
#endif