2015-01-12 10:37:20 +01:00
|
|
|
/** @file
|
|
|
|
ICH9 ACPI Timer implements one instance of Timer Library.
|
|
|
|
|
|
|
|
Copyright (c) 2007 - 2014, Intel Corporation. All rights reserved.<BR>
|
|
|
|
|
2019-04-04 01:07:37 +02:00
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
|
2015-01-12 10:37:20 +01:00
|
|
|
|
|
|
|
|
|
|
|
**/
|
|
|
|
|
|
|
|
#include "CommonHeader.h"
|
|
|
|
|
|
|
|
/**
|
|
|
|
The constructor function enables ACPI IO space.
|
|
|
|
|
|
|
|
If ACPI I/O space not enabled, this function will enable it.
|
|
|
|
It will always return RETURN_SUCCESS.
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS The constructor always returns RETURN_SUCCESS.
|
|
|
|
|
|
|
|
**/
|
|
|
|
RETURN_STATUS
|
|
|
|
EFIAPI
|
|
|
|
IntelPchAcpiTimerLibConstructor (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
|
|
|
if ((PchLpcPciCfg8(R_PCH_LPC_ACPI_BASE) & B_PCH_LPC_ACPI_BASE_EN) == 0) {
|
|
|
|
//
|
|
|
|
// If ACPI I/O space is not enabled, program ACPI I/O base address and enable it.
|
|
|
|
//
|
|
|
|
MmioWrite16 (
|
|
|
|
MmPciAddress (
|
|
|
|
0,
|
|
|
|
DEFAULT_PCI_BUS_NUMBER_PCH,
|
|
|
|
PCI_DEVICE_NUMBER_PCH_LPC,
|
|
|
|
PCI_FUNCTION_NUMBER_PCH_LPC,
|
|
|
|
R_PCH_LPC_ACPI_BASE
|
|
|
|
),
|
|
|
|
((PcdGet16 (PcdPchAcpiIoPortBaseAddress) & B_PCH_LPC_ACPI_BASE_BAR) | B_PCH_LPC_ACPI_BASE_EN)
|
|
|
|
);
|
|
|
|
}
|
|
|
|
return RETURN_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Internal function to read the current tick counter of ACPI.
|
|
|
|
|
|
|
|
Internal function to read the current tick counter of ACPI.
|
|
|
|
|
|
|
|
@return The tick counter read.
|
|
|
|
|
|
|
|
**/
|
|
|
|
STATIC
|
|
|
|
UINT32
|
|
|
|
InternalAcpiGetTimerTick (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
|
|
|
return IoRead32 (PcdGet16 (PcdPchAcpiIoPortBaseAddress) + R_PCH_ACPI_PM1_TMR);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Stalls the CPU for at least the given number of ticks.
|
|
|
|
|
|
|
|
Stalls the CPU for at least the given number of ticks. It's invoked by
|
|
|
|
MicroSecondDelay() and NanoSecondDelay().
|
|
|
|
|
|
|
|
@param Delay A period of time to delay in ticks.
|
|
|
|
|
|
|
|
**/
|
|
|
|
STATIC
|
|
|
|
VOID
|
|
|
|
InternalAcpiDelay (
|
|
|
|
IN UINT32 Delay
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT32 Ticks;
|
|
|
|
UINT32 Times;
|
|
|
|
|
|
|
|
Times = Delay >> 22;
|
|
|
|
Delay &= BIT22 - 1;
|
|
|
|
do {
|
|
|
|
//
|
|
|
|
// The target timer count is calculated here
|
|
|
|
//
|
|
|
|
Ticks = InternalAcpiGetTimerTick () + Delay;
|
|
|
|
Delay = BIT22;
|
|
|
|
//
|
|
|
|
// Wait until time out
|
|
|
|
// Delay >= 2^23 could not be handled by this function
|
|
|
|
// Timer wrap-arounds are handled correctly by this function
|
|
|
|
//
|
|
|
|
while (((Ticks - InternalAcpiGetTimerTick ()) & BIT23) == 0) {
|
|
|
|
CpuPause ();
|
|
|
|
}
|
|
|
|
} while (Times-- > 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Stalls the CPU for at least the given number of microseconds.
|
|
|
|
|
|
|
|
Stalls the CPU for the number of microseconds specified by MicroSeconds.
|
|
|
|
|
|
|
|
@param MicroSeconds The minimum number of microseconds to delay.
|
|
|
|
|
|
|
|
@return MicroSeconds
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINTN
|
|
|
|
EFIAPI
|
|
|
|
MicroSecondDelay (
|
|
|
|
IN UINTN MicroSeconds
|
|
|
|
)
|
|
|
|
{
|
|
|
|
InternalAcpiDelay (
|
|
|
|
(UINT32)DivU64x32 (
|
|
|
|
MultU64x32 (
|
|
|
|
MicroSeconds,
|
|
|
|
V_PCH_ACPI_PM1_TMR_FREQUENCY
|
|
|
|
),
|
|
|
|
1000000u
|
|
|
|
)
|
|
|
|
);
|
|
|
|
return MicroSeconds;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Stalls the CPU for at least the given number of nanoseconds.
|
|
|
|
|
|
|
|
Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
|
|
|
|
|
|
|
|
@param NanoSeconds The minimum number of nanoseconds to delay.
|
|
|
|
|
|
|
|
@return NanoSeconds
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINTN
|
|
|
|
EFIAPI
|
|
|
|
NanoSecondDelay (
|
|
|
|
IN UINTN NanoSeconds
|
|
|
|
)
|
|
|
|
{
|
|
|
|
InternalAcpiDelay (
|
|
|
|
(UINT32)DivU64x32 (
|
|
|
|
MultU64x32 (
|
|
|
|
NanoSeconds,
|
|
|
|
V_PCH_ACPI_PM1_TMR_FREQUENCY
|
|
|
|
),
|
|
|
|
1000000000u
|
|
|
|
)
|
|
|
|
);
|
|
|
|
return NanoSeconds;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Retrieves the current value of a 64-bit free running performance counter.
|
|
|
|
|
|
|
|
Retrieves the current value of a 64-bit free running performance counter. The
|
|
|
|
counter can either count up by 1 or count down by 1. If the physical
|
|
|
|
performance counter counts by a larger increment, then the counter values
|
|
|
|
must be translated. The properties of the counter can be retrieved from
|
|
|
|
GetPerformanceCounterProperties().
|
|
|
|
|
|
|
|
@return The current value of the free running performance counter.
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINT64
|
|
|
|
EFIAPI
|
|
|
|
GetPerformanceCounter (
|
|
|
|
VOID
|
|
|
|
)
|
|
|
|
{
|
|
|
|
return (UINT64)InternalAcpiGetTimerTick ();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Retrieves the 64-bit frequency in Hz and the range of performance counter
|
|
|
|
values.
|
|
|
|
|
|
|
|
If StartValue is not NULL, then the value that the performance counter starts
|
|
|
|
with immediately after is it rolls over is returned in StartValue. If
|
|
|
|
EndValue is not NULL, then the value that the performance counter end with
|
|
|
|
immediately before it rolls over is returned in EndValue. The 64-bit
|
|
|
|
frequency of the performance counter in Hz is always returned. If StartValue
|
|
|
|
is less than EndValue, then the performance counter counts up. If StartValue
|
|
|
|
is greater than EndValue, then the performance counter counts down. For
|
|
|
|
example, a 64-bit free running counter that counts up would have a StartValue
|
|
|
|
of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter
|
|
|
|
that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.
|
|
|
|
|
|
|
|
@param StartValue The value the performance counter starts with when it
|
|
|
|
rolls over.
|
|
|
|
@param EndValue The value that the performance counter ends with before
|
|
|
|
it rolls over.
|
|
|
|
|
|
|
|
@return The frequency in Hz.
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINT64
|
|
|
|
EFIAPI
|
|
|
|
GetPerformanceCounterProperties (
|
|
|
|
OUT UINT64 *StartValue, OPTIONAL
|
|
|
|
OUT UINT64 *EndValue OPTIONAL
|
|
|
|
)
|
|
|
|
{
|
|
|
|
if (StartValue != NULL) {
|
|
|
|
*StartValue = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (EndValue != NULL) {
|
|
|
|
*EndValue = V_PCH_ACPI_PM1_TMR_MAX_VAL - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return V_PCH_ACPI_PM1_TMR_FREQUENCY;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Converts elapsed ticks of performance counter to time in nanoseconds.
|
|
|
|
|
|
|
|
This function converts the elapsed ticks of running performance counter to
|
|
|
|
time value in unit of nanoseconds.
|
|
|
|
|
|
|
|
@param Ticks The number of elapsed ticks of running performance counter.
|
|
|
|
|
|
|
|
@return The elapsed time in nanoseconds.
|
|
|
|
|
|
|
|
**/
|
|
|
|
UINT64
|
|
|
|
EFIAPI
|
|
|
|
GetTimeInNanoSecond (
|
|
|
|
IN UINT64 Ticks
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINT64 NanoSeconds;
|
|
|
|
UINT32 Remainder;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Ticks
|
|
|
|
// Time = --------- x 1,000,000,000
|
|
|
|
// Frequency
|
|
|
|
//
|
|
|
|
NanoSeconds = MultU64x32 (DivU64x32Remainder (Ticks, V_PCH_ACPI_PM1_TMR_FREQUENCY, &Remainder), 1000000000u);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Frequency < 0x100000000, so Remainder < 0x100000000, then (Remainder * 1,000,000,000)
|
|
|
|
// will not overflow 64-bit.
|
|
|
|
//
|
|
|
|
NanoSeconds += DivU64x32 (MultU64x32 ((UINT64) Remainder, 1000000000u), V_PCH_ACPI_PM1_TMR_FREQUENCY);
|
|
|
|
|
|
|
|
return NanoSeconds;
|
|
|
|
}
|
|
|
|
|
|
|
|
|